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Abstract. This paper presents a learning method to select best geometric fea-
tures for deformable brain registration. Best geometric features are selected for
each brain location, and used to reduce the ambiguity in image matching during
the deformable registration. Best geometric features are obtained by solving an
energy minimization problem that requires the features of corresponding points
in the training samples to be similar, and the features of a point to be different
from those of nearby points. By incorporating those learned best features into
the framework of HAMMER registration algorithm, we achieved about 10%
improvement of accuracy in estimating the simulated deformation fields, com-
pared to that obtained by HAMMER. Also, on real MR brain images, we found
visible improvement of registration in cortical regions.

1 Introduction

Deformable registration is very important for medical image analysis. So far, various
methods have been proposed [1-7], either based on feature matching or intensity simi-
larity. HAMMER registration algorithm [8] uses an attribute vector, instead of only
intensity, as a signature of each point, for reducing the ambiguity in correspondence
matching during the image registration procedure. Each attribute vector includes im-
age intensity, edge type and a number of geometric moment invariants (GMIs) calcu-
lated in certain neighborhoods for reflecting the anatomy around that point. However,
GMIs are calculated from the fixed sizes of neighborhood around each point at each
resolution, regardless of whether this point is localizing in the complicated cortical
regions or in the simple uniform regions. Thereby, it might be difficult to obtain the
distinctive GMIs for every image point, by using identical neighborhood size for the
whole image.

Recently, in computer vision area, Kadir and Brady [9] studied the implicit rela-
tionship between scale and saliency, and found that scale is intimately related to the
problem of determining saliency and extracting relevant descriptions. They also pro-
posed an effective method to detect the most salient regions in image, by considering
the entropy of local image regions over a range of scales, in order to select regions
with highest local saliency in both spatial and scale spaces. Based on [9], Huang et al

* This work is supported by NSFC (National Science Foundation of China) 60271033.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 179 2005.
© Springer-Verlag Berlin Heidelberg 2005



180 G. Wu, F. Qi, and D. Shen

[10] proposed to align images under arbitrary poses, by finding the correspondences
between salient region features. Although best features have been studied for active
shape models [11, 12], however, to our knowledge, it seems that no previous non-
rigid registration method considered the relationship between scale and saliency and
used this relationship to guide image matching and correspondence detection during
the deformable registration procedure.

This paper presents a learning-based method to compute GMIs from the best
scales, for significantly reducing the ambiguity in image registration. Each image
location will have its own best scale to calculate its GMIs, and simultaneously best
scales are made smooth spatially. It is required that, for each point, its GMIs com-
puted from its best-scale neighbor be similar across the corresponding points in the
training samples, and also be different from GMIs of nearby points in all training
samples. Entropy used in [9] is adopted here to measure this requirement, and the best
scales are obtained by solving an energy minimization problem. Finally, by incorpo-
rating those best-scale GMIs into the original HAMMER algorithm, we achieved
about 10% improvement in estimating the simulated deformation fields, compared to
that obtained by HAMMER.

2 Method

2.1 Attribute Vector with Best Scales

Attribute vector is defined for each point x in the image /, and it is designed as dis-
tinctive as possible, in order to distinguish this point from others in its neighborhood,
Nyx. In HAMMER registration algorithm [8], each attribute vector includes edge type,
image intensity, and GMIs. GMIs are computed from a spherical neighborhood
around point x, with radius of Sy that is identical at all image locations. Images, i.e.,
brain MR images, are usually spatially complicated, thus different regions usually
need features computed from its best scale Sk [9], to distinguish itself from others. For
example, for brain MR images, the point X in cortical regions requires a different best

scale Sy to compute the distinctive GMIs G (Sy), compared to the points in uniform
regions. Therefore, it is significant to obtain a best scale Sy for each image point Xx,
based on particular image content around that point.

