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Abstract. Constraint programming is rapidly becoming the technology of choice
for modelling and solving complex combinatorial problems. However, users of
this technology need significant expertise in order to model their problems ap-
propriately. The lack of availability of such expertise is a significant bottleneck to
the broader uptake of constraint technology in the real world. We present a new
SAT-based version space algorithm for acquiring constraint satisfaction problems
from examples of solutions and non-solutions of a target problem. An important
advantage is the ease with which domain-specific knowledge can be exploited
using the new algorithm. Finally, we empirically demonstrate the algorithm and
the effect of exploiting domain-specific knowledge on improving the quality of
the acquired constraint network.

1 Introduction

Over the last thirty years, considerable progress has been made in the field of Con-
straint Programming (CP), providing a powerful paradigm for solving combinatorial
problems. Applications in many areas, such as resource allocation, scheduling, plan-
ning and design have been reported in the literature [16]. Informally, the basic idea
underlying constraint programming is to model a combinatorial problem as a constraint
network, i.e., using a set of variables, a set of domain values and a collection of con-
straints. Each constraint specifies a restriction on some set of variables. For example, a
constraint such as x1 ≤ x2 states that the value assigned to x1 must be less or equal
than the value assigned to x2. A solution of the constraint network is an assignment of
domain values to variables that satisfies every constraint in the network. The Constraint
Satisfaction Problem (CSP) is the problem of finding a solution for a given network.

However, the specification of constraint networks still remains limited to specialists
in the field. Actually, modelling a combinatorial problem in the constraints formalism
requires significant expertise in constraint programming. One of the reasons for this
bottleneck stems from the fact that, for any problem at hand, different models of this
problem are possible, and two distinct constraint networks that represent the same prob-
lem can critically differ on performance. An expert in constraint programming typically
knows how to decompose the problem into a set of constraints for which very efficient
propagation algorithms have been developed. Such a level of background knowledge
precludes novices from being able to use constraint networks on complex problems
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without the help of an expert. Consequently, this has a negative effect on the uptake of
constraint technology in the real world by non-experts.

To alleviate this issue, this paper envisions the possibility of acquiring a constraint
network from a set of examples and a library of constraints. The constraint acquisition
process is regarded as an interaction between a user and a learner. The user has a com-
binatorial problem in mind, but does not know how this problem can be modelled as
an efficient constraint network. Yet, the user has at her disposal a set of solutions (pos-
itive examples) and non-solutions (negative examples) for this problem. For its part,
the learner has at its disposal a library of constraints for which efficient propagation
algorithms are known. The goal for the learner is to induce a constraint network that
uses combinations of constraints defined from the library and that is consistent with the
solutions and non-solutions provided by the user.

The main contribution of this paper is a SAT-based algorithm, named CONACQ (for
CONstraint ACQuisition), that is capable of learning a constraint network from a set
of examples and a library of constraints. The algorithm is based on the paradigm of
version space learning [11]. In the context of constraint acquisition, a version space can
be regarded as the set of all constraint networks defined from the given library that are
consistent with the received examples. The key idea underlying the CONACQ algorithm
is to consider version-space learning as a satisfiability problem. Namely, any example
is encoded as a set of clauses using as atoms the constraint vocabulary defined from
the library, and any model of the resulting satisfiability problem captures an admissible
constraint network for the corresponding acquisition problem.

This approach has a number of distinct advantages. Firstly and most importantly,
the formulation is generic, so we can use any SAT solver as a basis for version space
learning. Secondly, we can exploit powerful SAT concepts such as unit propagation and
backbone detection [12] to improve learning rate. Thirdly, and finally, we can easily in-
corporate domain-specific knowledge in constraint programming to improve the quality
of the acquired network. Specifically, we develop two generic techniques for handling
redundant constraints in constraint acquisition. The first is based on the notion of redun-
dancy rules, which can deal with some, but not all, forms of redundancy. The second
technique, based on backbone detection, is far more powerful.

