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Abstract. Problem solving with experiences that are recorded in text form re-
quires a mapping from text to structured cases, so that case comparison can pro-
vide informed feedback for reasoning. One of the challenges is to acquire an
indexing vocabulary to describe cases. We explore the use of machine learning
and statistical techniques to automate aspects of this acquisition task. A proposi-
tional semantic indexing tool, PSI, which forms its indexing vocabulary from new
features extracted as logical combinations of existing keywords, is presented. We
propose that such logical combinations correspond more closely to natural con-
cepts and are more transparent than linear combinations. Experiments show PSI-
derived case representations to have superior retrieval performance to the original
keyword-based representations. PSI also has comparable performance to Latent
Semantic Indexing, a popular dimensionality reduction technique for text, which
unlike PSI generates linear combinations of the original features.

1 Introduction

Discovery of new features is an important pre-processing step for textual data. This
process is commonly referred to as feature extraction, to distinguish it from feature se-
lection, where no new features are created [18]. Feature selection and feature extraction
share the aim of forming better dimensions to represent the data. Historically, there has
been more research work carried out in feature selection [9,20,16] than in extraction for
text pre-processing applied to text retrieval and text classification tasks. However, com-
binations of features are better able to tackle the ambiguities in text (e.g. synonyms and
polysemys) that often plague feature selection approaches. Typically, feature extrac-
tion approaches generate linear combinations of the original features. The strong focus
on classification effectiveness alone has increasingly justified these approaches, even
though their black-box nature is not ideal for user interaction. This argument applies
even more strongly to combinations of features using algebraic or higher mathematical
functions. When feature extraction is applied to tasks such as help desk systems, med-
ical or law document management, email management or even Spam filtering, there is
often a need for user interaction to guide retrieval or to support incremental query elab-
oration. The primary communication mode between system and user has the extracted
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features as vocabulary. Hence, these features should be transparent as well as providing
good dimensions for classification.

The need for features that aid user interaction is particularly strong in the field of
Case-Based Reasoning (CBR), where transparency is an important element during re-
trieval and reuse of solutions to similar, previously solved problems. This view is en-
forced by research presented at a mixed initiative CBR workshop [2]. The indexing
vocabulary of a CBR system refers to the set of features that are used to describe past
experiences to be represented as cases in the case base. Vocabulary acquisition is gen-
erally a demanding knowledge engineering task, even more so when experiences are
captured in text form. Analysis of text typically begins by identifying keywords with
which an indexing vocabulary is formed at the keyword level [14]. It is here that there
is an obvious opportunity to apply feature extraction for index vocabulary acquisition
with a view to learning transparent and effective textual case representations.

The focus of this paper is extraction of features to automate acquisition of index
vocabulary for knowledge reuse. Techniques presented in this paper are suited for ap-
plications where past experiences are captured in free text form and are pre-classified
according to the types of problems they solve. We present a Propositional Semantic In-
dexing (PSI) tool, which extracts interpretable features that are logical combinations of
keywords. We propose that such logical combinations correspond more closely to nat-
ural concepts and are more transparent than linear combinations. PSI employs boosting
combined with rule mining to encourage learning of non-overlapping (or orthogonal)
sets of propositional clauses. A similarity metric is introduced so that textual cases
can be compared based on similarity between extracted logical clauses. Interpretabil-
ity of these logical constructs creates new avenues for user interaction and naturally
leads to the discovery of knowledge. PSI’s feature extraction approach is compared
with the popular dimensionality reduction technique Latent Semantic Indexing (LSI),
which uses singular value decomposition to extract orthogonal features that are linear
combinations of keywords [7]. Case representations that employ PSI’s logical expres-
sions are more comprehensible to domain experts and end-users compared to LSI’s
linear keyword combinations. Ideally we wish to achieve this expressiveness without
significant loss in retrieval effectiveness.

