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Abstract. The ability to predict a clinical variable from automated
analysis of single, cross-sectional T1-weighted (T1w) MR scans stands
to improve the management of patients with neurological diseases. We
present a methodology for predicting yearly Mini-Mental Score Exami-
nation (MMSE) changes in Mild Cognitive Impairment (MCI) patients.
We begin by generating a non-pathological, multidimensional reference
space from a group of 152 healthy volunteers by Principal Component
Analyses of (i) Tlw MR intensity of linearly registered Volumes of In-
terest (VOI); and (ii) trace of the deformation fields of nonlinearly reg-
istered VOIs. We use multiple regression to build linear models from
eigenvectors where the projection eigencoordinates of patient data in
the reference space are highly correlated with the clinical variable of in-
terest. In our cohort of 47 MCI patients, composed of 16 decliners, 26
stable and 5 improvers (based on MMSE at 1 yr follow-up), there was
a significant difference (P = 0.0003) for baseline MMSE scores between
decliners and improvers, but no other differences based on age or sex.
First, we classified our three groups using leave-one-out, forward step-
wise linear discriminant analyses of the projection eigencoordinates with
100% accuracy. Next, we compared various linear models by comput-
ing F-statistics on the residuals of predicted vs actual values. The best
model was based on 10 eigenvectors + baseline MMSE, with predicted
yearly changes highly correlated (r = 0.6955) with actual data. Prospec-
tive study of an independent cohort of patients is the next logical step
towards establishing this promising technique for clinical use.

Keywords: MRI, Principal Components Analysis, Intensity, Deforma-
tion, Multiple Regression, Mild Cognitive Impairment, Mini-Mental
Score Examination.

1 Introduction

A number of neurological diseases exhibit pathologically-specific discriminatory
information in the form of local intensity variations and shape changes when ob-
served on magnetic resonance images (MRI). The goal of computer-aided diagno-
sis approaches is to focus and exploit those attributes in order to give physicians
a quantitative measurement related to the disease process. Example techniques
may perform analysis of the T1-weighted (T1w) signal intensity, serving as an
indicator of disease progression, as subtle changes may indicate an underlying
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pathological process before structure integrity is lost. Other approaches will em-
ploy co-registration, a process where individual subject images are aligned into a
reference space, allowing spatial comparisons to be made between cohorts either
at the voxel level, such as in voxel or deformation-based morphometry, or for
surfaces. Registration further enables the comparison of individual structures
once segmented; manual segmentation and volumetry are considered the gold
standard for many research areas. The most promising techniques however move
away from single-structure approaches to whole regions of interest, capturing
the interrelations between neighboring tissues, and combine individual intensity,
texture or registration information, such as in appearance-based approaches [I].

An important and valuable area of research for quantitative MRI analysis
resides in the prediction of clinically measured variables. An example of the
latter is the Mini-Mental State Examination (MMSE), a cognitive scale to assess
normality (MMSE = 30), mild impairment (23 < MMSE < 30) or possible
dementia (M MSE < 23) [2]. The assumption is that such neuropsychological or
neurological assessments will have a morphological correlate that is detectable
via MRI. The ability to categorize cognitive scores from baseline MRI may lead to
increased understanding of the disease in question. Further, the ability to predict
future scores (i.e., predict change) from baseline MRI is even more important,
as it would improve patients management.

1.1 Mild Cognitive Impairment (MCI)

MClTis widely viewed as the transition phase between normal aging and Alzheimer’s
disease (AD) [3], and amnestic MCI individuals are known to be at risk for pro-
gression to AD. There is evidence that in those who will progress, measurable hip-
pocampal and entorhinal cortex atrophy, demonstrable on T1w MRI serves as a
moderate, though labor-intensive, predictor [4]. Microscopically the strongest pre-
dictor of premortem cognitive dysfunction appears to be the relative area of en-
torhinal cortex occupied by beta-amyloid deposition [5]. Existing MRI measures
that have been developped to predict decline are longitudinal, as for example a
study by Rusinek et al. [6] showing that an increased rate of atrophy in the MTL
predicted future cognitive decline.

In this work we attempt to solve the challenging problem of predicting MMSE
changes with a single, cross-sectional MRI measurement. An obvious advantage of
having a reliable means of assessing future cognitive decline (within the limits of
the MMSE) at baseline, or with one scan, resides in the potentially increased ther-
apeutic effect that comes with earlier detection and treatment. The disadvantage
of any cross-sectional approach is that the effect at hand may differ for individuals
enrolled in the study or be confounded by another variable, such as aging in the
case of MCI. It is important to note that not all MCI patients progress to clinically
defined AD, nor show MMSE decline at identical rates [7]. However, careful de-
sign and selection of the patient population should serve to improve homogeneity
of effect in the test population. Further, we believe that the rate of MMSE decline,
along with MTL atrophy, will be linear for MCI patients over the short duration
of the study, a reasonable assumption given long-term AD follow-up data [§].
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1.2 Hypothesis and Goal

