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Abstract. This paper describes an automatic parameter optimization
method for anisotropic diffusion filters used to de-noise 2D and 3D MR
images. The filtering process is integrated into a closed-loop system where
image improvement is monitored indirectly by comparing the character-
istics of the suppressed noise with those of the assumed noise model at
the optimal point. In order to verify the performance of this approach,
experimental results obtained with this method are presented together
with the results obtained by median and k-nearest neighbor filters.

1 Introduction

High-resolution MR images are often affected by noise, causing undesired inten-
sity overlapping of represented tissues, making its posterior segmentation and
classification difficult. Traditional linear filters, such as mean or Gaussian filters,
commonly used to reduce the noise, do not consider the boundaries originated
from regions with different intensities, producing smoothing of these edges and
suppression of sharp details. As a result, the produced images are blurred and
diffuse.

Anisotropic diffusion filters overcome these shortcomings by adjusting the
smoothing (diffusion) strength to the boundaries, thus reducing the noise while
preserving edges. The anisotropic diffusion approach arose from the use of the
Gaussian filter in multi-scale image analysis [1]. Perona and Malik [2] modified
the isotropic diffusion equation (Eq. 1) by making the diffusion coefficient term
c(x̄,t) a function of the magnitude of the gradient of the image intensity,

∂

∂t
I(x̄, t) = div (c (x̄, t)∇I(x̄, t)) (1)

where I(x̄,t) stands for the processed image at time t, x̄ = (x, y, z) the space
coordinates, t the iteration step (time) and ∇I the image gradient.

The diffusion coefficient was defined as a monotonically decreasing function
c(x̄,t)=f(|∇I(x̄, t)|) of the gradient, which becomes small when the magnitude of
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the gradient is large and approaches one when the gradient is close to zero. Per-
ona and Malik [2] proposed two such diffusion functions, PMAD1 and PMAD2.

c1 (x̄, t) = exp−
(

|∇I (x̄, t)|
k

)2

c2 (x̄, t) =
1

1 +
(

|∇I(x̄,t)|
k

)2 (2)

Gerig et al. [3] introduced a discrete anisotropic (non-linear) diffusion algorithm
for de-noising MR images. Other diffusion functions were reported by Black et
al. [4] and Weickert [5]. Weeratunga et al. [6] assessed the de-noising performance
of several diffusion functions using medical and non-medical images. Suri and
Wu [7] give an overview of current trends and outlook on future development of
the anisotropic diffusion field.

The main parameters which control the behavior of the smoothing process
in anisotropic diffusion are the number of iterations (it) and the diffusion factor
k (Eq. 2), which determines the level of gradient intensity where diffusion is
at its maximum. For de-noising applications, the diffusion factor needs to be
adjusted according to the noise level. The noise is usually estimated with some
statistical methods that determine global characteristics (e.g. Black et al. [4]
used the median absolute deviation), or by hand-picking some homogeneous
areas and measuring the local variance. The number of iterations determines
how many times the smoothing process is repeated. This parameter is often
adjusted manually but it can also be done using an auto-stop criterion. In the
latter case, the program can consider the number of pixel (voxel) modifications
which occurred between the last two iterations to stop execution [4]. Either way,
selecting an appropriate set of parameters is generally quite complicated and
time-consuming.

In this work, an iterative method is presented that automatically adjusts
these two main parameters. In contrast to previous approaches the estimation of
the noise level is only used to determine the initial value of k. The optimization
of the parameter k is driven by the feedback output from an evaluation method
until a maximum response is reached. The novel evaluation method estimates
indirectly the improvement of the image by analyzing the suppressed information
and comparing its characteristics with those expected at the optimum. This is
repeated several times for different values of it. The best combination of the
two parameters, according to the evaluation method response, is then selected
to finally process the image. Figure 1 shows a diagram of the method described
here. The following sections will explain in detail our method and will present
achieved experimental results.

2 Method

The three basic modules of the automatic iterative system proposed here are the
de-noising filters, the evaluation method and the adjustment rules (Fig. 1). The
de-noising filters module contains several anisotropic diffusion functions for data
processing (e.g., PMAD2) as well as a set of anisotropic diffusion filters modeled
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Fig. 1. Diagram of the automatic anisotropic filter system

after Nordström’s [8] biased anisotropic formulation (e.g., PMAD2 bias). All
the filters use a regularized (smoothed) version of the gradient to estimate the
position of the edges [5] which should not be smoothed by the anisotropic filtering
process.

