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Abstract. Markov models have been widely used for modelling users’
web navigation behaviour. In previous work we have presented a dy-
namic clustering-based Markov model that accurately represents second-
order transition probabilities given by a collection of navigation sessions.
Herein, we propose a generalisation of the method that takes into ac-
count higher-order conditional probabilities. The method makes use of
the state cloning concept together with a clustering technique to separate
the navigation paths that reveal differences in the conditional probabili-
ties. We report on experiments conducted with three real world data sets.
The results show that some pages require a long history to understand
the users choice of link, while others require only a short history. We also
show that the number of additional states induced by the method can
be controlled through a probability threshold parameter.

1 Introduction

Modelling user web navigation data is a challenging task that is continuing to
gain importance as the size of the web and its user-base increase. Data char-
acterising web navigation can be collected from server or client-based log files,
enabling the reconstruction of user navigation sessions [15]. A session is usually
defined as a sequence of pages viewed by a user within a given time window. The
subarea that studies methods to extract patterns from navigation data has been
called web usage mining and such methods have been applied in several con-
texts including personalisation, link prediction, e-commerce analysis, adaptive
web site organisation and web page pre-fetching [10].

Several authors have proposed the use of Markov models to represent a col-
lection of user web navigation sessions. Pitkow et al. [12] proposed a method to
induce the collection of longest repeating sub-sequences, while Deshpande et al.
[7] proposed a technique that builds kth−order Markov models and combines
them to include the highest order model covering each state. On the other hand,
Sarukkai [13] presented a study showing that Markov models have potential use
in link prediction applications, while Zhu et al. [16] inferred a Markov model
from user navigation data to measure page co-citation and coupling similarity.
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An alternative method of modeling navigation sessions are tree-based models.
Schechter et al. [14] use a tree-based data structure that represents the collection
of paths inferred from log data to predict the next page accessed, while Dongshan
and Junyi [8] proposed a hybrid-order tree-like Markov model to predict web
page access. In addition, Chen and Zhang [6] use a Prediction by Partial Match
tree that restricts the roots to popular nodes.

In previous work we proposed to model a collection of user web navigation
sessions as a Hypertext Probabilistic Grammar (HPG) [1,2]. A HPG corresponds
to a first-order Markov model, which makes use of the N -gram concept [5] to
achieve increased accuracy by increasing the order of the Markov chain; for the
full details on the HPG concept see [2]. In [2] an algorithm to extract the most
frequent traversed paths from user data was proposed, and in [3] we have shown
that the algorithm’s complexity is, on average, linear time in the number of states
of the grammar. In [4] we extended the HPG model with a dynamic clustering-
based method that uses state cloning [9] to accurately represent second-order
conditional probabilities; the method is presented in Section 2. In this work we
generalise the method given in [4] to higher-order conditional probabilities.

Most current web mining systems use techniques such as clustering, associ-
ation rule mining and sequential pattern mining to search for patterns in navi-
gation records [10], and do not take into account the order in which pages were
accessed. This limitation has been tackled by building a sequence of higher-order
Markov models with a method that chooses the best model to use in each case
[7]. However, we argue that a method to produce a single model representing
the variable length history of pages has, so far, been missing.

The method we propose in Section 3 aims to fill that gap. By using the cloning
operation we duplicate states corresponding to pages that require a longer history
to understand the choice of link that users made. In this way the out-links from
a given state reflect the n-order conditional probabilities of the in-paths to the
state. In addition, the proposed model maintains the fundamental properties of
the HPG model [1], while providing a suitable platform for utilising an algorithm
for mining the navigation patterns that takes into account the order of page
views.

In Section 2 we review the essential of the dynamic clustering method, in
Section 3 we extend the method to model higher-order probabilities, and in
Section 4 we present the experimental results. Finally, in Section 5 we give our
concluding remarks.

2 Background

In previous work [1,2] we proposed to model user navigation data as a Hypertext
Probabilistic Grammar (HPG), which corresponds to a first-order Markov model.
We now review the HPG model with the aid of an example.