2 Preliminaries

A constraint network consists of a set of variables, a set of domain values and a set
of constraints. We assume that the set of variables and the set of domain values are
finite, pre-fixed and known to the learner. This vocabulary is, thus, part of the common
knowledge shared between the learner and the user. Furthermore, the learner has at
its disposal a constraint library from which it can build and compose constraints. The
problem is to find an appropriate combination of constraints that is consistent with the
examples provided by the user. Finally, for sake of clarity, we shall assume that every
constraint defined from the library is binary. This assumption greatly simplifies the
notation used in the paper. Yet, we claim that the results presented here can be easily
extended to constraints of higher arity.

More formally, the constraint vocabulary consists of a finite set of variables X and
a finite set of domain values D. We implicitly assume that every variable in X uses
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the same set D of domain values, but this condition can be relaxed in a straightforward
way. The cardinalities of X and D are denoted n and d, respectively.

A binary constraint is a tuple c = (var (c), rel(c)) where var (c) is a pair of vari-
ables in X and rel(c) is a binary relation defined on D. The sequence var (c) is called
the scope of c and the set rel(c) is called the relation of c. With a slight abuse of nota-
tion, we shall often use cij to refer to the constraint with relation c defined on the scope
(xi, xj). For example, ≤12 denotes the constraint specified on (x1, x2) with relation
“less than or equal to”. A binary constraint network is a set C of binary constraints.

A constraint library is a collection B of binary constraints. From a constraint pro-
gramming point of view, any library B is a set of constraints for which (efficient) prop-
agation algorithms are known. A constraint network C is said to be admissible for a
library B if for each constraint cij in C there exists a set of constraints {b1

ij , · · · , bk
ij} in

B such that cij = b1
ij ∩ · · · ∩ bk

ij . In other words, a constraint network is admissible for
some library if each constraint in the network is defined as the intersection of a set of
allowed constraints from the library.

An example is a map e that assigns to each variable x in X a domain value e(x) in
D. Equivalently, an example e can be regarded as a tuple in Dn. An example e satisfies
a binary constraint cij if the pair (e(xi), e(xj)) is an element of cij . An example e
satisfies a constraint network C if e satisfies every constraint in C. If e satisfies C then
e is called a solution of C; otherwise, e is called a non-solution of C. In the following,
sol(C) denotes the set of solutions of C.

Finally, a training set consists of a pair (E+, E−) of sets of examples. Elements
of E+ are called positive examples and elements of E− are called negative examples.
A constraint network C is said to be consistent with a training set (E+, E−) if every
example in E+ is a solution of C and every example in E− is a non-solution of C.

Definition 1 (Constraint Acquisition Problem). Given a constraint library B and a
training set (E+, E−), the Constraint Acquisition Problem is to find a constraint net-
work C admissible for the library B and consistent with the training set (E+, E−).

Example 1. Consider the vocabulary defined by the set X = {x1, x2, x3} and the set
D = {1, 2, 3, 4, 5}. In the following, the symbols � and ⊥ refer to the total relation
and the empty relation over D, respectively. Let B be the constraint library defined as
follows: B = {�12, ≤12, �=12, ≥12, �23, ≤23, �=23, ≥23}.

Note that the constraints =12, <12, >12, ⊥12 and =23, <23, >23, ⊥23 can be de-
rived from the intersection closure of B. Now, consider the two following networks
C1 = {≤12 ∩ ≥12, �23∩ ≤23 ∩ �=23} and C2 = {≤12 ∩ ≥12, ≤23 ∩ ≥23}.
Each network is admissible for B. Finally, consider the training set E formed by the
three examples e+

1 = ((x1, 2), (x2, 2), (x3, 5)), e−2 = ((x1, 1), (x2, 3), (x3, 3)), and
e−3 ((x1, 1), (x2, 1), (x3, 1)). The first example is positive and the last two are negative.
We can easily observe that C1 is consistent with E, while C2 is inconsistent with E.

The following lemma captures an important semantic property of constraint net-
works. It will be frequently used in the remaining sections.