The key component of the system, the evaluation module, gives feedback on
image improvement or degradation during processing. Unlike other techniques,
such as image compression, de-noising techniques do not have access to un-
corrupted reference images to minimize the error between the reference and
the processed image. Also, since this method is used for pre-processing, the
only information available to it is that contained in the source image and that
obtained during processing, so that no a priori anatomical knowledge is used to
process the image. These conditions were set to keep the method as flexible and
independent as possible.

MR images can be seen as the combination of the intensity information of
the examined tissues and the noise generated during the measurement. After
processing an MR image with an ideal filter configured using ideal parameters,
the processed image would be perfectly clean of noise and only contain tissue
information. Hence, the residual image, obtained by subtracting the source image
from the processed one (Fig. 2), would consist only of the noise of the source
image. The evaluation method takes advantage of this residual information to
analyze the characteristics of the suppressed noise.

The characteristics of the noise for magnitude MR images are sufficiently
known and therefore used as reference. In this case, the noise has a Rice dis-
tribution and its strength is homogeneous across the entire data set [9]. The
closer the parametrization of k and it is to optimum, the more the residual im-
age will approximate the characteristics of the initial noise. The images on the
bottom row of Figure 2b were obtained by processing the image using succes-
sively increasing k values. The great variation in texture between the left and
the right image suggest that either the source image needed more filtering or it
was strongly smoothed and some anatomical structure have started to emerge in
the residual image. The image in the middle was obtained using near-optimum
parameters.
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Fig. 2. Residual information used to monitor the noise reduction; a) diagram; b) pro-
cessed (top) and residual images (bottom). The three pairs correspond to slightly
smoothed (left), near optimally smoothed (middle) and heavily smoothed MR images
(right).

Fig. 3. a) Diagram of the evaluation method; b) results of the local variance (top)
and from the histogram (bottom) modules. The three images correspond to slightly
smoothed (left), near optimally smoothed (middle) and heavily smoothed MR images
(right).

The evaluation method consists of three modules (Fig. 3a). The first one is
a local variance operator which produces a picture of the noise, measuring the
variance within a 3x3 (3x3x3) local region every third pixel (voxel). The local
variance image is normalized to prevent bias during subsequent operations. The
second module is a histogram which extracts the distribution information of
the variance image. The results are smoothed with a low-pass filter to prevent
discontinuities. The third module is an evaluation function of the histogram
results which considers the maximum height, the width and the symmetry of the
histogram to produce a noise reduction index. The evaluation function formula
is shown in Equation 3.
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Fig. 4. a) Histogram characteristics considered by the evaluation function module; b)
results of the evaluation function

Its first term H represents the maximum value of the histogram. The inverse
of the Full-Width at Half-Maximum (FWHM) and the inverse of the Full-Width
at 20%-Maximum (FW20%M) terms are indicators of the variance dispersion,
and the two exponential terms are functions of the histogram symmetry based
on the right and left Half-Widths at 50% (HWHM) and at 20% (HW20%M) of
the maximum (Fig. 4a). This evaluation function yields large values when the
histogram function is close to a large and narrow Gaussian-type curve, reflecting
a homogeneous distribution of the local variance values. Figure 4b shows the
results of the evaluation function after evaluating part of the parameters interval
(it=1 to 25, k=1.838 to 26.290).