We first establish our terminology for feature selection and extraction, before de-
scribing how PSI extracts features as logical combinations. We then describe LSI, high-
lighting the problem of interpretability with linear combinations. Finally we show that
PSI’s approach achieves comparable retrieval performance yet remains expressive.

2 Feature Selection and Extraction

Consider the hypothetical example in Figure 1 where the task is to weed out Spam from
legitimate email related to AI. To assist with future message filtering these messages
must be mapped onto a set of cases before they can be reused. We will refer to the set of
all labelled documents (cases) as D. The keyword-vector representation is commonly
used to represent a document d by considering the presence or absence of words [17].
Essentially the set of features are the set of wordsW (e.g. “conference”, “intelligent”).
Accordingly a document d is represented as a pair (x, y), where x = (x1, . . . , x|W|) is
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Fig. 1. Features as logical keyword combinations

a binary valued feature vector corresponding to the presence or absence of words inW ;
and y is d’s class label.

Feature selection reduces |W| to a smaller feature subset size m [20]. Information
Gain (IG) is often used for this purpose, where m features with highest IG are retained
and the new binary-valued feature vector x′ is formed with the reduced word vocabulary
set W ′, where W ′ ⊂ W and |W ′| � |W|. The new representation of document d
with W ′ is a pair (x′, y). Selection using IG is the base-line algorithm in this paper
and is referred to as BASE. An obvious shortcoming of BASE is that it fails to ensure
selection of non-redundant keywords. Ideally we want x′ to contain features that are
representative but also orthogonal. A more serious weakness is that BASE’s one-to-one
feature-word correspondence operates at a lexical level, ignoring underlying semantics.

Figure 1 illustrates a proof tree showing how new features can be extracted to cap-
ture keyword relationships using propositional disjunctive normal form clauses (DNF
clauses). When keyword relationships are modelled, ambiguities in text can be resolved
to some extent. For instance “grant” and “application” capture semantics akin to legiti-
mate messages, while the same keyword “application” in conjunction with “debt-free”
suggests Spam messages.

Feature extraction, like selection, also reduces |W| to a smaller feature subset size
m. However unlike selected features, extracted features no longer correspond to pres-
ence or absence of single words. Therefore, with extracted features the new represen-
tation of document d is (x′′, y), but W ′′ �⊂ W . When extracted features are logical
combinations of keywords as in Figure 1, then a new feature w′′ ∈ W ′′, represents a
propositional clause. For example the new feature w′′

2 represents the clause: “intelli-
gent” ∨ “algorithm” ∨ (“grant” ∧ “application”).
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3 Propositional Semantic Indexing (PSI)

PSI discovers and captures underlying semantics in the form of propositional clauses.
PSI’s approach is two-fold. Firstly, decision stumps are selected by IG and refined by
association rule mining, which discovers sets of Horn clause rules. Secondly, a boost-
ing process encourages selection of non-redundant stumps. The PSI feature extraction
algorithm and the instantiation of extracted features appear at the end of this section
after a description of the main steps.

3.1 Decision Stump Guided Extraction

A decision stump is a one-level decision tree [12]. In PSI, a stump is initially formed
using a single keyword, which is selected to maximise IG. An example decision stump
formed with “conference” in its decision node appears in Figure 2. It partitions docu-
ments into leaves, based on whether or not “conference” appears in them. For instance
70 documents contain the word “conference” and just 5 of these are Spam (i.e. +5). It is
not uncommon for documents containing “conference” to still be semantically similar
to those not containing it. So documents containing “workshop” without “conference”
in the right leaf are still contextually similar to those containing “conference” in the
left leaf. A generalised decision node has the desired effect of bringing such seman-
tically related documents closer [19]. Generalisation refines the decision node formed
with a single feature w′, to an extracted feature w′′, containing a propositional clause.
Typically a refined node results in an improved split (see right stump in Figure 2).

conference

1 0

70 cases
[-65, +5]

330 cases
[-145, +195]

1

120 cases
[-110, +10]

280 cases
[-95, +195]

conference V intelligence V 
workshop V,..,V  

0

generalise
node

w’ w" 

V

(edu    register) 

Fig. 2. Node Generalisation

A propositional clause is formed by adding disjuncts to an initial clause containing
just the selected feature w′. Each disjunct is a conjunction of one or more keyword
co-occurrences with similar contextual meaning to that of w′. An exhaustive search for
disjuncts will invariably be impractical. Fortunately the search space can be pruned by
using w′ as a handle over this space. Instead of generating and evaluating all disjuncts,
we generate propositional Horn clause rules that conclude w′ given other logical key-
word combinations.

