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Abstract. This paper presents a novel, generic, scalable, autonomous,
and flexible supervised learning algorithm for the classification of multi-
variate and variable length time series. The essential ingredients of the
algorithm are randomization, segmentation of time-series, decision tree
ensemble based learning of subseries classifiers, combination of subseries
classification by voting, and cross-validation based temporal resolution
adaptation. Experiments are carried out with this method on 10 syn-
thetic and real-world datasets. They highlight the good behavior of the
algorithm on a large diversity of problems. Our results are also highly
competitive with existing approaches from the literature.

1 Learning to Classify Time-Series

Time-series classification is an important problem from the viewpoint of its mul-
titudinous applications. Specific applications concern the non intrusive moni-
toring and diagnosis of processes and biological systems, for example to decide
whether the system is in a healthy operating condition on the basis of measure-
ments of various signals. Other relevant applications concern speech recognition
and behavior analysis, in particular biometrics and fraud detection.

From the viewpoint of machine learning, a time-series classification problem
is basically a supervised learning problem, with temporally structured input
variables. Among the practical problems faced while trying to apply classical
(propositional) learning algorithms to this class of problems, the main one is to
transform the non-standard input representation into a fixed number of scalar
attributes which can be managed by a propositional base learner and at the same
time retain information about the temporal properties of the original data.

One approach to solve this problem is to define a (possibly very large) col-
lection of temporal predicates which can be applied to each time-series in order
to compute (logical or numerical) features which can then be used as input rep-
resentation for any base learner (e.g. [D8ITOITI]). This feature extraction step
can also be incorporated directly into the learning algorithm [IJ2/T4]. Another
approach is to define a distance or similarity measure between time-series that
takes into account temporal specific peculiarities (e.g. invariance with respect to
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time or amplitude rescaling) and then to use this distance measure in combina-
tion with nearest neighbors or other kernel-based methods [12/13]. A potential
advantage of these approaches is the possibility to bias the representation by ex-
ploiting prior problem specific knowledge. At the same time, this problem specific
modeling step makes the application of machine learning non autonomous.

The approach investigated in this paper aims at developing a fully generic
and off-the-shelf time-series classification method. More precisely, the proposed
algorithm relies on a generic pre-processing stage which extracts from the time-
series a number of randomly selected subseries, all of the same length, which
are labeled with the class of the time-series from which they were taken. Then a
generic supervised learning method is applied to the sample of subseries, so as to
derive a subseries classifier. Finally, a new time-series is classified by aggregating
the predictions of all its subseries of the said size. The method is combined with
a ten-fold cross-validation wrapper in order to adjust automatically the size of
the subseries to a given dataset. As base learners, we use tree-based methods
because of their scalability and autonomy.

Section 2] presents and motivates the proposed algorithmic framework of seg-
mentation and combination of time-series data and Section [3] presents an em-
pirical evaluation of the algorithm on a diverse set of time-series classification
tasks. Further details about this study may be found in [4].

2 Segment and Combine

Notations. A time-series is originally represented as a discrete time finite dura-
tion real-valued vector signal. The different components of the vector signal are
called temporal attributes in what follows. The number of time-steps for a given
temporal attribute is called its duration. We suppose that all temporal attributes
of a given time-series have the same duration. On the other hand, the durations of
different time-series of a given problem (or dataset) are not assumed to be identi-
cal. A given time series is related to a particular observation (or object). A learn-
ing sample (or dataset) is a set (ordering is considered irrelevant at this level) of
N preclassified time-series denoted by LSy = { (a(td("), 0), c(o))‘ o=1,...,N},
where o denotes an observation, d(o) € IN stands for the duration of the time-
series, c¢(0) refers to the class associated to the time-series, and

a(t® o) = (a1 (t%°),0),...,a,(t%?,0)), a;(t¥?), 0) = (a:(1,0),...,a:(d(0),0))

represents the vector of n real-valued temporal attributes of duration d(o).

The objective of the time-series classification problem is to derive from LSy
a classification rule ¢(a(t%(°), 0)) which predicts output classes of an unseen time-
series a (%), 0) as accurately as possible.