Mp = H ∗
(

1
FWHM

)
∗

(
1

FW20%M

)
∗ (3)

(
1 − exp

(
− (SymmFWHM)3

0.2

))
∗

(
1 − exp

(
− (SymmFW20%M)3

0.2

))

where:

SymmFWHM =
LeftHWHM

RightHWHM
if LeftHWHM ≤ RightHWHM

SymmFWHM =
RightHWHM

LeftHWHM
if LeftHWHM > RightHWHM

SymmFW20%M =
LeftHW20%M

RightHW20%M
if LeftHW20%M ≤ RightHW20%M

SymmFW20%M =
RightHW20%M

LeftHW20%M
if LeftHW20%M > RightHW20%M

The pairs diffusion factor-number of iterations corresponding to the ridge
values are considered to be close to optimum parameter configurations because
the response corresponds to a homogeneous distribution of the local variance.
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The adjustment rules module was implemented to avoid evaluating each com-
bination of parameters on the surface while searching for the optimum. This
search is greatly simplified if each parameter is analyzed independently. It is
more convenient if the continuous variable k is optimized first while the discrete
variable it is kept constant (represented as white lines in Fig. 4b). The optimum
k value of each sample it is obtained through a successive approximation scheme
which determines the new k based on its current and previous values and on the
corresponding results produced by the evaluation function. This optimization
is repeated several times with different it values. From the optimum k values
obtained, the median k value and its respective number of iterations are used
for the final filtering of the image.

3 Results

In order to evaluate the method proposed here, several real and simulated data
sets were processed (Fig. 5). For evaluation, three corrupted 3D data sets with
increasing noise intensity were generated. These data sets represent different
overlapping intensity levels between the tissue types cerebrospinal fluid, gray
and white matter. The reference image, taken from the Montréal Neurological
Institute (MNI) database [10], was an averaged T1-weighted image of 27 scans
of the same individual. Rician noise was added following the equation:

I =
√

((I0 + n1(σ))2 + (n2(σ))2) (4)

where I0 is the original image and n1 (σ) and n2 (σ) are two independent 3D
images with zero-mean Gaussian-distributed noise. The standard deviations used
to produce three noisy data sets were σ=9.16, 13.75 and 18.33.

These data sets were processed with the automatic method using the second
Perona-Malik function PMAD2 (c2 in Eq. 2) and its biased implementation
PMAD2 bias [8]. The same data sets were also processed using a median filter
(1 iteration) and a k-nearest neighbor (kNN) filter with k=14 (3 iterations). In
all cases, the data were processed using a 26 neighborhood. The PMAD2 filter
approximated the original image quite well, although it failed to reduce some
speckle noise (Fig. 5e). The kNN filter also gave good results (Fig. 5f), although
not as smooth as those of the anisotropic filter.

The experimental results were evaluated together with the corrupted data
using the original MNI data set as reference. The evaluation was done using the
mean-absolute error (MAE), the root-mean-square error (RMSE), the signal-
to-noise ratio (SNR), the peak-signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [11]. Figure 6 summarizes the obtained results. As can
be seen there, the automatic parameterization of the second Perona-Malik func-
tion (PMAD2) gave the lowest errors (MAE and RMSE) and the greatest ra-
tios (SNR, PSNR and SSIM). The biased implementation of the same filter
(PMAD2 bias) gave comparable results to the k-nearest neighbor filter. Results
obtained using the median filter were consistently inferior. The computing time
for the MNI data set (181x217x181) was 47 min using a 2.6 GHz Pentium-4
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Fig. 5. a) Real MR image; b) after automatic filtering; c) reference MNI image; d)
MNI image corrupted with Rician noise (σ=18.33); e) results from the anisotropic
filter (PMAD2) using the parameters obtained with the automatic method (it=10,
k=10.94); f) results from the k-nearest neighbor (kNN) filter

Fig. 6. Experimental results obtained comparing the original MNI data set with the
corrupted and processed images
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CPU. Each iteration took 1.8 seconds during the iterative optimization (using
only 10 transaxial layers) and 33 seconds during the final filtering.

4 Discussion

The proposed evaluation function used to evaluate the filtering results is based
on the characteristics of the expected noise model and therefore enables the
implementation of a closed-loop system to automatically optimize the diffusion
filter parameters. The obtained results, when compared to those obtained with
median and k-nearest neighbor filters, indicate that our method is not only vi-
able but also produces better results. In future work, we intend to incorporate
adaptive versions of the diffusion filters into the de-noising filters module. These
filters will locally adjust the global diffusion factor value according to the time
(number of filter iterations) and to the local homogeneity of the image. In ad-
dition, we plan to optimize the behavior of the evaluation method according
to the Rician noise model. We expect that these measures further increase the
robustness and performance of the method.
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