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Abstract. This paper presents a new algorithm for non-rigid registra-
tion between two doubly-connected regions. Our algorithm is based on
harmonic analysis and the theory of optimal mass transport. It assumes
an underlining continuum model, in which the total amount of mass is
exactly preserved during the transformation of tissues. We use a finite
element approach to numerically implement the algorithm.

1 Introduction

Image registration is the process of generating a common geometric frame of ref-
erence between two or more image datasets. This technique is especially useful
in the context of medical image processing. A successful registration technique
allows for the integration of pre-operative information with intra-operative imag-
ing to improve image-guided surgery and therapy. For example, in brain surgery
where craniotomy is performed, the ventricles in the brain may be compressed
due to pressure changes. A surgical plan based on pre-surgical images must there-
fore be updated accordingly to reflect these shape deformations. There have been
numerous algorithms proposed for non-rigid registration. See [9] for a detailed
review and the references therein. Our method employs optimal mass transport,
and therefore belongs to the category of warping algorithms based on continuum
and fluid mechanics. The approach may be formulated as an energy minimiza-
tion problem. We should point out that our methodology may not be suitable
under circumstances where the mass preservation assumption is invalid, such as
the matching of two different perspective projections of a spatial object.
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In the work of [5,11], an algorithm was presented for finding an optimal
warping function between two simply-connected domains, or more specifically
two rectangular regions. The assumption was that the mass is preserved at all
points in the image domain. However, this is not always the case. Sometimes, the
mass preserving (MP) assumption is valid only in parts of the two images. The
specific example we have in mind concerns two magnetic resonance (MR) images
of the heart taken at different times in the cardiac cycle, but corresponding to the
same spatial position. Indeed, during the cycle, the MP assumption is valid in the
myocardium, but not in the ventricles where the volume of blood varies from time
point to time point. With this key example in mind, we will derive an algorithm
for extending previous approaches to two doubly-connected domains, based on
harmonic analysis and a Finite Element Method (FEM). Here, we treat image
intensity as tissue mass density, due to the fact that in MR images intensity is
related to proton density, thus related to mass density. After registration, image
intensity (mass density) can change, but the total amount of mass (mass density
times area or the integral of intensity) preserves.

We now outline the contents of this paper. In Section 2, we give a brief
review of the optimal mass transport problem and a general gradient descent
solution. In Section 3, we summarize the approach for finding an optimal MP
mapping between two doubly-connected domains. In Section 4, we illustrate
the proposed algorithm using a pair of heart MR images. Finally, in Section 5,
we summarize the contribution of this paper and discuss some possible future
research directions.

2 Background on Optimal Mass Transport

The Monge-Kantorovich Problem (MKP) is concerned with the optimal way
of moving certain amount of mass from one domain into another. The total
amount of mass remains constant in this process. It has been widely studied in
various fields such as econometrics, fluid dynamics, transportation, and image
retrieval [7]; see [6] and the references therein. In this paper, we will consider
only 2D problems. Accordingly, let Ω0 and Ω1 be domains of R2, having smooth
boundaries. On each domain Ωi, we assume that there exists a positive mass
density function µi, i = 0, 1. It is further assumed that the same total amount
of mass is associated with the two domains.

We will be considering a class of diffeomorphisms u from Ω0 to Ω1 which
satisfy the “Jacobian equation” in the form of

µ0 = |Du|µ1 ◦ u, (1)

where |Du| is the determinant of the Jacobian of u, and ◦ represents the compo-
sition of functions. Equation (1) is an infinitesimal form of the mass preservation
(MP) constraint. We are interested in finding an MP mapping u which differs
minimally from the identity. To this end, we introduce the L2 Kantorovich–
Wasserstein penalty functional on u ∈ MP, defined as:
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M [u] :=
∫

Ω0

‖u(x) − x‖2µ0(x)dx (2)

This functional places a penalty on the distance the map u moves each bit of
material, weighted by the material’s mass. The resulting distribution of material
is constrained to be the given density µ1. The “optimal” mapping ũ is the one
that minimizes functional (2), and is the “cheapest” way of transporting mass
from one domain into the other. An energy term penalizing intensity change can
also be added, please refer to [5].

Theoretical results [2,3] show that there is a unique minimizer ũ ∈ MP , and
that this minimizer is characterized as being the gradient of a convex function w,
i.e., ũ = ∇w. There have been a number of algorithms proposed for solving this
problem, e.g. linear programming [6], which is the most popular one. However,
the linear programming approach has a high computational complexity. In the
method presented here, we use a gradient descent approach to solve for the opti-
mal transport problem, based on the equivalent problem of polar factorization.
Here we will briefly describe the procedure; for mathematical details we refer
the reader to [5].