Our general hypothesis is that in the case of neurological pathologies, micro-
scopic changes will be detected via their impact on the T1lw MRI signal in-
tensity, while macroscopic alterations in structure shape will be noticed via
registration/deformation-based metrics. Consequently, we propose a prediction
methodology that (i) uses a large, non-specific Volume of Interest (VOI); (ii)
combines intensity and registration-based shape features; and (iii) generates a
high dimensional linear model from multiple regression of highly correlated eigen-
vectors. Our primary goal is to see if we can create such a model, and use MCI
patients as a test case of the methodology.

2 Methods

Our method can be summarized as follows. First, we generate a non-pathological
eigenspace from a large training group of young subjects (N = 152). This multi-
dimensional reference eigenspace is created by uniting results from four distinct
Principal Component analyses of (i) linearly registered intensity images of the
left and right VOIs; and (ii) an approximation of the determinant of the Jacobian
matrix of the deformation field within those VOIs. Secondly, patients data are
projected in the reference eigenspace and the correlation coefficient between the
projection coordinates and the clinical variable is used to identify eigenvectors
for the predictive model. The latter is generated via multiple regression against
the clinical variable. We compare predictive ability by computing F-statistics
based on the residuals of predicted vs actual values for the clinical variable. The
methodological details are elaborated in the following sections.

2.1 Subjects

The Ethics Committee of the Montreal Neurological Institute (Montreal, Canada)
and the IRCCS San Giovanni di Dio FBF (Brescia, Italy) approved the study
and informed consent was obtained from all participants. A total of 199 subjects
were included in this study. The reference group consisted in 152 young, neurolog-
ically healthy individuals from the International Consortium for Brain Mapping
database (ICBM) [9], whose scans were used to create the non-pathological, refer-
ence space. The training population consisted in 47 MCI patients (23 < MM SE <
30), seen at the IRCCS San Giovanni di Dio FBF Hospital, that have been followed
clinically a minimum of 12 months after their initial MR scan.

2.2 Preprocessing

MRI data for our 152 ICBM subjects was collected with a T1w MRI protocol
on a 1.5 T scanner (Philips Gyroscan, Best, Netherlands) using a fast gradient
echo sequence (TR = 18ms, TE = 10ms, 1 NEX pulse sequence, flip angle=30°,
matrix size=256 x 256, FOV = 256mm, slice thickness=1mm). Data for MCI
patients were acquired on a 1.0T scanner (Philips Gyroscan, Best, Nether-
lands) using an FFE sequence (TR = 19.7ms, TE = 6.9ms, sagittal acquisition,
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0.9365 x 0.9375 x 1.3mm?). All global MRI data were processed to correct for
intensity non-uniformity due to scanner variations [I0]. The 152 ICBM subjects
were registered in a Talairach-like stereotaxic space in the context of the ICBM
project [9]. Most (33/47) of the MCI data were linearly registered (9 DoF') auto-
matically into stereotaxic space [I1] while the remaining volumes were manually
registered due to high scalp brightness. All reference and training volumes were
resampled onto a 1mm isotropic grid [I1].

Two VOIs were selected for this study, centered on the left and right medial
temporal lobe, using Talairach coordinates (start coordinates x = [—57,+2]
for the left and right side respectively, y = —53 and z = —52). Each VOI
measured n = 55 x 82 x 80 = 360800 voxels. The VOI was selected so that
its extent captured the hippocampus and neighboring MTL structures (e.g. ento
and perirhinal cortex, parahippocampal gyrus), irrespective of normal inter- and
intra-individual variability. After extraction, each VOI was linearly registered (9
DoF) to the reference volume to further reduce local distortions, and its mean
intensity scaled to the mean intensity of the reference VOI, which serves to
eliminate the first-order drift in signal measurement between patients.

2.3 Multi-dimensional Reference Space and Model Creation

Two image features at each voxel location were retained. The first feature is the
grey level intensity consisting in the rasterized data from the intensity-scaled
VOIs. The second feature is the trace or the first-order approximation of the
determinant of the Jacobian matrix of a non-linear registration-derived defor-
mation field. The latter is calculated to map each subject’s VOI to our reference
ICBM target. The trace represents an estimate of local volume change. Prin-
cipal Components Analysis (PCA) is used to reduce the dimensionality of the
input training data and generate linear variation models based on the N = 152
datasets from our ICBM normal subjects. The resulting four PC models were
each p = N — 1 (or 151-dimensional). Most of the variation can usually be ex-
plained by a smaller number of modes, [, where [ << n and | < p. We proceded
in selecting 535 eigenvectors in total from our four models (left/right inten-
sity /trace VOIs), that accounted to a per-model variance of 99.7%.