3.2 Growing Clauses from Rules

Examples of five association rules concluding in “conference” (i.e. w′) appear in Fig-
ure 3. These rules are of the form H ← B, where the rule body B is a conjunction of
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keywords, and the rule head H is a single keyword. These conjunctions are keyword
combinations that have been found to co-occur with the head keyword. Rule bodies
are a good source of disjuncts with which to grow our DNF clause w′′, which ini-
tially contains only the selected keyword “conference”. However, an informed selection
strategy is necessary to identify those disjuncts that are good descriptors of underlying
semantics.

The contribution of each disjunct to clause growth is measured by comparing IG of
w′′ with and without the disjunct (rule body) included in the DNF clause. Disjuncts that
fail to improve IG are filtered out by the gain-filter. Those remaining are passed onto
gen-filter where any specialised forms of a disjunct with a lower IG compared to any
one of its generalised forms are filtered out. The DNF clauses in Figure 3 show how
each rule is converted into a potential DNF clause (difference in IG, used for filtering
appear in brackets). The final DNF clause derived once the filtering step is completed
is: “conference” ∨ “intelligence” ∨ “workshop” ∨ “register”. We use the Apriori [1]
association rule learner to generate feature extraction rules that conclude a selected w′.
Apriori typically generates many rules, but the filters are able to identify useful rules.

3.3 Feature Extraction with Boosting

PSI’s iterative approach to feature extraction employs boosted decision stumps (see Fig-
ure 4). The number of features to be extracted is determined by vocabulary size. The
general idea of boosting is to iteratively generate several (weak) learners, with each
learner biased by the training error in the previous iteration [10]. This bias is expressed
by modifying weights associated with documents. When boosted stumps are used for
feature selection the new document distribution discourages selection of a redundant
feature given the previously selected feature [6]. Here, with extracted features, unlike
with single keyword-based features, we need to discourage discovery of an overlapping
clause given the previously discovered clause. We achieve this by updating document
weights in PSI according to the error of the decision stump created with the new ex-
tracted feature, w′′, instead of w′.

3.4 Feature Instantiation

Once PSI has extracted new features, textual cases are mapped to a new representation.
For a new feature w′′

i , let Si =
∨

j sij , be its propositional clause, where sij =
∧

k xijk
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W ′′ = ∅; n = |D|; vocabulary size = m
Algorithm: PSI

Repeat
initialise document weights to 1 / n
wj = feature with highest IG
W = W \ wj

w′′
j = GROWCLAUSE(wj, W)

W ′′ = W ′′ ∪ w′′
j

stump = CREATESTUMP(w′′
j )

err = error(stump)
update document weights using err

Until ( |W ′′| = vocabulary size)
Return W ′′

Fig. 4. Feature Extraction with PSI

is the jth conjunction in this clause. The new representation of document d = (x′′, y) is
obtained by:

x′′
i =

∑

j

gain inc(sij) ∗ infer(sij)

here gain inc returns the increase in gain achieved by sij when growing Si. Whether
or not sij can be inferred (satisfied) from a document’s initial representation d = (x, y)
(i.e. using all features inW) is determined by:

infer(sij) =
{

1 if (
∧

k xijk) = True
0 otherwise

The PSI-derived representation enables case comparison at a semantic (or conceptual)
level, because instantiated features now capture the degree to which each clause is sat-
isfied by documents. In other words, satisfaction of the same disjunct will contribute
more towards similarity than satisfaction of different disjuncts in the same clause.