Lemma 1. Let B be a constraint library, C be a constraint network admissible for B
and e be an example. Then e is a non-solution of C iff there exists a pair of constraints
bij and cij such that in bij ∈ B, cij ∈ C, cij ⊆ bij and e does not satisfy bij .
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Proof. (⇒) Let us consider that e is a non-solution of C. By definition, there exists a
constraint cij ∈ C such that e does not satisfy cij . It follows that the pair (e(xi), e(xj))
is not an element of cij . Furthermore, since C is admissible for B, there exists a set
{b1

ij , · · · , bk
ij} of constraints in B such that cij = b1

ij ∩ · · · ∩ bk
ij . Consequently, the

pair (e(xi), e(xj)) is not an element of b1
ij ∩ · · · ∩ bk

ij . It follows that (e(xi), e(xj)) is
not an element of bij , for some constraint bij in the set {b1

ij , · · · , bk
ij}. By construction,

cij ⊆ bij . Since e does not satisfy bij , the result follows.

(⇐) Now, let us assume that there exists a pair of constraints bij and cij such that in
bij ∈ B, cij ∈ C, cij ⊆ bij and e does not satisfy bij . Obviously, the pair (e(xi), e(xj))
is not an element of bij . Since cij ⊆ bij , it follows that (e(xi), e(xj)) is not an element
of cij . Therefore, e does not satisfy cij and hence, e is a non-solution of C. ��

3 The CONACQ Algorithm

In this section we present a SAT-based algorithm for acquiring constraint satisfaction
problems based on version spaces. Informally, the version space of a constraint acquisi-
tion problem is the set of all constraint networks that are admissible for the given library
and that are consistent with the given training set. In the SAT-based framework this ver-
sion space is encoded in a clausal theory, and each model of the theory is a candidate
constraint network.

Let B be a constraint library. An interpretation over B is a map I that assigns to
each constraint atom bij in B a value I(bij) in {0, 1}. A transformation is a map φ
that assigns to each interpretation I over B the corresponding constraint network φ(I)
defined according to the following condition:

cij ∈ φ(I) iff cij =
⋂

{bi′j′ ∈ B : i = i′, j = j′ and I(bi′j′ ) = 1}.

The transformation is not necessarily injective. However, it is surjective: for every
network C admissible for B there exists a corresponding interpretation I such that
φ(I) = C. Indeed, for each constraint cij in C, consider the set of all constraints
{b1

ij , · · · , bk
ij} in B such that cij = b1

ij ∩· · ·∩bk
ij . Set I(b1

ij) = · · · = I(bk
ij) = 1. Then

φ(I) = C.
A literal is either an atom bij in B, or its negation ¬bij . Notice that ¬bij is not

necessarily a constraint: it merely captures the absence of bij in the learned network.
A clause is a disjunction of literals, and a clausal theory is a conjunction of clauses.
An interpretation I is a model of a clausal theory K if K is true in I according to the
standard propositional semantics. The set of all models of K is denoted Models(K).

The SAT-based formulation of constraint acquisition is presented as Algorithm 1.
The algorithm starts from the empty theory (line 1) and iteratively builds a set of clauses
for each received example (lines 2-6). The resulting theory encodes all candidate net-
works for the constraint acquisition problem.

This result is formalised in the next theorem. Let B be a constraint library and
(E+, E−) be a training set. Then the version space of (E+, E−) with respect to B,
denoted VB(E+, E−), is the set of all constraint networks that are admissible for B and
that are consistent with (E+, E−).
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Algorithm 1. The CONACQ Algorithm

input : a training set (E+, E−) and a constraint library B
output : a set of clauses K

1 K ← ∅

2 foreach training example e do
3 κe ← {bij ∈ B : e does not satisfy bij}
4 if e ∈ E− then K ← K ∧ (

∨
bij∈κe

bij)

5 if e ∈ E+ then K ← K ∧
∧

bij∈κe
¬bij

6 if UnitPropagation(K) detects ⊥ then Return(“collapsing”)

Theorem 1 (Correctness). Let (E+, E−) be a training set and B be a library. Let K
be the clausal theory returned by CONACQ with B and (E+, E−) as input. Then

VB(E+, E−) = {φ(I) : I ∈ Models(K)}.