Training a subseries classifier. In its training stage, the segment and combine
algorithm uses a propositional base learner to yield a subseries classifier from
LSy in the following way:
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Subseries sampling. For i =1,..., N, choose o; € {1, ..., N} randomly, then
choose a subseries offset ¢; € {0,...,d(0;) — £} randomly, and create a scalar
attribute vector

afi (0;) =(a1(ti +1,04), ... a1(ti +£,05), ... an(t;i + 1,0:), ..., an(t; + £,0;))

concatenating the values of all n temporal attributes over the time interval ¢; 4+
1,...,t; + £. Collect the samples in a training set of subseries

LSy, = {(a;,(0:),c(0))] i = 1,..., Ny}

Classifier training. Use the base learner on LSfVS to build a subseries classifier.
This “classifier” is supposed to return a class-probability vector P%(a’).

Notice that when Ny is greater than the total number of subseries of length ¢,
no sampling is done and LSfVS is taken as the set of all subseries.

Classifying a time-series by votes on its subseries. For a new time-
series a(t%(°), 0), extract systematically all its subseries of length £, af(o0),Vi €
{0,...,d(o) — ¢}, and classify it according to

d(o)—¢

Ha(t"),0)) = argmax{ > Pt(al(0))
=0

Note that if the base learner returns 0/1 class indicators, the aggregation step
merely selects the class receiving the largest number of votes.

Tuning the subseries length €. In addition to the choice of base learner
discussed below, the sole parameters of the above method are the number of
subseries Ng and the subseries length £. In practice, the larger N, the higher the
accuracy. Hence, the choice of the value of Ny is only dictated by computational
constraints. On the other hand, the subseries length ¢ should be adapted to the
temporal resolution of the problem. Small values of ¢ force the algorithm to focus
on local (shift-invariant) patterns in the original time-series while larger values
of ¢ amount to considering the time-series more globally. In our method, we
determine this length automatically by trying out a set of candidate values ¢; <
min,er s, d(0), estimating for each ¢; the error-rate by ten-fold cross-validation
over LSy, and selecting the value ¢, yielding the lowest error rate estimate.

Base learners. In principle, any propositional base learner (SVM, kNN, MLP
etc.) could be used in the above approach. However, for scalability reasons, we
recommend to use decision trees or ensembles of decision trees. In the trials in
the next section we will compare the results obtained with two different tree-
based methods, namely single unpruned CART trees and ensembles of extremely
randomized trees. The extremely randomized trees algorithm (Extra-Trees) is
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Table 1. Summary of datasets

Dataset Src. Ng n ¢ d—d  Protocol Best Ref {€:}, {si}

CBF 1 798 13 128 10-foldev 0.00 [7] 1,2,4,8,16,32,64,96,128
CC 2 600 1 6 60 10-fold cv  0.83 [I] 1,2,5,10,20,30
CBF-tr 1 5000 1 3 128  10-fold cv  — 1,2,4,8,16,32,64,96,128
Two-pat 1 5000 1 3 128  10-fold cv  — 1,2,4,8,16,32,64,96,128
TTest 1 999 3 3 81-121 10-fold cv 0.50 [7] 3,5,10,20,40,60
Trace 3 1600 4 16 268-394 holdout 800 0.83 [1] 10,25,50,100,150,200,250
Auslan-s 2 200 8 10 32-101 10-fold cv  1.50 [I] 1,2,5,10,20,30
Auslan-b 5 2566 22 95 45-136 holdout 1000 2.10 [7] 1,2,5,10,20,30,40

JV 2 640 8 10 7-29 holdout 270 3.80 [8] 2,3,5,7

ECG 4 200 2 2 39-152 10-fold cv = — 1,2,5,10,20,30,39

lhttp://www.montefiore.ulg.ac.be/“‘geurts/thesis.html 2 5] 3ht',1',p://mva.ife.no
thtp ://www-2.cs.cmu.edu/~bobski/pubs/tr01108.html
Dht',1',p://waleed.web.cse.unsw.ech.l.au/new/phd.html

described in details in [4]. It grows a tree by selecting the best split from a small
set of candidate random splits (both attribute and cut-point are randomized).
This method allows to reduce strongly variance without increasing bias too much.
It is also significantly faster in the training stage than bagging or boosting which
search for optimal attribute and cut-points at each node.

Notice that because the segment and combine approach has some intrinsic
variance reduction capability, it is generally counterproductive to prune single
trees in this context. For the same reason, the number of trees in the tree en-
semble methods can be chosen reasonably small (25 in our experiments).