4 Latent Semantic Indexing (LSI)

LSI is an established method of feature extraction and dimension reduction. The matrix
whose columns are the document vectors x1, . . . ,x|D|, known as the term-document
matrix, constitutes a vector space representation of the document collection. In LSI,
the term-document matrix is subjected to singular value decomposition (SVD). The
SVD extracts an orthogonal basis for this space, consisting of new features that are lin-
ear combinations of the original features (keywords). Crucially, these new features are
ranked according to their importance. It is assumed that the m highest-ranked features
contain the true semantic structure of the document collection and the remaining fea-
tures, which are considered to be noise, are discarded. Any value of m less than the
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rank of the term-document matrix can be used, but good values will be much smaller
than this rank and, hence, much smaller than either |W | or |D|. These features form a
new lower-dimensional representation which has frequently been found to improve per-
formance in information retrieval and classification tasks [18,22]. Full technical details
can be found in the original paper [7].

Figure 5 shows a hypothetical example from the AI-Spam domain (cf. Figure 1).
The first extracted feature is a combination of “intelligent”, “algorithm”, “grant” and
“application”. Any document containing most of these is likely to be legitimate, so
high values of this feature indicate non-Spam. The second feature has positive weights
for “application”, “debt-free” and “viagra” and a negative weight for “grant”. A high
value for this feature is likely to indicate Spam. The new features are orthogonal, despite
having two keywords in common. The first feature has positive weights for both “grant”
and “application”, whereas the second has a negative weight for “grant”. This shows
how the modifying effect of “grant” on “application” might manifest itself in a LSI-
derived representation. With a high score for the first extracted feature and a low score
for the second, the incoming test case is likely to be classified as legitimate email.

LSI extracted features are linear combinations of typically very large numbers of
keywords. In practice this can be in the order of hundreds/thousands of keywords,
unlike in our illustrative example involving just 8 keywords. Consequently, it is dif-
ficult to interpret these features in a meaningful way. In contrast, a feature extracted
by PSI combines far fewer keywords and its logical description of underlying seman-
tics is easier to interpret. A further difference is that, although both PSI and LSI ex-
ploit word-word co-occurrences to discover and preserve underlying semantics, PSI

also draws on word-class co-occurrences while LSI does not naturally exploit this in-
formation.

5 Evaluation

The goodness of case representations derived by BASE, LSI and PSI in terms of retrieval
performance is compared on a retrieve-only CBR system, where the weighted majority
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vote from the 3 best matching cases are re-used to classify the test case. A modified case
similarity metric is used so that similarity due to absence of words (or words in linear
combinations or in clauses) is treated as less important compared to their presence [19].

Experiments were conducted on 6 datasets; 4 involving email routing tasks and 2
involving Spam filtering. Various groups from the 20Newsgroups corpus of 20 Usenet
groups [13], with 1000 postings (of discussions, queries, comments etc.) per group,
form the routing datasets: SCIENCE (4 science related groups); REC (4 recreation re-
lated groups); HW (2 hardware problem discussion groups, one on Mac, the other on
PC); and RELPOL (2 groups, one concerning religion, the other politics in the middle-
east). Of the 2 Spam filtering datasets: USREMAIL [8] contains 1000 personal emails of
which 50% are Spam; and LINGSPAM [16] contains 2893 messages from a linguistics
mailing list of which 27% are Spam.

Equal-sized disjoint train-test splits were formed. Each split contains 20% of the
dataset and also preserves the class distribution of the original corpus. All text was pre-
processed by removing stop words (common words) and punctuation. Remaining words
were stemmed to formW , where |W| varies from approximately 1,000 in USREMAIL to
20,000 in LINGSPAM. Generally, with both routing and filtering tasks, the overall aim is
to assign incoming messages into appropriate groups. Hence, test set accuracy was cho-
sen as the primary measure of the effectiveness of the case representation as a facilitator
of case comparison. For each test corpus and each method, the accuracy (averaged over
15 trials) was computed for representations with 20, 40, 60, 80, 100 and 120 features.