The first step of the method is to construct an initial MP mapping. For two
rectangular regions, the initial mapping can be found by solving a family of 1D
problems unsing simple numerical integration. Assume the two domains have
shapes of Ω0 = [0, A0] × [0, B0] and Ω1 = [0, A1] × [0, B1], respectively. Assume
further that the initial mass preserving mapping has the form of u0(x, y) =
(a(x), b(x, y)). Since both µ0 and µ1 are positive everywhere, it is easy to solve
u0 = (a(x), b(x, y)) from the following equations:

∫ a(x)

0

∫ B1

0
µ1(η, y)dydη =

∫ x

0

∫ B0

0
µ0(η, y)dydη

a′(x)
∫ b(x,y)

0
µ1(a(x), ρ)dρ =

∫ y

0
µ0(x, ρ)dρ. (3)

The second step is to find the minimizer ũ of the energy functional (2), using
an iterative approach. In [5], it is shown that the evolution of u should have the
following form in order to satisfy the mass preserving constraint:

ut =
2
µ0

Du∇⊥�−1div
[
(u − id)⊥

]
, (4)

where ⊥ rotates a vector by π/2 in the counterclockwise direction, �−1 denotes
the inverse of Laplacian, and id stands for the identity map. It can be shown
that the optimal mapping ũ is a curl-free vector field [5].

3 Mass-Preserving Registration Between Two
Doubly-Connected Domains

In the previous section, we briefly described the approach for solving the trans-
port problem between two rectangular regions. However, this approach cannot
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be applied on doubly-connected regions (i.e. an annular region) without some
modifications. The main difficulty comes from the construction of an initial MP
mapping u0 between two irregular doubly-connected domains. In this section,
we present an algorithm which constructs such a mapping by using harmonic
parametrization. In this approach, the two domains are first harmonically pa-
rameterized, then the initial MP mapping u0 is constructed by solving a 1D
transport problem along one harmonic coordinate, followed by a family of 1D
transport problems along the other harmonic coordinate.

3.1 Harmonic Parametrization

Here we sketch the steps for constructing an analytic function fh = uh + ivh for
the harmonic parametrization. Similar techniques have been applied for measur-
ing tissue thickness [10], for colon surface visualization [4], and for parametriza-
tion of ventricular regions of the heart [8].

Assume we have a triangulated doubly-connected domain Σ, which has an
inner boundary denoted by σ0 and an outer boundary denoted by σ1 as shown
in Figure 1. First, we want to construct uh, which is the real part of f . It is
assumed that uh satisfies

�uh = 0
with uh(σ0) = 0 and uh(σ1) = 1 (5)

The Laplace equation can be solved by using standard FEM techniques [4].
A cut C is then found from σ0 to σ1 by following the gradient of uh from an
arbitrary point x0 ∈ σ0 to another point x1 ∈ σ1. The cut C and two original
boundaries σ0 and σ1 form a new closed and oriented boundary B for the domain,

B : x0
σ0→ x0

C→ x1
σ1→ x1

−C→ x0

The boundary condition of the imaginary part vh can be then prescribed by,

vh(ζ) =
∫ ζ

ζ0

∂v

∂s
ds =

∫ ζ

ζ0

∂u

∂n
ds

according to the Cauchy-Riemann equations. Inside the cut surface, vh is found
as the solution of Laplace’s equation �vh = 0.

Fig. 1. A doubly-connected domain Σ with two boundaries
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Fig. 2. Harmonic parametrization of a heart image

Once the analytic function fh = uh + ivh is constructed, a curvilinear har-
monic polar coordinate system is defined by taking uh as one coordinate axis and
vh as the other. The coordinate uh can be thought of as a curvilinear “radius”
and vh as the “angle”. By scaling uh and vh by a constant, vh can be made to
run from 0 to 2π. Figure 2 shows such a parametrization on a heart MR image
without involving the ventricle area.