Consider a web site with seven web pages, {A1, A2, . . . , A7} , and the collec-
tion of navigation sessions given on the left-side of Figure 1 (NOS represents the
number of occurrences of each session). A navigation session gives rise to a se-
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quence of pages viewed by a user within a given time window. To each web page
there corresponds a state in the model. In addition, the start state, S, represents
the first state of every navigation session, and the a final state, F , represents
the last state of every navigation session. There is a transition corresponding to
each pair of pages visited in sequence, a transition from S to the first state of
a session, and a transition from the last state of a session to F . The model is
incrementally built by processing the complete collection of navigation sessions.

Session NOS

A1, A2, A3 3
A1, A2, A4 2
A5, A2, A3 1
A5, A2, A4 1
A6, A2, A3 2
A6, A2, A4 1
A1, A2, A4, A7 1
A5, A2, A4, A7 3
A6, A2, A4, A7 2

A2A5

A1

A6 A4

A36 (1)

6 (0.38)

10 (0.62)

S

6 (0.38)

F

6 (1)

4 (0.40)

5 (0.31)

5 (0.31)

5 (1)

5 (1)

A7

6 (1)

6 (0.60)

Fig. 1. A collection of user navigation sessions and the corresponding first-order model

A transition probability is estimated by the ratio of the number of times the
transition was traversed and the number of times the anchor state was visited.
The right-side of Figure 1 shows a representation of the first-order model corre-
sponding to the input sessions. Next to a link, the first number gives the number
of times the link was traversed and the number in parentheses gives its estimated
probability.

In [4] we proposed a method to increase the HPG precision in order to accu-
rately represent second-order probabilities. The method makes use of a cloning
operation, where a state is duplicated if first-order probabilities diverge from the
corresponding second-order probabilities. In addition, the method uses a clus-
tering algorithm to identify the best way to distribute a state’s in-links between
a state and its clones. We now present the essential properties of the model
proposed in [4], which we extend to higher-order probabilities in Section 3.

Given a model with states {S, A1, ...., An, F}, we let wi represent the number
of times the page corresponding to Ai was visited, wi,j be the number of times the
link from Ai to Aj was traversed, and wi,j,k be the number of times the sequence
Ai, Aj , Ak was traversed. In addition, we let pi,j = wi,j/wi be the first-order
transition probability from Ai to Aj , and pi,k j = wi,k,j/wi,k, be the second-order
transition probability. Also, the accuracy threshold, γ, sets the highest admissible
difference between a first-order and a second-order probability; a model is said
to be accurate if there is no link that violates the constraint set by γ.

In the example given in Figure 1, the user’s past navigation behaviour implies
that p1,23 = p1,24 = 0.5. Therefore, for γ = 0.1, the state A2 is not accurate, since
|p1,2 3−p2,3| > 0.1, and needs to be cloned. To clone state A2, we let each in-link
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define a vector of second-order probabilities; each of the vector’s components
corresponds to an out-link from state A2. In the example, state A2 has three
in-links and two out-links, inducing three vectors of second-order probabilities:
for i = {3, 4} we have P1,2i = {0.5, 0.5}, P5,2i = {0.2, 0.8} and P6,2i = {0.4, 0.6}.

A2

A6

A1

A5 A4

A36 (1)

1 (0.20)

4 (0.80)

S

6 (0.38)

F
6 (1)

4 (0.40)

5 (0.31)

5 (0.31)

5 (1)

5 (1)
A’2

5 (0.45)

6 (0.55)

A7

6 (1)

6 (0.60)

Fig. 2. The second-order HPG model obtained when applying the dynamic clustering
method with γ = 0.1 to the first-order model given in Figure 1

The method applies a k-means clustering algorithm to the collection of
second-order vectors, in order to identify groups of similar vectors with re-
spect to γ. Figure 2 shows the result of applying the method to state A2. Since
|p1,2 i − p6,2 i| < 0.1, for i = {3, 4}, links from A1 and A6 are assigned to one
clone, the link from A5 is assigned to the other clone. The transition counts for
the out-links are updated as follows: w2,3 = w1,2,3 +w6,2,3, w2,4 = w1,2,4 +w6,2,4,
w2′,3 = w5,2,3, w2′,4 = w5,2,4. Note that, state A4 is accurate, since all its in-links
have an equivalent source state, and, moreover, every state having just one out-
link is accurate by definition. Therefore, the model given in Figure 2 accurately
represents every second-order transition probability.

