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Abstract. In the context of stroke therapy simulation, a method for the segmen-
tation and reconstruction of human vasculature is presented and evaluated. 
Based on CTA scans, semi-automatic tools have been developed to reduce data-
set noise, to segment using active contours, to extract the skeleton, to estimate 
the vessel radii and to reconstruct the associated surface. The robustness and 
accuracy of our technique are evaluated on a vascular phantom scanned in dif-
ferent orientations. The reconstructed surface is compared to a surface gener-
ated by marching cubes followed by decimation and smoothing. Experiments 
show that the proposed technique reaches a good balance in terms of smooth-
ness, number of triangles, and distance error. The reconstructed surface is suit-
able for real-time simulation, interactive navigation and visualization. 

1   Introduction 

Stroke is a leading cause of death. Our team is developing a real-time neuro-
interventional radiology simulation system where physicians will be able to learn and 
practice without putting patients at risk. This kind of application requires a stream-
lined data processing from a patient’s computer tomography angiogram (CTA) to a 
computer representation of the vasculature. Therefore, the reconstructed vascular 
network has to be smooth for visualization, structured for blood flow computation, 
and efficient for real time collision detection/collision response between interventional 
tools and vessel wall. The method presented in this paper generates virtual vasculature 
through segmentation and surface reconstruction.  

Current techniques for processing vascular images can be divided in two main ap-
proaches: techniques for centerline enhancement, including multi-scale approaches, 
usually based on the Hessian matrix; and techniques for contour extraction, including 
statistical approaches: Expectation Maximization [1], random Markov fields, and 
geometrical approaches: region growing, adaptive thresholding, active contours that 
can be explicit, like snakes, or implicit, like level sets [2, 3]. These techniques usually 
perform better after noise reduction. A topological representation of the vascular 
network can be obtained from both approaches either by computing ridges or by ap-
plying a thinning technique like homotopic skeletonization. 
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The result of the segmentation is then processed to generate an efficient and struc-
tured representation of vascular structure for our purpose. Bühler et al. [4] presents a 
comprehensive and up-to-date survey on surface reconstruction techniques. Our sur-
face reconstruction algorithm improves upon [5] in that the coarse base mesh genera-
tion is followed by smoothing through surface subdivision. The base mesh and multi-
scale subdivision approach, as shown in subsequent sections, is proved to be a robust 
framework for real-time physics-based flow computation, smooth tissue/tool interac-
tion, as well as high-fidelity anatomical visualization.  

Section 2 will describe our semi-automatic tools which reduce dataset noise, seg-
ment using active contours, compute the skeleton, estimate the vessel radii and recon-
struct the associated surface. In section 3, we present different tests performed on the 
phantom and used to evaluate the robustness and the accuracy of our method. Finally, 
discussion and conclusion are presented in the last section. 

2   Materials and Method 

Our process consists in the following pipeline: anisotropic diffusion, level set evolu-
tion, skeletonization, pruning, connection and smoothing, radius estimation, recon-
struction. This approach preserves the topology at junctions and gives semi-
automatically a skeleton requiring little interaction before surface reconstruction. 

2.1   Segmentation 

The first step of the segmentation is to apply an anisotropic diffusion filter based on 
[6]. This filter reduces the noise while preserving small vascular structures enabling 
better segmentation which is important in the region of the brain. Next, we remove 
the skull bones, the sinuses and the skin, who the similar intensity as the vessels and 
might disturb the segmentation process, using morphological operations. 

We then segment the vessel contours by the means of a level set evolution. For ef-
ficiency, we initialize the active contour using a threshold on the image intensity. The 
level set equation [7, 2], evolves a surface according to three different forces: an ad-
vection force that pushes the surface towards the edges of the image, a smoothing 
term that keeps the surface smooth and a balloon force that allows expansion of the 
contours within vascular structures. The smoothing term is proportional to the mini-
mal curvature of the surface [8]. The balloon force relies on the intensity statistics to 
either expand or shrink the evolving contour. This force is expressed as exp(-(I-
m)2/σ2)-τ where I is the intensity, m stands for the mean intensity of the vessels, σ is 
their standard deviation, and τ is a threshold (0.2 by default) that allows shrinking the 
contour when the position is unlikely to belong to a vessel. A 3D model of the vessels 
is obtained as the iso-surface of intensity zero from the result of the level set evolu-
tion, using the Marching-Cubes algorithm [9]. From the result of the level set, a skele-
tonization technique is applied to obtain a simple topological representation of the 
vascular network. It is based on homotopic thinning where voxels are removed in the 
order of the Euclidean distance to the segmented surface. Voxels are iteratively re-
moved if they are simple [10] and if they are not end-points, such that they have more 
than one neighbor in a 3x3x3 neighborhood. 
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After the skeletonization, small vessels can still have connectivity discrepancies 
along the centerlines near small branches. Consequently, a pruning is applied to re-
move small leaves (lines with at least an extremity which is not a junction). We then 
connect the lines that are close but disconnected because of the resolution of the 
medical dataset. This connection is made only if the lines are close to each other and 
their directions are matching within a small difference, which could be induced by the 
vessel curvature. At this step, some manual work is often needed. This work consists 
in connecting lines that are too far to be connected automatically or in removing lines 
that are too long to be deleted. 