Proof. (⇒) Let C be a candidate network in VB(E+, E−). Since φ is surjective, there
exists an interpretation I such that φ(I) = C. Suppose that I is not a model of K. We
show that this leads to a contradiction. If I is not a model of K then there is at least
one example e in the training set such that I falsifies the set of clauses generated from
e. Since e is either positive or negative, two cases must be considered. First, suppose
that e ∈ E+. In this case, I(bij) = 1 for at least one atom bij in κe, the set of literals
encoding e. By construction of φ(I), there must exist a constraint cij in C such that cij

is contained in bij . By Lemma 1, e is a non-solution of C and hence, C cannot be a
member of VB(E+, E−). Now, suppose that e ∈ E−. By construction, I(bij) = 0 for
each bij ∈ κe. Therefore, there is no constraint cij ∈ C contained in some bij such that
bij rejects e. By contraposition of Lemma 1, e is a solution of C and hence, C cannot
be a member of VB(E+, E−).
(⇐) Let I be a model of K and C be φ(I). Assume that C is not in VB(E+, E−).
We show that this leads to a contradiction. Obviously, C must be inconsistent with at
least one example e in the training set. Again, two cases must be considered. Suppose
that e ∈ E+. Since e is a non-solution of C then, by Lemma 1, there exists a pair of
constraints bij ∈ B and cij ∈ C such that cij ⊆ bij and e does not satisfy bij . By
construction, I(bij) = 1. It follows that, I is not a model of

∧
bij∈κe

¬bij . Therefore,
I cannot be a model of K. Now, suppose that e ∈ E−. Since e is a solution of C then,
by contraposition of Lemma 1, there is no pair of constraints bij ∈ B and cij ∈ C such
that cij ⊆ bij and e does not satisfy bij . Therefore, I(bij) = 0 for each bij in B that
rejects e. It follows that I is not a model of

∨
bij∈κe

bij . Hence, I cannot be a model
of C. ��

The CONACQ algorithm provides an implicit representation of the version space of
the constraint acquisition problem. This representation allows the learner to perform
several useful operations in polynomial time. We conclude this section by examining
the complexity of these operations. In the following, we consider a library B containing
b constraints and a training set (E+, E−) containing m examples.
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A version space has collapsed if it is empty. In other words, there is no constraint
network C admissible for B such that C is consistent with the training set (E+, E−).

Proposition 1 (Collapse). The collapsing test takes O(bm) time.

Proof. Based on Theorem 1, we know that VB(E+, E−) is empty iff K is unsatisfiable.
The size of κe is upper bounded by b. Then, the size of K is bounded by mb. By con-
struction, K is a dual Horn formula where each clause contains at most one negative
literal. In this setting, unit propagation, which requires O(K) time, is enough to deter-
mine whether K is satisfiable or not [3]. Therefore, the collapsing test can be done in
O(bm) time. ��

The membership test involves checking whether or not a constraint network belongs
to the version space of the problem.

Proposition 2 (Membership). The membership test takes O(bm) time.

Proof. Let C be a constraint network and I an interpretation such that C = φ(I). Based
on Theorem 1, determining whether C belongs to VB(E+, E−) is equivalent to deter-
mining whether I is a model of K. Since the size of K is bounded by mb, the member-
ship test takes O(bm) time. ��

The update operation involves computing a new version space once a new example
e has been added to the training set.

Proposition 3 (Update). The update operation takes O(b) time.

Proof. Checking whether a binary constraint is satisfied or violated by an example e is
O(1). The number of such checks is bounded by b (line 3 of Algorithm 1). ��

Consider a pair of training sets (E+
1 , E−

1 ) and (E+
2 , E−

2 ), and their correspond-
ing version spaces VB(E+

1 , E−
1 ) and VB(E+

2 , E−
2 ). The intersection operation requires

computing the version space VB(E+
1 , E−

1 )∩VB(E+
2 , E−

2 ). In the following, we assume
that (E+

1 , E−
1 ) and (E+

2 , E−
2 ) contain m1 and m2 examples, respectively.