Rasterized vectors of the processed VOI intensity and trace data for each test
subject are then projected into the training space, and thus form eigencoordinate
vectors. While a number of possible features can be calculated on the distribu-
tion of the projected data, our predictor is based on the position along the PC
axes. The distribution of eigencoordinates along any principal component for a
given population is normally distributed as assessed via Shapiro-Wilke statistics.
For each eigenvector the correlation of the eigencoordinate distribution with the
clinical variable is then computed. We selected a number ¢ of vectors based on
an arbitrarily predefined threshold for the correlation coefficient of r > ]0.30].
A predictive model is then built from those eigenvectors using multiple regres-
sion (JMP IN, SAS Institute, Cary, N. Carolina) and the model is then used to
predict the future value of the clinical variable of interest. Residuals and cor-
relation are computed between predicted vs actual value, and F-tests are used
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to determine if the models improve the prediction of our clinical variable from
MRI features.

2.4 Experiments

Four experiments were completed. Experiment 1 served as a baseline for the
classification of our patient population into 3 groups based on their MMSE
changes at 1 year follow-up from clinical variables (age, sex, baseline MMSE).
Experiment 2 attempted the same 3-group classification but this time based
on the projection eigencoordinates in the reference space. Experiment 3 served
as a baseline for the prediction of yearly MMSE decline by building a lin-
ear model based on clinical variables (”Clinical”). Experiment 4 attempted
the same prediction but with a model based on projected eigencoordinates, as
per the methodology described above ("MRI”), while in Experiment 5 we
added baseline MMSE as an additional variable to the projected eigencoordi-
nates ("MRI+baseline MMSE”).

3 Results

When comparing MMSE results between baseline and 12 months follow-up, we
can separate the 47 patients in the test population into three distinct groups:
16 decliners (> —1 point negative change in MMSE or cognitive decline), 5
improvers (> 1 point positive change in MMSE or cognitive improvement), and
26 stable individuals (MMSE change between [—1, 1]). Demographic information
about each group can be found in fig.[[l There was no statistically significant age
difference between either groups, as assessed from ANOVA and Tukey-Kramer

Groups Decliners Stable Improvers

Subjects 16 26 5 oo
Mean age (yrs)| 724  67.6 718 [oeter]| T

Std dev (4.7  (8.5) (5.4) . " . :

ey, ‘> .

Baseline MMSE| 27.5  27.8  24.8 e

Std dev (1.3)  (14) (1.8) S '
Mean MMSE A| -2.9 0 2.4

Std dev (1.2)  (0.8) (0.6)

Fig. 1. (LEFT) Demographic information. (RIGHT) Leave-one-out, forward stepwise
linear discriminant analysis of the patient eigencoordinates in the reference space was
100% accurate at classifying groups (decliners, stable, improvers). The data is shown
here projected on the 3 most discriminating eigenvectors. Our goal was to find an
independent basis for the classification and creation of a predictive model, rather than
the optimal reference space in which to represent our population.
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HSD (P > 0.05, DF = 2). There was a statistically significant baseline MMSE
difference between the decliners and improvers (P = 0.0003, DF' = 2), but no
other significant difference between groups for baseline MMSE. The improvers
had the lowest mean baseline MMSE of all three groups.

The classification is based on a leave-one-out, forward stepwise linear dis-
criminant analyses (SYSTAT 10.2, Georgia, PA; P —to— enter < 0.05) of either
clinical variables (age, sex and baseline MMSE) or eigencoordinates along the
535 reference space eigenvectors. The clinical classifier of Experiment 1 was
53% accurate in separating the 47 patients into decliners, improvers and stable
subjects (DF = 2, Wilk’s A = 0.69), while the 3-way classifier based on projec-
tion eigencoordinates of Experiment 2 was 100% accurate, with 31 significantly
discriminant eigenvectors (P —to— enter < 0.05, DF = 31, Wilk’s A = 0). Fig.[Il
displays the data plotted along the three most discriminating eigenvectors.

While Experiments 1 and 2 classified the data into groups, in the following 3
experiments our goal was to predict the magnitude of the yearly MMSE change.