Once the connected skeleton is finished, the radius of the lines is extracted from 
the dataset. This is done using the intensity gradient in the binary image obtained 
from the level set evolution. Starting from the centerline, we grow a circle in the plan 
of the cross-section and stop when there is a relevant local maximum of the intensity 
gradient, thus giving estimated radii along the centerlines. 

2.2   Surface Reconstruction 

The goal of our surface reconstruction is to generate a smooth surface that can be 
easily refined to suit the needs of efficient collision detection/response, stable vessel 
deformation, real-time flow simulation, also multi-scale anatomical visualization. Our 
algorithm improves over [5] in four main areas: 

1. Handling directed graphs with loops and multiple roots. 
One branch is allowed to have multiple parents and children. Artery vessels can form 
loops, e.g. circle of Willis. One branch can connect to a single branch forming 1-
furcation. This is useful to construct a unified directed graph for both artery and ve-
nous sides. Multiple trees can be reconstructed at the same time. 

2. Trunk branch selection based on angle and radii variance. 
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Fig. 1. Left: Trunk branch selection: using both vessel average radii and branching angle to 
determine the continuation trunk branch. Although θj<θi, B1

in is chosen as the trunk branch of 
B0

in, due to the similarity of their average radii. Middle: Cross section distribution gets denser at 
thinner regions of a vessel. Right: the density is higher where a vessel turns or twists. 

To patch the surface at vessel joints, both algorithms define at a trunk branch with 
respect to the current branch and form polygons to connect the trunk surface and other 
joint branches base meshes. Since ni, the cross section normal at the beginning or end 
of branch Bi, is computed by differentiating neighboring sampling points, the approxi-
mation can be misleading when centerlines are under sampled. Our scheme considers 
both branching angle and vessel radii to reduce under-sampling artifacts which im-
proves the reconstruction robustness. First, ni

in where i>0 are reversed. Then, we com-
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pute the disparity Ωi≡λθi+(1-λ)|ri-r
in

0|, where λ∈[0,1] is the weight balanc-
ing the influence of branching angle and of the average radii variance. The algorithm 
picks the branch with minimalΩ as the trunk branch. In the left half of Fig. 1, although 
θj<θi, B1

in is chosen due to the similarity of their average radii.  
3. Adaptive cross sections distribution. 

Our cross section distribution scheme (2) considers radii and centerline curvature: 
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where xi is the curvilinear coordinate of the cross section center. ri and κi [11] are the 
corresponding radius and Gaussian curvature, respectively, obtained by linear interpo-
lation between two adjacent raw skeleton samples where α>0 is the desired spacing 
scalar and β>0 is the weight on curvature influence. Eq. (2) states that after filtering, 
the centers of two adjacent cross sections are placed closer if the vessel is thin or 
turns. A straight branch does not need many cross sections to resemble its original 
geometry. Assembling (2) for all i yields (Nseg-1) nonlinear algebraic equations with 
(Nseg-1) unknowns, since x0 and xN are set to be the curvilinear coordinates of the 
vessel end nodes. Broyden’s method [12] is used to solve for all xi. 