3 A Dynamic Clustering Method to Model Higher-Order
Probabilities

We now extend the method presented in [4] to incorporate higher-order proba-
bilities. In a second-order HPG model, the transition probabilities from a given
state are considered to be accurate, if all in-links to it induce identical second-
order probabilities. Similarly, in a third-order model every two-link path to a
state must induce identical third-order probabilities. In general, to accurately
model n-order probabilities each (n − 1)-length path to a state must induce
identical n-order conditional probabilities. Estimates of the n-order conditional
probabilities are obtained from the n-gram counts.

In the following, we let the length of a path be measured by the number
of links it is composed of, and we call the length of the path from a state
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to the target state the depth of this state; d = 0 corresponds to the target
state and d = n − 1 corresponds to the farthest state from the target when
assessing the model for order n. We let w1,...,n represent the n-gram counts, and
pi...j,kt = wi,...,j,k,t/wi,...,j,k represent the n-order conditional probability of going
to state At given that the (n− 1)-length path Ai, . . . , Aj , Ak was followed. Also,
we let

−→
l represent a path and p−→

l ,kt
the conditional probability of transition

(Ak, At) given the path
−→
l . Also, we let

−→
l [d] be the state at depth d on

−→
l

and v−→
l

be the vector of n-order conditional probabilities given path
−→
l . If a

state y needs cy clones, we let yi, with i = {1, . . . , cy}, represent y and its cy − 1
additional clones. Finally, we let

−→
l c be the cluster to which path

−→
l was assigned.

For a state x, the n-order conditional probabilities are assessed in three steps:

(i) Apply a breath-first search procedure to induce the (n − 1)-length in-paths
to state x, estimate the corresponding n-order conditional probabilities and,
for each path,

−→
l , store the conditional probabilities in a vector v−→

l
(the

vector’s dimension is given by the number of out-links from x). If the dif-
ference between a conditional probability and the corresponding transition
probability is greater than γ, label the state as needing to be cloned.

(ii) If x needs cloning, apply the k-means algorithm to the probability vectors,
v−→

l
. The number of clusters k is incremented until in the final solution, and

in every cluster, the distance between each vector and its centroid is smaller
than γ.

(iii) Identify states that need to be cloned to separate the paths to x. States
included in paths to x are assessed in descending depth order from d = n−1
to d = 0. For depth d, we let a prefix of a path to x, whose last state is
y, be named a y path-prefix to x. Thus, to separate paths to x, state y at
depth, d, needs as many clones as the number of distinct path prefixes with
the same length that are assigned to different clusters. The weights of the in
and out-links of y and its clones are determined by the n-gram counts. After
cloning y the in-paths to x need to be updated.

We now present an example of the method and a pseudo-code description. In
particular, we evaluate the third-order probabilities for the model in Figure 2.
The conditional probabilities induced by the paths to A4 are: for i = {7, F}
we have p12,4i = {0.33, 0.67}, p62,4i = {0.67, 0.33} and p52,4i = {0.75, 0.25}.
Thus, since these probabilities are not close to the corresponding second-order
probabilities, A4 is not third-order accurate for γ = 0.1 . Table 1 gives the in-
paths to A4, the third-order conditional probabilities and the resulting clustering
assignment. As result, state A2 for d = 1 needs one clone, and for d = 0 state
A4 also needs one clone. Figure 3 gives the resulting third-order model.

In Figure 3, the path S, A1, A2, A4 has probability estimate of 0.38 · 1.00 ·
0.50 = 0.19. It can be seen that in Figure 1, from a total of 16 sessions, 3
begin with the 3-gram A1, A2, A4 resulting in a probability estimate of 0.19.
Also, according to the third-order model, path S, A5, A2, A4, A7 has probability
0.31 · 1.00 · 0.80 · 0.71 = 0.18. It can be seen that in the input data 3 sessions
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Table 1. The paths to A4, the third-order conditional probabilities and the resulting
clustering assignment

d = 2 d = 1 d = 0 3rd order vectors cluster

A1 A2 A4 0.33 0.67 1
A6 A2 A4 0.67 0.33 2
A5 A′

2 A4 0.75 0.25 2

begin with A5, A2, A4, A7, resulting in a probability estimate of 0.19. In both
cases the difference between the two estimates is below 0.1, which is the value
specified for the accuracy probability threshold, γ.