Paired t-tests were used to find improvements by LSI and PSI compared to BASE

(one-tailed test) and differences between LSI and PSI (two-tailed test), both at the 95%
significance level. Precision1 is an important measure when comparing Spam filters,
because it penalises error due to false positives (Legitimate→ Spam). Hence, for the
Spam filtering datasets, precision was tested as well as accuracy.

5.1 Results

Accuracy results in Figure 6 shows that BASE performs poorly with only 20 features,
but gets closer to the superior PSI when more features are added. PSI’s performance is
normally good with 20 features and is robust to the feature subset size compared to both
BASE and LSI. LSI clearly performs better for smaller sizes. This motivated an inves-
tigation of LSI with fewer than 20 features. We found that 10-feature LSI consistently
outperforms 20-feature LSI and is close to optimal. Consequently, 10-feature LSI was
used for the significance testing, in order to give a more realistic comparison with the
other methods.

Table 5.1 compares performance of BASE and PSI (both 20 features) and LSI (10
features). Where LSI or PSI are significantly better than BASE, the results are in bold.
Where LSI and PSI are significantly different, the better result is starred. It can be seen
that LSI is significantly better than BASE on 6 of 8 measures and to PSI on 3. PSI

is better than BASE on 7 measures and better than LSI on 2. We conclude that the
20-dimensional representations extracted by PSI have comparable effectiveness to the
10-dimensional representations extracted by LSI. Generally, BASE needs a much larger

1 Precision = TP/(TP+FP) where TP is no. of true positives and FP is no. of false positives.
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Fig. 6. Accuracy results for datasets

Table 1. Summary of significance testing for feature subset size 20 (10 for LSI)

Routing: Accuracy Filtering: Accuracy (Precision)
Algo. REC HW RELPOL SCIENCE USREMAIL LINGSPAM

BASE 71.7 73.0 88.7 48.1 85.7 (89.5) 94.2 (92.0)
LSI *78.7 65.5 90.4 *71.8 93.9 (*96.8) 96.8 (89.0)
PSI 76.2 *80.1 91.2 59.9 94.1 (95.2) 95.8 (*92.1)

indexing vocabulary to achieve comparable performance. PSI works well with a small
vocabulary of features, which are more expressive than LSI’s linear combinations.

5.2 Interpretability

Figure 7 provides a high-level view of sample features extracted by PSI in the form of
logical combinations (for 3 of the datasets). It is interesting to compare the differences
in extracted combinations (edges), the contribution of keywords (ovals) to different ex-
tracted features (boxes) and the number of keywords used to form conjunctions (usually
not more than 3). We see a mass of interconnected nodes with the HW dataset on which
PSI’s performance was far superior to that of LSI. Closer examination of this data set
shows that there are many keywords that are polysemous given the two classes. For in-
stance “drive” is applicable both to Macs and PCs but combined with “vlb” indicates PC
while with “syquest” indicates Mac. Unlike HW, the multi-class SCIENCE dataset con-
tains several disjoint graphs each relating to a class, suggesting that these concepts are
easily separable. Accuracy results show LSI to be a clear winner on SCIENCE. This fur-
ther supports our observation that LSI operates best only in the absence of class-specific
polysemous relationships. Finally, features extracted from LINGSPAM in figure 7 show
that the majority of new features are single keywords rather than logical combinations.
This explains BASE’s good performance on LINGSPAM.