3 Empirical Analysis

3.1 Benchmark Problems

Experiments are carried out on 10 problems. For the sake of brevity, we only
report in Table [l the main properties of the 10 datasets. We refer the interested
reader to [4] and the references therein for more details. The second column gives
the (web) source of the dataset. The next four columns give the number Ny of
time-series in the dataset, the number of temporal attributes n of each time-
series, the number of classes ¢, and the range of values of the duration d(o); the
seventh column specifies our protocol to derive error rates; the eighth and ninth
columns give respectively the best published error rate (with identical or com-
parable protocol to ours) and the corresponding reference; the last column gives
the trial values used for the parameters ¢ and s. The first six problems are artifi-
cial problems specifically designed for the validation of time-series classification
methods, while the last four problems correspond to real world problems.

3.2 Accuracy Results

Accuracy results on each problem are gathered in Table 2l In order to assess
the interest of the segment and combine approach, we compare it with a simple
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Table 2. Error rates (in %) and optimal values of s and ¢

Temporal normalization Segment&Combine (N, = 10000)
ST ET ST ET

Dataset Err% s* Err% s* Err% £ Err% £
CBF 4.26 24.0+8.0 0.38 272473 1.25 928+9.6 0.75 96.0 £ 0.0
CC 3.33 21.0£17.0 0.67 41.0+14.5 0.50 35.0£6.7 0.33 37.0+4.6
CBF-tr 13.28 30.4+13.3 2.51 304+4.8 1.63 41.6+14.7 1.88 57.6 £314
Two-pat 25.12 8.0+0.0 14.37 36.8 +£46.1 2.00 96.0+0.0 0.37 96.0 £ 0.0
TTest 18.42 40.0 £0.0 13.61 40.0£0.0 3.00 80.0+0.0 0.80 80.0+0.0
Trace 50.13 50 40.62 50 8.25 250 5.00 250
Auslan-s 19.00 55+1.5 4.50 10.24+4.0 5.00 17.0+7.8 1.00 13.0 £4.6
Auslan-b 22.82 10 4.51 10 18.40 40.0£0.0 5.16 40.0£0.0
JV 16.49 2 4.59 2 8.11 3 4.05 3
ECG 25.00 18.5 +10.0 15.50 19.0 £ 9.4 25.50 29.8 6.0 24.00 32.4 +8.5

normalization technique [26], which aims at transforming a time-series into a
vector of fixed dimensionality of scalar numerical attributes: the time interval of
each object is divided into s equal-length segments and the average values of all
temporal attributes along these segments are computed, yielding a new vector of
n - s attributes which are used as inputs to the base learner. The two approaches
are combined with single decision trees (ST) and ensembles of 25 Extra-Trees
(ET) as base learners. The best result in each row is highlighted.

For the segment and combine method, we randomly extracted 10,000 sub-
series. The optimal values of the parameters ¢ and s are searched among the
candidate values reported in the last column of Table [l When the testing pro-
tocol is holdout, the parameters are adjusted by 10-fold cross-validation on the
learning sample only; when the testing protocol is 10-fold cross-validation, the
adjustment of these parameters is made for each of the ten folds by an internal
10-fold cross-validation. In this latter case average values and standard devia-
tions of the parameters s* and £* over the (external) testing folds are provided.

From these results we first observe that “Segment and Combine” with Extra-
Trees (ET) yields the best results on six out of ten problems. On three other
problems (CBF, CBR~tr, Auslan-b) its accuracy is close to the best one. Only on
the ECG problem, the results obtained are somewhat disappointing with respect
to the normalization approach. On the other hand, it is clear that the combi-
nation of the normalization technique with single trees (ST) is systematically
(much) less accurate than the other variants.

We also observe that, both for “normalization” and “segment and combine”,
the Extra-Trees always give significantly better results than single trees[] On the
other hand, the improvement resulting from the segment and combine method
is stronger for single decision trees than for Extra-Trees. Indeed, error rates of
the former are reduced in average by 65% while error rates of the latter are

! There is only one exception, namely CBF-tr where the ST method is slightly better
than ET in the case of “segment and combine”.
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only reduced by 30%. Actually, with “segment and combine”, single trees and
Extra-Trees are close to each other in terms of accuracy on several problems,
while they are not with “normalization”. This can be explained by the intrinsic
variance reduction effect of the segment and combine method, which is due to the
virtual increase of the learning sample size and the averaging step and somewhat
mitigates the effect variance reduction techniques like ensemble methods (see [3]
for a discussion of bias and variance of the segment and combine method).