A2

A6

A1

A5 A’4

A3

6 (1)

1 (0.20)

4 (0.80)

S

6 (0.38)

F

6 (1)

2 (0.29)

5 (0.31)

5 (0.31)

5 (1)

5 (1)
A’2

3 (0.50)

3 (0.50)

A7

3 (1)

5 (0.71)

A’’2 A4 1 (0.33)

2 (0.67)

3 (0.60)

2 (0.40)

Fig. 3. The third-order model obtained when applying the dynamic clustering method
with γ = 0.1 to the model given in Figure 2

Alternatively, the initial probability of a state can be estimated as wi/
∑

j wj

and every state has a link from S. In Figure 3 there is a total of 54 page views,
and, for example, pS,2 = 6/54 = 0.11 and pS,4′ = 7/54 = 0.13. For the path
A2, A4, A7 the probability estimate is given by the sum of the probabilities of
path A2, A4, A7, path A′

2, A
′
4, A7 and path A′′

2 , A′
4, A7, which is 0.12. In the input

sessions, shown in Figure 1, we have a total of 54 3-gram counts (including 3-
grams starting with S and ending with F ) and the count of A2, A4, A7 is 6,
therefore, its estimate is 6/54 = 0.11. For path A1, A2, A3 the model gives 0.05,
while the session analysis gives 0.05. Both cases are accurate with respect to
γ = 0.1.

The pseudo-code description of the algorithm, which implements the method,
is now given. We let n be the order with which to evaluate the model, HPG(n−1)

be the previous order model, and (n + 1)-grams be the n-gram counts of size
n + 1.
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Algorithm (HPG(n−1), n, γ, (n + 1)-grams)
begin:

for each state x
induce in-paths of length n − 1 to x

for each in-path
−→
l

for each out-link i from x
estimate p−→

l ,xi
and store in v−→

l

if (|p−→
l ,xi

− px,i| > γ) the state needs to be cloned

end for
end for
if state needs to be cloned

apply k-means to collection of vectors v−→
l

for depth d = (n − 1) to d = 0
for each state y at depth d

cy = num. distinct path prefixes assigned to different clusters
create cy − 1 clones of state y

for each in-path
−→
l to x

if (
−→
l [d] = y and

−→
l c > 1) redirect link to corresponding clone

end for
for state yi with i = {1, . . . , cy}

for each in-link t to yi

for each out-link r from yi

wt,yi = wt,yi + wt,yi,r , wyi,r = wyi,r + wt,yi,r

end for
end for
remove out-links from yi such that wyi,r = 0

end for
update ngram counts to take into account clones

end for
update in-paths with clone references

end for
end if

end for
end.

4 Experimental Evaluation

For the experimental evaluation we analysed three real world data sets. By using
data from three different sources we aim to assess the characteristics of our model
in a wide enough variety of scenarios. Our previous experience has shown that
it is difficult to create random data sets that mirror the characteristics of real
world data, and therefore looking at several data sets is necessary.

The first data set (CS) is from a university site, was made available by the
authors of [15] and represents two weeks of usage data in 2002. The site was
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cookie based, page caching was prohibited and data was made available with the
sessions identified. We split the data set into three subsets in order to enhance
analysis in a wider variety of scenarios. The second data set (MM) was obtained
from the authors of [11] and corresponds to one month of usage from the Music
Machines site (machines.hyperreal.org) in 1999 . The data was organised in
sessions and caching was disabled during collection. We split the data set into
four subsets, each corresponding to a week of usage. The third data set (LTM)
represents forty days of usage from the London Transport Museum web site
in 2003 (www.ltmuseum.co.uk). The data was obtained in a raw format. We
filtered .gif and .jpg requests, and requests with an error status code. Sessions
were defined as consecutive requests from a given IP address within a 30 minute
time window and a maximum session length of 100 requests was set. We split
this data set into four subsets, each corresponding to ten days of usage data.