An obvious advantage of interpretability is knowledge discovery. Consider the SCI-
ENCE tree, here, without the extracted clauses indicating that “msg”, “food” and “chi-
nese” are linked through “diet”, one would not understand the meaning in context of a
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term such as “msg”. Such proof trees, which are automatically generated by PSI, high-
light relations between keywords; this knowledge can further aid with glossary gener-
ation, often a demanding manual task (e.g. FALLQ [14]). Case authoring is a further
task that can benefit from PSI generated trees. For example disjoint graphs involving
“electric” and “encrypt” with many fewer keyword associations may suggest the need
for case creation or discovery in that area. From a retrieval standpoint, PSI generated
features can be exploited to facilitate query elaboration, within incremental retrieval
systems.The main benefit to the user would be the ability to tailor the expanded query
by deactivating disjuncts to suit retrieval needs. Since clauses are granular and can be
broken down into semantically rich constituents, retrieval systems can gather statistics
of which clauses worked well in the past, based on user interaction; this is difficult over
linear combinations of features mined by LSI.

6 Related Work

Feature extraction is an important area of research particularly when dealing with tex-
tual data. In Textual-CBR (TCBR) research the SMILE system provides useful insight
into how machine learning and statistical techniques can be employed to reason with
legal documents [3]. As in PSI, single keywords in decision nodes are augmented with
other keywords of similar context. Unlike PSI, these keywords are obtained by look-
ing up a manually created domain-specific thesaurus. Although PSI grows clauses by
analysing keyword co-occurrence patterns, they can just as easily be grown using ex-
isting domain-specific knowledge. A more recent interest in TCBR involves extraction
of features in the form of predicates. The FACIT framework involving semi-automated
index vocabulary acquisition addresses this challenge but also highlights the need for
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reliance on deep syntactic parsing and the acquisition of a generative lexicon which
warrants significant manual intervention [11].

In text classification and text mining research, there is much evidence to show that
analysis of keyword relationships and modelling them as rules is a successful strat-
egy for text retrieval. A good example is RIPPER [5], which adopts complex optimi-
sation heuristics to learn propositional clauses for classification. A RIPPER rule is a
Horn clause rule that concludes a class. In contrast, PSI’s propositional clauses form
features that can easily be exploited by CBR systems to enable case comparison at a
semantic level. Such comparisons can also be facilitated with the FEATUREMINE [21]
algorithm, which also employs association rule mining to create new features based on
keyword co-occurrences. FEATUREMINE generates all possible pair-wise keyword co-
occurrences converting only those that pass a significance test into new features. What
is unique about PSI’s approach is that firstly, search for associations is guided by an
initial feature selection step, secondly, associations remaining after an informed filter-
ing step are used to grow clauses, and, crucially, boosting is employed to encourage
growing of non-overlapping clauses. The main advantage of PSI’s approach is that in-
stead of textual case similarity based solely on instantiated feature value comparisons
(as in FEATUREMINE), PSI’s clauses enable more fine-grained similarity comparisons.
Like PSI, WHIRL [4] also integrates rules resulting in a more fine-grained similarity
computation over text. However these rules are manually acquired.

The use of automated rule learning in an Information Extraction (IE) setting is
demonstrated by TEXTRISE, where mined rules predict text for slots based on infor-
mation extracted over other slots [15]. The vocabulary is thus limited to template slot
fillers. In contrast PSI does not assume knowledge of case structures and is potentially
more useful in unconstrained domains.

7 Conclusion

A novel contribution of this paper is the acquisition of an indexing vocabulary in the
form of expressive clauses, and a case representation that captures the degree to which
each clause is satisfied by documents. The propositional semantic indexing tool, PSI, in-
troduced in the paper, enables text comparison at a semantic, instead of a lexical, level.
Experiments show that PSI’s retrieval performance is significantly better than that of re-
trieval over keyword-based representations. Comparison of PSI-derived representations
with the popular LSI-derived representations generally shows comparable retrieval per-
formance. However in the presence of class-specific polysemous relationships PSI is the
clear winner. These results are very encouraging, because, although features extracted
by LSI are rich mathematical descriptors of the underlying semantics in the domain,
unlike PSI, they lack interpretability. We note that PSI’s reliance on class knowledge
inevitably restricts its range of applicability. Accordingly, future research will seek to
develop an unsupervised version of PSI.
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