Table 1. Results from prediction models

Model Features r > SD Fstat P Fstat P
to Clin. to MRI
Clinical 3 0.429 0.176 1.86 - - - -
MRI 10 0.668 0.446 1.53 2.499 0.003 - -
MRI+MMSE 11 0.696 0.484 1.48 2.691 0.002 2.585 0.002
(A)

Actual MMSE change

Actual MMSE change

LA S S
6 -5 -4 -3 -2 -1 0

T
1 2

T
-6 -5

T T T
-4 -3 -2-10 1 2

Predicted MMSE change

Predicted MMSE change

Pred. MMSE change residuals
Pred. MMSE change residuals
in

T T T T T T T T
-5 -4-3-2-10 1 2

Predicted MMSE change

6 LS S S S -
-6 -5-4-3-2-10 1 2 -6

Predicted MMSE change

Fig. 2. (A) Clinical model built from multiple regression of age, sex and baseline MMSE
against 1 year MMSE changes. (B) Residuals for the ”Clinical” model. The correlation
of predicted ws actual values was r = 0.429. (C) MRI+Baseline MMSE model built
from multiple regression of the 10 most correlated reference space eigenvectors plus
baseline MMSE. (D) Plot of residuals. With a correlation between predicted vs actual
yearly MMSE changes of r = 0.6955, this model was a significant improvement over
the ”Clinical” one (F — stat = 2.691, P = 0.002).
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Baseline MMSE, age and sex were all negatively and weakly correlated with
1 year MMSE change (r = —0.25, r = —0.21 and r = 0.15, respectively). In
contrast, out of the 535 reference space eigenvectors, 10 had a correlation ratio of
r > |0.30]. We predicted MMSE change for all patients using each linear model.
The number of input features to the model, the resulting correlation (r) and
squared correlation (r2) of predicted vs. actual values, the standard deviation
of the predicted score and F-test values (against ”Clinical” and "ICBM”) are
shown in table [l Recall that the first predictive model (Experiment 3) is
based on the 3 clinical variables (”Clinical”), the second (Experiment 4) on
the 10 selected eigenvectors ("MRI”) and the last (Experiment 5) using the
10 eigenvectors plus the baseline MMSE (”MRI+baseline MMSE”). The linear
fit for the ”Clinical” and ”MRI+baseline MMSE” models are shown in fig. 2]
alongside their residual plots. The best model was the ” MRI+baselineMMSE”
of Experiment 5, with a correlation between predicted and actual value of
r = 0.6955. It was also significantly better than either the ”Clinical” model
(F'stat = 3.39, P = 0.0001, DF} = 43, DF; = 35) or the "MRI” model (F'stat =
2.59, P =0.002, DFy = 36, DF5 = 35).

4 Discussion

Our goal was to demonstrate the application of a generic, multidimensional
reference space from MR features for the classification and prediction of a clinical
variable. We proceded with analysis of a cohort of 47 Mild Cognitive Impairment
patients and achieved 100% classification accuracy with 31 eigenvectors. We
succeeded in creating an 11-variable linear model that predicted yearly MMSE
changes, explaining 48.4% of the variability in the actual data.

Our approach has been to create a model eigenspace based on subjects from
the ICBM database, in which we projected our MCI patients. While such a
space built from young, neurologically healthy individuals may not be optimal
to represent the MCI cohort, it should be noted that our primary goal was to
find an independent basis for the creation of a predictive model, and not to
find the best representation (mathematical, clinical or otherwise) of the patient
population. As the training set is composed of ICBM subjects that are separate
from the test set subjects, there is no issue of overdetermination in the creation of
the reference space from PCA of the ICBM data. If we are to use this technique
for a prospective or retrospective study, we will need either to use a separate
test set or to use a leave-one-out technique in order for our regression model to
remain independent of any and all training data.

The use of intensity features from MRI raises the question of calibration and
normalization. Absolute intensities are rarely used in MRI, since they vary with
machine calibration, shimming, and patient-induced variations. We have tried to
limit those variations by (1) using the same scanner within groups in the study;
(2) ensuring that the same quality assurance procedures were followed for each
acquisition at each site; (3) by acquiring subject scans in random group order;
and (4) scaling with respect to the reference image.
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Not all macroscopic changes will be capture by the registration process. Point
homology in nonlinear registration is of course approximate: in regions where
there is complete homology, the displacement field will be nearly exact; and
in regions where it is not, the result will be noisy. This uncertainty however is
rejected in the PCA model, as it is uncorrelated and non-covarying, and therefore
only changes associated with the pathology should remain.

While the classification procedure ought to be tested for generalizability in
another set of patients, the leave-one-out classification test (Experiment 2) in-
dicates that it is possible to predict 1-year MMSE changes based on a single MRI
scan. This has important ramifications for patient treatment, since success for
most therapies is expected to increase with earlier detection of cognitive changes
and appropriate treatment. Furthermore, the ”MRI + baseline MMSE” linear
model (Experiment 5) yields an estimate of the amount of change expected
in MMSE over the course of one year. Such data could be used to better taylor
therapy for specific patients.

5 Conclusion

The ability to perform both classification and prediction of a clinical variable
from a single, cross-sectional T1w MRI scan stands to benefit tremendously
physicians in the management of patients with MCI. We have explained our
methodology for model creation and demonstrated its application to the predic-
tion of yearly MMSE changes in a cohort of MCI subjects. A prospective study
on an independent cohort of patients is the next logical step towards further
acceptance of this technique in the medical community.
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