Table 2 gives the summary characteristics for each data set; ds identifies
the data set, pg gives the number of distinct pages visited, %1v and %≤ 2v
indicate, respectively, the percentage of pages with just one visit and with two
or less visits. Also, aOL gives the average number of out-links per state, sOL
the standard deviation, aIL the average number of in-links per page and sIL the
standard deviation. Finally, ses gives the number of sessions, aSes the average
session length, sSes the standard deviation, and req the total number of requests.
The variabilty on the number of states induced by the model for a given web site
can be explained by the number of pages with less than one visit. Also, when
the number of pages with few visits increases the average number of out-links
and in-links decreases. The average session length is stable but the standard
deviation shows that the MM data has a higher variability on the session length.

Table 2. Summary characteristics of the real data sets

ds pg %1v %≤ 2v aOL sOL aIL sIL ses aSes sSes Req

LTM1 2998 0.62 0.68 4.5 9.6 4.4 11.6 9743 7.6 13.5 74441
LTM2 1648 0.19 0.27 8.4 13.8 8.3 16.6 11070 7.4 13.2 82256
LTM3 1610 0.27 0.37 7.8 12.8 7.7 15.0 9116 7.7 13.1 70558
LTM4 1586 0.24 0.34 7.8 13.3 7.7 15.9 9965 7.8 13.4 78179
MM1 8715 0.30 0.45 4.7 12.4 4.6 14.1 14734 6.4 37.8 94989
MM2 5356 0.32 0.44 6.0 18.9 5.9 20.7 14770 6.1 14.7 90682
MM3 5101 0.26 0.38 6.0 15.6 5.9 17.7 10924 6.7 35.2 73378
MM4 6740 0.35 0.49 5.1 18.5 4.9 19.8 14080 6.3 23.8 88053
CS1 3128 0.52 0.67 3.4 10.1 3.1 10.4 7000 4.8 6.5 33854
CS2 3946 0.59 0.74 2.8 9.3 2.6 9.9 7000 5.0 8.4 34897
CS3 5028 0.62 0.76 2.8 9.4 2.6 11.6 6950 5.5 12.8 38236

The left-hand side of Figure 4, shows, for the three representative data sets,
the variation of the model size with its order for γ = 0. (The data sets from
each source reveal almost identical behaviour). For the MM1 data set a large
percentage of state cloning is performed for second and third-order probabilities



42 J. Borges and M. Levene

which indicates that there is no significant difference between third-order prob-
abilities and the corresponding higher-order probabilities, and that the MM site
only requires a short history when deciding which link to follow. The CS data set
shows a slower increase in the model’s size, and the model can be seen to reach
close to full accuracy with respect to fourth-order probabilities. Finally, the LTM
data set shows an increase in the number of states for up to the seventh-order
probabilities, meaning that the choice of which link to follow is clearly influenced
by a relatively long sequence of previously visited web pages.
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Order of the model
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Fig. 4. The increase in model size with the model’s order for γ = 0 and the increase
in size for several values of the probability threshold, γ, with the LTM4 data set

The right-hand side of Figure 4, shows the effect of γ, on the model size
for the LTM4 data set and the left-hand side of Figure 5, shows the effect for
the CS1 data set. In both cases it can be seen that by tuning the value of γ
it is possible to control the increase on a models’s number of states. For both
data sets the difference in the number of states is not evident for second-order
models. For third and higher-order models it is possible to reduce the number
of states induced by the method by allowing some tolerance on representing the
conditional probabilities (by setting γ > 0). Setting γ to a value greater than
0.1 results in almost no cloning for higher orders.

Figure 6 shows some statistics on the number of clones per state for the LTM4

and CS1 data sets, with γ = 0.02 . The the average number of clones per state
(avg) is higher for the LTM4 data set than for the CS1 data set, as expected by
inspecting the left-side of Figure 4. The standard deviation (stdev) indicates a
substantial variability in the number of clones per state, a fact that is supported
by the maximum number of clones (max) and the indicated percentiles. For
the LTM4 data set 50% of the states were never cloned and 75% have at most
six clones for the seventh order. In the CS1 data set 75% of the states were
never cloned and 90% of the states have at most seven clones for the seventh
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Fig. 5. The increase in model size with the model’s order for several values of the
probability threshold, γ, for the CS1 data set and variation of the running time with
the model’s order for several values of the probability threshold for the LTM4 data set

order. These results help to motivate our interest in the dynamic model, since
while for some states the link choice of the corresponding page depends on the
navigation history, for other states the link choice is completely independent of
the navigation history.