Proposition 4 (Intersection). The intersection operation takes O(b(m1 + m2)) time.

Proof. Let K1 and K2 be the representations of the version spaces VB(E+
1 , E−

1 ) and
VB(E+

2 , E−
2 ), respectively. In the SAT-based framework, the representation of the ver-

sion space VB(E+
1 , E−

1 ) ∩ VB(E+
2 , E−

2 ) is simply obtained by K1 ∧ K2. ��

Finally, given a pair of training sets (E+
1 , E−

1 ) and (E+
2 , E−

2 ), and their correspond-
ing version spaces VB(E+

1 , E−
1 ) and VB(E+

2 , E−
2 ), we may wish to determine whether

VB(E+
1 , E−

1 ) is a subset of (resp. equal to) VB(E+
2 , E−

2 ).

Proposition 5 (Subset and Equality). The subset and equality tests take O(b2m1m2)
time.
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Proof. Let K1 and K2 be the representations of the version spaces VB(E+
1 , E−

1 ) and
VB(E+

2 , E−
2 ), respectively. Based on Theorem 1, we know that determining whether

VB(E+
1 , E−

1 ) is a subset of VB(E+
2 , E−

2 ) is equivalent to deciding whether Models(K1)
is a subset of Models(K2). This is equivalent to deciding whether K1 entails K2. By
application of Lemma 5.6.1 from [9], the entailment problem of two Horn or dual Horn
formulas K1 and K2 can be decided in O(|K1||K2|) time. It follows that the subset
operation takes O(b2m1m2) time. For the equality operation, we simply need to check
whether K1 entails K2 and K2 entails K1. ��

4 Exploiting Domain-Specific Knowledge

In constraint programming, constraints can be interdependent. For example, two con-
straints such as ≥12 and ≥23 impose a restriction on the relation of any constraint de-
fined on the scope (x1, x3). This is a crucial difference with propositional logic where
atomic variables are pairwise independent. As a consequence of such interdependency,
some constraints in a network can be redundant. For example, the constraint ≥13 is
redundant with ≥12 and ≥23. An important difficulty for the learner is its ability to
“detect” redundant constraints. This problem is detailed in the following example.

Example 2. Consider a vocabulary formed by a set of variables {x1, x2, x3} and a set
of domain values D = {1, 2, 3, 4}. The learner has at its disposal the constraint library
B = {�12, ≤12, �=12, ≥12, �23, ≤23, �=23, ≥23, �13, ≤13, �=13, ≥13}. We suppose that
the target network is given by {≥12, ≥13, ≥23}. The training set is given in Table 1. In
the third column of the table, we present the growing clausal theory K obtained after
processing each example and after performing unit propagation.

After processing each example in the training set, the constraints ≥12 and ≥23 have
been found. Yet, the redundant constraint ≥13 has not. For the scope (x1, x3) the version
space contains four possible networks where c13 can alternatively be >13, ≥13, �=13 or
�13. In fact, the version space cannot converge to the target concept since it is im-
possible to find a set of negative examples which would force the learner to reduce its
version space. Indeed, in order to converge we would need a negative example e where
e(x1) < e(x3), e(x1) ≥ e(x2) and e(x2) ≥ e(x3). Due to the semantics of inequality
constraints, no such example exists. Consequently, the inability for the learner to detect
redundancy may hinder the converge process and hence, can overestimate the number
of candidate models in the version space.

As illustrated in the previous example, redundancy is a crucial notion that must be
carefully handled if we need to allow version space convergence, or at least if we want to

Table 1. A set of examples and the corresponding set of clauses K (unit propagated), illustrating
the effect of redundancy

x1 x2 x3 K
e+
1 4 3 1 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23)

e−
2 2 3 1 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23) ∧ (≥12)

e−
3 3 1 2 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23) ∧ (≥12) ∧ (≥23)
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have a more accurate idea of which parts of the target network are not precisely learned.
The notion of redundancy is formalised as follows. Let C be a constraint network and
cij a constraint in C. We say that cij is redundant in C if sol(C \ {cij}) = sol(C). In
other words, cij is redundant if the constraint network obtained by deleting cij from C
is equivalent to C.