From the values of £* in the last column of Table Bl it is clear that the
optimal £* is a problem dependent parameter. Indeed, with respect to the average
duration of the time-series this optimal values ranges from 17% (on JV) to 80%
(on TTest). This highlights the usefulness of the automatic tuning by cross-
validation of /* as well as the capacity of the segment and combine approach to
adapt itself to variable temporal resolutions.

A comparison of the results of the last two columns of Table 2l with the eighth
column of Table[ll shows that the segment and combine method with Extra-Trees
is actually quite competitive with the best published results. Indeed, on CBF,
CC, TTest, Auslan-s, and JV, its results are very close to the best published
onesH Since on Trace, and to a lesser extent on Auslan-b, the results were less
good, we ran a side-experiment to see if there is room for improvement. On Trace
we were able (with Extra-Trees and Ns = 15000) to reduce the error rate from
5.00% to 0.875% by first resampling the time series into a fixed number of 268
time points. The same approach with 40 time points decreased also the error
rate on Auslan-b from 5.16% to 3.94%.

3.3 Interpretability

Let us illustrate the possibility to extract interpretable information from the
subseries classifiers. Actually, these classifiers provide for each time point a vec-
tor estimating the class-probabilities of subseries centered at this point. Hence,
subseries that correspond to a high probability of a certain subset of classes can
be considered as typical patterns of this subset of classes.

Figure [Il shows for example, in the top part, two temporal attributes for
three instances of the Trace problem respectively of classes 1, 3, and 5, and
in the bottom part the evolution of the probabilities of these three classes as
predicted for subseries (of length £ = 50) as they move progressively from left
to right on the time axis. The Class 3 signal (top middle) differs from the Class
1 signal (top left) only in the occurrence of a small sinusoidal pattern in one of
the attribute (around ¢ = 200); on the other hand, Class 1 and 3 differ from
Class 5 (top right) in the occurrence of a sharp peak in the other attribute
(around ¢ = 75 and t = 100 respectively). From the probability plots we see
that, for ¢ < 50 the three classes are equally likely, but at the time where the
peak appears (¢ € [60 — 70]) the probability of Class 5 decreases for the two

2 Note that on CBF, CC, TTest, and Auslan-s, our test protocols are not strictly
identical to those published since we could not use the same ten folds. This may be
sufficient to explain small differences with respect to results from the literature.



484 P. Geurts and L. Wehenkel

Class 1 Class 3 Class 5

Fig. 1. Interpretability of “Segment and Combine” (Trace dataset, N, = 10000, ET)

first series (where a peak appears) and increases for the right-most series (where
no peak appears). Subsequently, around ¢t = 170, the subseries in the middle
instance start to detect the sinusoidal pattern, which translates into an increase
of the probability of Class 3, while for the two other time-series Classes 1 and 5
become equally likely and Class 3 relatively less. Notice that the voting scheme
used to classify the whole time-series from its subseries amounts to integrating
these curves along the time axis and deciding on the most likely class once all
subseries have been incorporated. This suggests that, once a subseries classifier
has been trained, the segment combine approach can be used in real-time in
order to classify signals through time.

4 Conclusion

In this paper, we have proposed a new generic and non-parametric method for
time-series classification which randomly extracts subseries of a given length
from time-series, induces a subseries classifier from this sample, and classifies
time-series by averaging the prediction over its subseries. The subseries length
is automatically adapted by the algorithm to the temporal resolution of the
problem. This algorithm has been validated on 10 benchmark problems, where it
yielded results competitive with state-of-the-art algorithms from the literature.
Given the diversity of benchmark problems and conceptual simplicity of our
algorithm, this is a very promising result. Furthermore, the possibility to extract
interpretable information from time-series has been highlighted.

There are several possible extensions of our work, such as more sophisticated
aggregation schemes and multi-scale subseries extraction. These would allow to
handle problems with more complex temporally related characteristic patterns
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of variable time-scale. We have also suggested that the method could be used
for real-time time-series classification, by adjusting the voting scheme.

The approach presented here for time-series is essentially identical to the work
reported in [9] for image classification. Similar ideas could also be exploited to
yield generic approaches for the classification of texts or biological sequences.
Although these latter problems have different structural properties, we believe
that the flexibility of the approach makes it possible to adjust it to these contexts
in a straightforward manner.
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