A machine learning based method is proposed to select best scales in the template
space, in order to capture the distinctive attributes for robustly establishing corre-
spondences. Three criteria are used to select best scales. First, the GMIs of a point X,
computed from the best-scale neighborhood, should be different from the GMIs of the
nearby points in its neighborhood Ry, thereby this point x can be easily recognized.
Second, the resulted GMIs of a point x should be statistically similar to the GMIs of
its corresponding points in training samples, if a set of training samples is available.
Third, the selected best scales should be spatially smooth.

Entropy of GMIs is used to measure the above requirements, by following an idea
of using entropy for salient region detection [9]. Thus, the first criterion requires that
the entropy of GMIs in the neighborhood Ry, E|(Xx,Sy), be maximized, and the second
criterion requires that the entropy of GMIs over the corresponding points in training
samples, Ex(xX,Sy), be minimized. Entropy can be computed from the histograms of
GMISs [9]. The third criterion requires that the differences between S and scales Sy of
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its small neighborhood ry, E,(x,5,) = Z (S, _Sy)Q, be minimized. Therefore, we can
- YeriK

obtain best scales for all image points, by using a gradient-based algorithm to mini-
mize the following cost function:

E=Y (<E,(X.S8,)+aE,(x8,)+ BE,(XS,)) ()

where a and f are two weights. Notably, if there is no training samples available, then
we just use the best scale selection method [9], with spatial smoothness constraint, to
compute the best scales based on the template image itself.

A learning-based method for selecting the best scale Sy can be summarized next:

e Select a set of brain samples, such as 18 brains we used.

e Use a linear registration algorithm [13] to linearly align those samples to a se-
lected template, thereby obtaining the linearly aligned brain samples.

e Use HAMMER algorithm [8] to register template with each linearly aligned
brain sample, thereby obtaining the correspondences of each template point in
any brain samples.

e For each template point x and their corresponding points in training samples,
compute their GMIs of different scales Sy, from the linearly aligned brains.

e Determine best scales for all template points jointly, by minimizing the cost
function in equation (1).

For increasing the robustness of registration, the registration algorithms are usually
implemented in a multi-resolution fashion [8]. Thus, we need to select best scales
separately for each resolution, by performing the same best-scale selection method at
each resolution.

Smooth maps of best scales are obtained, from fine to low resolutions, as shown in
Fig 1 with the smallest scale (radius) 4 and the largest scale 24. The resulted best
scales are actually adaptive to the brain anatomy, such as small scales selected in rich
edge regions like cortex, and scales increased gradually from exterior to interior brain
regions with the largest best scales selected for the uniform regions like white matter
(WM) region. Notably, in low resolution, even a small best scale on cortex will cap-
ture a large region in the fine resolution (Fig 2), thereby providing the possibility of
distinguishing between precentral and postcentral gyri. Also, since the registration
algorithm is implemented in a multi-resolution fashion, the registration results from
low and middle resolutions will make the two images approximately aligned, thereby
local features, based on small best scales selected for cortex, can be used to refine the
registration in cortex during the high-resolution registration stage. Fig 2 shows the
best scales selected for seven points on ventricular corners, sulcal roots, gyral crowns,
and putamen boundary, in three different resolutions, respectively. For convenience,
both low and middle resolution images have been upsampled to the same size of high
resolution image. The size of circle denotes the value of the best scale. Also, best
scales ranged from 4 to 8 are displayed by solid circles, best scales ranged from 8 to
15 displayed by densely-dashed circles, and best scales over 15 displayed by sparsely-
dashed circles.