4. Robust joint tiling: end-segment-grouping and adjacent-quadrant-grouping. 
We connect every branch to its trunk using both end segments regardless the branch-
ing angles so that a single recursive joint tiling is needed. End-segment-grouping, 
unifies all the outgoing branches together such that the connecting patches connect 
the bottom of the outgoing branch’s base mesh with both end segments of the trunk 
branches, i.e. Seg(N-1) and Seg(0), demonstrated in the left half of Figure 2. 
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Fig. 2. (a) Felkel’s method connects forward Child(j) to Seg(0) and backward Child(i) to 
Seg(N-1). (b) End-segment-grouping connects Child(i) and Child(j) both Seg(N-1) and Seg(0). 
The bottle-neck effect is reduced. When Child(i) lies close to the boundary of Q3, (d) adjacent-
quadrant-grouping uses both Q0 and Q3 eliminates twisting artifact by using only Q3 in [5] (c). 

When the outgoing centerline forms a small angle with the trunk centerline, using 
single end segment produces bottle-neck effect. The artifact is reduced when both end 
segments are deployed for the joint tiling. When the outgoing centerline lies in or 
close to the bisection plane of two trunk centerlines, using a single end segment loses 
the symmetry. This symmetry is nicely preserved by connecting the mesh of Child(i) 
to the same sides of Seg(N-1) and Seg(0). End-segment-grouping not only reduces the 
patching artifacts in both extreme cases, but yields smoother trunk-to-branch transi-
tion under all branching configuration. 

We improve the joint tiling not just in the trunk centerline direction. Adjacent-
quadrant-grouping is designed to use 2 adjacent sides of the end hexahedron seg-
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ments. When a child centerline lies close to the boundary of 2 quadrants, tiling with 
only one quadrant introduces twists. This artifact is eliminated by adding the 
neighboring quadrant into the tiling, e.g. Q0 and Q3 are grouped together as a whole 
when tiling Child(i) to the trunk mesh. When Child(i) lies close to a quadrant center, 
our approach uses only current quadrant for the tiling as in [5]. 

With these improvements, the proposed reconstruction scheme is able to handle 
more general directed graph. It is less prone to artifacts due to initial data sampling. It 
is also more robust to present full range of bifurcation configuration. The recon-
structed smooth vascular surface is suitable for the purpose of efficient and stable 
physics modeling, and smooth visualization. 

3   Tests and Evaluation 

Our vascular phantom, in Fig. 3(a), is composed of a Plexiglas box filled with silicon 
gel and nylon tubing forming a simplified vasculature. Vessel radii range from 
0.78mm (simulating small brain vessels) to 2.34mm (simulating the middle cerebral 
artery). After CTA scans of the phantom, the segmentation leads to a skeleton from 
which the reconstruction module generates a smooth surface as shown in Fig. 3(b). 

 

Fig. 3. (a) The silicon phantom with nylon tubing. (b) Reconstruction of the 3D surface 

To evaluate the rotational invariance and robustness of our method, we scanned 
this phantom in 12 different orientations. The phantom orientations are obtained via 
a 45° or 90° rotation on one or more axes. The CTA scan resolution is 0.6 x 0.6 x 
1.25 mm. 

3.1   Evaluation of the Robustness of the Vessel Lengths and Radii 

The segmentation method, described in section 2, was applied to those datasets with 
following parameters: 1000 level set iterations; using intensity threshold of 2300 
with standard deviation (SD) of 750; 5mm pruning; 2mm maximal distance for gap 
connection; radius estimation with gradient computed from the derivatives of a 
Gaussian kernel with SD 0.4mm. Line orientation was manually corrected before the 
final surface reconstruction (Fig. 3(b)). To evaluate the results, the lengths and the 
radii have been analyzed through the Brand-Altman method [13]. Fig. 4 shows that 
length variation stays within 1.0mm, while 2 σ length=3.5mm. In only 6 out of 204 
cases (17tubes x 12scans), the radius variation is out of [-2 σ radius, 2 σ radius], 
where 2 σ radius=0.2mm. 

(a) (b) 
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Fig. 4. Brand-Altman plots for (a) the tube lengths and (b) the average radii. The upper and the 
lower limits represent 2 σ. Very few length and radius values are away from their average. 

3.2   Evaluation of the Mesh Accuracy and Smoothness 

We measure surface smoothness and the distance between two surfaces. Hausdorff 
distance is computed using MESH software1. Smoothness is measured as the RMS of 
the minimal and the maximal surface curvatures, κ1 andκ2 respectively. They are 
computed by fitting a 2nd polynomial to each vertex and its direct neighbors: using 
this small region considers the surface noise in the smoothness measure. The lower 
the value, the smoother the surface is. Fig. 5(a) depicts the distance between our re-
constructed model at 3 subdivision levels, L0, L1, L2 and the surface, S0, obtained from 
the Marching Cubes algorithm applied to the result of the level set segmentation. The 
RMS is always less than one voxel (<0.6mm) and lower than 0.4mm on L1. 
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Fig. 5. (a) Root Mean Square (RMS) distance error for 12 data sets at 3 subdivision. (b) RMS 
distance error on M7 versus the number of triangles, after different decimations of the original 
iso-surface. (c) RMS of the min curvature, versus the number of triangles. (d) Smoothness 
evolution for different smoothing levels compared to the smoothness our model at level 1. 