3.2 Finding the Initial Mapping u0

By performing harmonic parametrization, the first doubly-connected domain
(Ω0, µ0) is cut and mapped onto a rectangular region (Ωh

0 , µh
0) via a harmonic

(conformal) mapping fh
0 = uh

0 + ivh
0 . If we define the mass density µh

0 by

µh
0 = |Dfh

0 |−1µ0, (6)

then the mapping from Ω0 to Ωh
0 is mass-preserving. Similarly, the second

doubly-connected domain (Ω1, µ1) is mapped onto another rectangular region
(Ωh

1 , µh
1 ) via fh

1 = uh
1 + ivh

1 . Here, µh
1 is taken to be

µh
1 = |Dfh

1 |−1µ1. (7)

The remaining task is to find an MP mapping from (Ωh
0 , µh

0) to (Ωh
1 , µh

1 ). Since
Ω0 and Ω1 are now rectangular regions, we can use the algorithm presented in
Section 2 to find an initial MP mapping uinit between them. This process can be
illustrated by the following diagram.

� � �(Ω0, µ0) (Ωh
0 , µh

0 ) (Ωh
1 , µh

1 ) (Ω1, µ1)
fh
0 = uh

0 + ivh
0 fh

1 = uh
1 + ivh

1uinit

The resulting initial mapping u0 is the composition of fh
0 , uinit and (fh

1 )−1,
so that

u0 = (fh
1 )−1 ◦ uinit ◦ fh

0 . (8)

Compositions of MP mappings and inverses of MP mappings are also MP map-
pings. Thus u0 is and MP mapping, since fh

0 , fh
1 and uinit are.
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3.3 Finding the Minimizer ũ

The equation we use to evolve u is the same as for rectangular regions. The finite
element method (FEM) is used to solve the Poisson equation (the �−1 part of
equation (4)) on a triangulated irregular domain.

In the evolution equation of u (equation (4)), we use an upwinding scheme
for computing Du. For all other derivatives, we use a Least Mean Square (LMS)
method to numerically implement the spatial derivatives. For example, assume
that a given point (x0, y0) has N neighbors (xi, yi), i = 1...N , and a function
Φ is defined such that Φ(xi, yi) = Φi for i = 0...N . It is easy to show that the
derivatives of Φ should satisfy

(
Φx

Φy

)
= (AT A)−1AT

⎛
⎝ Φ1 − Φ0

...
ΦN − Φ0

⎞
⎠ , (9)

where A is the position difference matrix given by

A =

⎛
⎝ x1 − x0, y1 − y0

...
xN − x0, yN − y0

⎞
⎠ . (10)

A time step was chosen as in [5] to make the algorithm stable.

4 Example

We illustrate the procedure outlined above on two 256 × 256 MR images of the
heart acquired on a GE scanner. Referring to Figure 3, we show the diastolic
(Figure 3(a)) and systolic (Figure 3(b)) time points of the cardiac cycle.

The black regions in Figure 3 (c) and (d) are two multi-connected domains,
corresponding to the heart muscle and other tissues in which we use image
intensity as the mass density. Uniform mass densities could also be used, in
which case mass preservation becomes a simple area preservation constraint.
These regions were chosen as natural candidates to apply an MP deformation
(in contrast to the left ventricle in which the change is too drastic to sensibly
apply the procedure). Harmonic parametrization is first done on each domain
(as shown in Figure 2 for the diastolic image), and an FEM-based L2 MKP is

(a) diastolic phase (b) systolic phase (c) the mask of (a) (d) the mask of (b)

Fig. 3. Two heart MR images and their segmentation results
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Fig. 4. The deformed grid on the systolic heart image

Fig. 5. Morphing movie for two heart images in Figure 3

then solved between the two domains to find the correspondence. Figure 4 shows
the deformed grid. We can also create a morphing video to show the deformation
of the first image into the second. Figure 5 shows some key frames in the video.

5 Conclusions
In this note, we extended the methodology for applying MP registration [5] to a
pair of doubly-connected domains. For an L2 version of the problem, a gradient
descent algorithm is proposed to solve the problem iteratively. Harmonic analysis
is employed in this approach for constructing an initial MP mapping. If the radius
of the inner boundary is small enough, the inner boundary can be considered
as a single landmark. In this sense, we have solved for MP registration on two
domains with a pair of corresponding landmarks. This technique can also be
extended into multi-connected domains (corresponding to multiple landmarks).

In the present work, the pure L2 Kantorovich-Wasserstein functional is pro-
posed as the similarity measure. A modified energy functional penalizing the
intensity change can also be implemented [12]. Other types of distance mea-
sures, e.g. minimizers of the Dirichlet energy integral, can also be combined
with a mass preservation constraint [1]. We plan to implement these ideas in
some future work.
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