Advantages of using best-scale GMIs. By employing a learning-based best scale
selection method described above, we can use adaptive scale to compute GMIs for
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each point, thus making it distinctive among its neighboring points as well as similar
to its correspondences in other brains. For example, for a template point on sulcal root
in Fig 3(a), as indicated by the cross, it is similar to its true correspondence indicated
by the asterisk and the false correspondence indicated by the dot in subject (Fig 3(b)),
if local image content is compared. Therefore, by measuring the similarities of this
template point with all points in the subject image (Fig 3(b)) by the attribute vectors
computed from neighborhoods of fixed scale (or size) such as S,=3.4,7 used for low,
middle, and high resolution images in HAMMER algorithm, it is not easy to establish
correct correspondences, since multiple peaks are existing in the similarity map, as
color-coded and shown in Fig 3(c). Red represents the most similar points, which
include the false correspondence indicated by the dot in Fig 3(b). Importantly, by
using our learning-based best scale selection method, we can determine the best scales
for this template point at different image resolutions (i.e., S;=7,14,8, respectively for
low, middle and high resolutions), and further obtain for this template point all GMIs
computed from different resolution images using the selected best scales. The best
scales selected in low and middle resolutions (7x4=28, 14x2=28) actually correspond

Corresponding template MR slice High resolution Mid resolution Low resolution

Fig. 1. Best scales selected for the image at three different resolutions, and further color-coded
according to the color bar on the right. This figure is best viewed with color.

High resoluteion

Mid resoluteion Low resoluteion

Fig. 2. Best scales of seven selected points in three different resolutions. For convenience, the
low and middle resolution images (b,c) were zoomed to the same size of the original image.
Here, best scales ranged from 4 to 8 are displayed by solid circles, best scales ranged from 8 to
15 displayed by densely-dashed circles, and best scales over 15 displayed by sparsely-dashed
circles. This figure is best viewed with color.
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Fig. 3. Advantages of using adaptive scales to compute GMIs for correspondence detection.
The similarity of a template point indicated by the cross in (a), is compared to any point in the
subject (b), by respectively using GMIs with fixed scales (c) and with learned adaptive scales
(d). The color-coded similarity map in (d) indicates distinctive correspondences, compared to
the similarity map in (c¢) which has multiple peaks, with one peak corresponds to the false
correspondence which is indicated by the dot in (b). This figure is best viewed with color.

L s : "
(a) Template (b) Subject (c) By fixed scales (d) By best scales
Fig. 4. Similar performances of using fixed scales and learned best scales for distinguishing
some brain points, such as ventricular corners. The point in (b), as indicated by black cross, is a
detected correspondence of the point in (a), by comparing the GMIs of either fixed scales or
learned best scales. The red denotes similar, and blue denotes different. This figure is best

viewed with color.

to big regions around this template point in the fine resolution, such as big circled
images in the right panel of Fig 3. Thus, by using new attribute vectors, we can easily
distinguish this template point from two candidate points in Fig 3(b), which has been
clearly demonstrated by a color-coded similarity map in Fig 3(d).
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Although it is possible to distinguish correspondences for many brain points even
using the GMIs with a fixed scale, it may be less distinctive, compared to the method
of using learned best scales. Fig 4 shows an example of detecting correspondences in
subject image (Fig 4(b)), for a template point in Fig 4(a). According to a color-coded
similarity map in Fig 4(c), the method of using fixed scales to compute GMIs can
distinguish corresponding points, while it is less distinctive, compared to our method
of using learned best scales, as indicated by a color-coded similarity map in Fig 4(d).

2.2 Image Registration by Matching Best-Scale Attributes

All image registration strategies developed in HAMMER algorithm [8], such as defi-
nitions of attribute vector similarity and energy function, and hierarchical driving
point selection, are adopted by our registration algorithm, except using best-scale
GMIs to replace the fixed-scale GMIs for image matching. Notably, the best scale for
each location is determined in the template space, thus it is easy to compute GMIs for
each femplate point by using the pre-calculated best scale. However, for subject im-
age, it is not direct to use appropriate best scales to compute GMIs, since subject is in
its own space. To overcome this problem, we will first align the subject to the tem-
plate space by a linear registration algorithm [13], and then compute in advance the
GMIs of all scales (used in the template space) for each subject point. When matching
two template and subject points during the deformable registration procedure, we use
the particular GMIs included in the attribute vector of the template point as standard
and take the corresponding GMIs from the subject point, to measure their similarity.
For saving time to compute GMIs of all possible best scales for each subject point, we
limit the number of scales used as best scales, such as selecting best scales from a
small set of scales {il i =4%j, j=1,2,3,...,6}.