                                                                 
1 http://mesh.berlioz.de 
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We compared the smoothness and the distance error on M7 obtained from our re-
construction to the ones obtained using the VTK2. Fig. 5(b) shows the distance between 
S0 and L0, L1, L2 compared to the distance between S0 and its decimations S0

d, d∈[0,9] 
using vtkDecimatePro. The RMS after decimation is always smaller, because most 
errors occur at vessel extremities or junctions. However, our model allows simpler 
mesh, with reasonable error (RMS<0.6mm) and good smoothness shown in Fig. 5(c). 
This figure displays the RMS ofκ1 on L0, L1, L2 and on S0

d. It is almost constant (0.03) 
for all levels and much better than any S0

d (between 0.3 and 0.7). For completeness, we 
also depict the RMS ofκ1 andκ2 for L1 and S0

8 having similar number of triangles. 
Fig. 5(d) plots the evolution of these smoothness measures according to the number of 
smoothing iterations, where we smooth S0

8 by applying the vtkSmoothPolyDataFilter. 
The RMS ofκ2 always increases with the smoothing due to vessel shrinkage, and the 
RMS ofκ1 decreases to 0.25 while L1 have a value of 0.03. This shows our model 
smoothness superiority over VTK smoothing. 

3.3   Results on a Clinical Dataset 

Before evaluating on a full clinical dataset, we apply our method to a portion of a 
patient vascular network in Fig. 6(a). The testing data contains the end of the vertebral 
arteries, joining into the basilar artery which then split into the posterior cerebral 
arteries. A local level set, ignoring the small vessels, followed by an iso-surface re-
construction allowed getting those arteries shown in Fig. 6(b). After skeletonization 
and surface reconstruction shown in Fig. 6(c), both surfaces are compared. Fig. 6 (b) 
shows the color code of the distance between the two surfaces. The RMS distance 
error is lower than 0.4mm with 5% of iso-surface triangles. The result of our stream-
lined process, on a full CTA dataset, is depicted in Fig. 6(d). 

                   

Fig. 6. (a) Anatomy of the circle of Willis; (b) segmented iso-surface; (c) reconstructed surface. 
The color code in (b) ranges from blue (0.0mm) to red (3.0mm), (d) reconstructed arterial side. 

4   Discussion and Conclusion 

The method presented in this article deals with the segmentation and the reconstruc-
tion of the vascular network. The final reconstructed vascular surface is aimed to be 
integrated in a neuro vascular training and procedural planning simulator. The goal of 
our method is to streamline the process from the CTA scan of a patient to a structured, 
                                                                 
2 Visual Tool Kit library available at http://www.vtk.org 
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smooth, and efficient vascular model with minimum manual interactions. It has 
shown interesting results in term of accuracy and robustness. Indeed, its evaluation on 
the phantom in 12 different orientations produces homogeneous skeletons and radii. 
The generated surfaces are close to the reference ones and are much smoother. The 
main drawback of our method is that it is not fully automatic and it estimates circular 
vessel cross sections.  

In future work, the main effort will focus on reducing the amount of manual work. 
On the segmentation side, one main difficulty is to separate tangent vessels, which are 
merged at the current imaging resolution. Another difficulty is to fully detect small 
vessels. Both tasks would benefit from an a priori knowledge based on an anatomical 
atlas. As a perspective, we would like to integrate a labeling tool in the skeletoniza-
tion step. This feature could give the name of the arteries and veins and consequently 
help in the training/learning process of our simulator. An automatic correction of 
centerline orientation is also under investigation based on graph theory. For the esti-
mation of the cross-sections, fitting an ellipse instead of a circle would help to match 
their real geometry without sacrificing the smoothness and the low complexity of the 
mesh. Finally, testing the whole method on more patients would help to validate it on 
large scale networks before integrating it in the neuro-vascular intervention training 
system mentioned above. 
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