LTM4 γ = 0.02
order

2 3 4 5 6 7

avg 3.94 4.99 6.32 8.63 9.67 10.46
stdev 10.86 15.29 24.85 40.88 47.20 50.69
max 205 307 683 989 1193 1265
75% 4.00 5.00 5.00 6.00 6.00 6.00
85% 10.00 11.25 13.00 14.00 16.25 18.00

CS1 γ = 0.02
order

2 3 4 5 6 7

avg 0.87 1.06 1.11 1.16 1.17 1.17
stdev 5.40 7.06 7.3 7.92 7.96 7.96
max 138 175 180 208 208 208
75% 0.00 0.00 0.00 0.00 0.00 0.00
95% 4.00 5.00 5.00 5.00 5.00 5.00

Fig. 6. Statistics on the number of clones per state with the model’s order for the
LTM4 and CS1 data set with γ = 0.02

The right-hand side of Figure 5, and the left-hand side of Figure 7, show
our analysis of the running time of the algorithm for two representative data
sets. We note that, while programming the method, we did not take particular
care regarding the implementation efficiency. The method is close to linear time
for γ = 0, since in such case no clustering is needed. For γ > 0 the k-means
method is applied and we let k increase until a solution which meets the threshold
criteria is obtained. For the reported experiments, we set k to vary according
to the expression k = ceiling(1.5k) in order to obtain a slow increment on its
value in the first stages and a larger increase of the k value in the subsequent
stages. Finally, the right-hand side of Figure 7, shows, for the LTM1 data set,
the increase in number of states with the model’s order for three methods used
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Fig. 7. The running time with the model’s order for several values of γ for the CS1

data set and the increase in model size with the model’s order for three methods to set
the number of clusters (k) for the LTM1 data set

to increase k, in the k-means method. The results show that for lower orders
the number of states is not very sensitive to the method, and for orders higher
than five the faster methods over estimate the number of clusters but with the
benefit of a faster running time (which is not shown in the plot).

5 Concluding Remarks

We have proposed a generalisation of the HPG model by using a state cloning
operation that is able to accurately model higher-order conditional probabilities.
The resulting dynamic high-order Markov model is such that the probabilities
of the out-links from a given state reflect the n-order conditional probabilities
of the paths to the state. Thus, the model is able to capture a variable length
history of pages, where different history lengths are needed to accurately model
user navigation. In addition, the method makes use of a probability threshold
together with a clustering technique that enables us to control the number of
additional states induced by the method at the cost of some accuracy. Finally, the
model maintains the fundamental properties of the HPG model, [1], providing
a suitable platform for an algorithm that can mine navigation patterns, taking
into account the order of page views.

We reported on experiments with three distinct real world data sets. From the
results we can conclude that, for some web sites users navigate with only a short
history of the pages previously visited (for example, the MM site) but in other
sites users hold a longer history in their memory (for example, the LTM site).
The results also suggest that, in a given site, different pages require different
amounts of history in order to understand the possible options users have when
deciding on which link to click on. This supports our interest in the proposed
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dynamic method that models each state with the required history depth. The
results indicate that the clustering method is interesting for large sites, where the
number of states induced for high orderers, for γ = 0, becomes unmanageable.

In the short term we plan to conduct a study to analyse the semantics of the
rules induced by different order probability models. We also plan to perform a
statistical comparison of subsequent order probabilities aimed at determining if
there is sufficient statistical evidence that the additional model complexity in
moving to a higher order justifies the corresponding increase in the algorithm’s
complexity. It would also be interesting to be able to estimate the number of
clusters necessary to achieve the required accuracy in order to speed up the
method. Finally, a comparative study with tree-based models is also planned.
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