HAMMER algorithm selects the initial driving points at sulcal roots, crown gyri,
and certain areas of strong boundary, and then gradually adds more driving points
according to a simple criterion. Here, we adopt the saliency definition in [9], and
similarly define the salient measure for each brain point as follows. Given the best
scale Sy for a point x, its salient measure can be defined by the entropy of GMI vec-
tors in its neighborhood Ny, i.e. E((x,Sx), multiplied by a weight that penalizes self-
similarity of E|(x,Sx) around the best scale S [9]. Notably, the definition of E(x,Sy) is
the same as that in equation (1).

3 Results

The proposed method has been evaluated by both real and simulated MR brain images
with comparison of HAMMER algorithm [8]. All experiments are performed in PC
(Pentium 4, 3.0GHz), by using the same set of parameters.

3.1 Experiment on Real MR Brain Images

The proposed registration algorithm has been used to register 18 brain images, and the
results by our method are further compared with those by HAMMER algorithm. The
average brain produced from 18 normalized brains by our method is visually very
similar to that obtained by HAMMER algorithm. However, when we further check
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individual registration results, we find the visual improvement by our method in the
areas such as cortical regions, although two methods perform equally well on most
parts of brain regions. Fig 5 shows two examples, which compare the template with
the results obtained by both methods, indicating that our method can align cortical
regions more accurately.

3.2 Experiment on Simulated Brain Images

Simulated data is used to quantitatively evaluate the performance of our method. Our
simulated data is created by using an elastic warping method [14] to warp a selected
brain to be similar to five real brains, respectively, thereby obtaining five simulated
brains that are actually five deformed versions of the selected brain. Besides, the re-
gions of precentral gyrus and superior temporal gyrus have been manually labeled in
this selected brain, thereby the labels of these two regions can be warped together by
the same deformation fields during the simulation procedure. Thus, by using our pro-
posed registration method, we can estimate deformations between the selected brain
and each of its deformed brains, and further bring two labeled regions in the simulated
brains to the original space of the selected brain. Then, we can measure the overlay
degree of the labeled regions. Our method achieves average overlay percentage
88.29%, which is very close to that by HAMMER algorithm on the same dataset
(88.48%). The average volume error by our method is 5.18%, while it is 6.67% by
HAMMER; this indicates 28.8% of volume error reduction by our method. Moreover,
we compare the deformations estimated by our method with those simulated, thus
obtaining a histogram of estimation errors as shown by red bars in Fig 6. This result is
compared with that obtained by HAMMER algorithm, whose histogram of estimation
errors is shown as blue bars in Fig 6. Obviously, the result obtained by our method is

(a) Model

Fig. 5. Visual improvement in registering some brain images by the proposed method, particu-
larly in the cortical regions circled.
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Fig. 6. Performances of estimating simulated deformations by our method (red) and by
HAMMER algorithm (blue). The average error is 0.98 mm by our method, and 1.09 mm by
HAMMER algorithm, which indicates 10.1% of improvement by our method.

much better, since its histogram is shifted to left, i.e., small errors. The average de-
formation error is 0.98mm by our method, and 1.09mm by HAMMER, indicating
10.1% of improvement by our method.

4 Conclusion

We have presented a learning based method to adaptively select best-scale GMIs for
different image locations, thereby achieving higher registration accuracy by incorpo-
rating the selected best-scale GMIs into the HAMMER registration framework. Our
learning method requires simultaneously the similarity of corresponding points in the
training samples and the difference of a point to its nearby points, in terms of GMIs. It
further requires the spatial smoothness of best-scale map. All of these requirements
are formulated by a single entropy-based energy function, thereby solved by an en-
ergy optimization method. Importantly, our learning method can also be used to learn
best features from others, i.e., wavelet-based features [15].
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