4.1 Redundancy Rules

Any binary constraint bij can be seen as a first-order atom b(xi, xj), where b is a
predicate symbol and xi, xj are variables that take values in the domain D. For example,
the constraint ≤12 can be regarded as a first-order atom x1 ≤ x2. From this perspective,
a constraint network can be viewed as a conjunction of first-order binary atoms. In order
to tackle redundancy, we may introduce first-order rules that convey some knowledge
about dependencies between constraints. A redundancy rule is a Horn clause:

∀x1, x2, x3, b(x1, x2) ∧ b′(x2, x3) → b′′(x1, x3).

such that for any constraint network C for which a substitution θ maps b(x1, x2),
b′(x2, x3) and b′′(x1, x3) into in C, the constraint b′′θ(x1)θ(x3) is redundant in C.

As a form of background knowledge, the learner can use redundancy rules in its
acquisition process. Given a library of constraints B and a set R of redundancy rules,
the learner can start building each possible substitution on R. Namely, for each rule
b(x1, x2) ∧ b′(x2, x3) → b′′(x1, x3) and each substitution θ that maps b(x1, x2),
b′(x2, x3), and b′′(x1, x3) to constraints bij , b′jk and b′′ik in the library, a clause ¬bij ∨
¬b′jk ∨ b′′ik can be added to the clausal theory K.

Example 3. The Horn clause ∀x, y, z, (x ≥ y) ∧ (y ≥ z) → (x ≥ z) is a redundancy
rule since any constraint network in which we have two constraints ‘≥’ such that the
second argument of the first constraint is equal to the first argument of the second con-
straint implies the ‘≥’ constraint between the first argument of the first constraint and
the second argument of the second constraint.

We can apply the redundancy rule technique to Example 2. After performing unit
propagation on the clausal theory K obtained after processing the examples {e+

1 , e−2 , e−3 },
we know that ≥12 and ≥23 have to be set to 1. When instantiated on this constraint
network, the redundancy rule from Example 3 becomes ≥12 ∧ ≥23 → ≥13. Since all
literals of the left part of the rule are forced by K to be true, we can fix literal ≥13 to 1.

The tractability of CONACQ depends on the fact that the clausal theory K is a dual
Horn formula. While we are no longer left with such a formula once K is combined
with the set of redundancy rules R, it is nonetheless the case that satisfiability testing
for K∧R remains tractable: K∧R is satisfiable iff K is. The only effect that redundancy
rules have is to give an equivalent, but potentially smaller version space for the target
network.

4.2 Backbone Detection

While redundancy rules can handle a particular type of redundancy, there are cases
where applying these rules on the version space is not sufficient to find all redundancies.
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Specifically, redundancy rules are only able to discover implications of “conjunctions”
of constraints. However, more complex forms of redundancies can arise due to combi-
nations of “conjunctions” and “disjunctions” of constraints. This higher-order form of
redundancy is illustrated in the following example.

Example 4. Consider the example in Table 2 where the target network comprises the
set of constraints {=12, =13, =23} and all negative examples differ from the single pos-
itive example by at least two constraints. The version space in this example contains
4 possible constraints for each scope, due to the disjunction of possible reasons that
would classify the negative examples correctly. Without any further information, par-
ticularly negative examples which differ from the positive example by one constraint,
redundancy rules cannot restrict the version space any further.

Table 2. A set of examples and the corresponding set of clauses K (unit propagated), illustrating
the effect of higher-order redundancy

x1 x2 x3 K
e+
1 2 2 2 (¬ �=12) ∧ (¬ �=13) ∧ (¬ �=23)

e−
2 3 3 4 (¬ �=12) ∧ (¬ �=13) ∧ (¬ �=23) ∧ (≥13 ∨ ≥23)

e−
3 1 3 3 (¬ �=12) ∧ (¬ �=13) ∧ (¬ �=23) ∧ (≥13 ∨ ≥23) ∧ (≥12 ∨ ≥13)

In Example 4, there is a constraint that is implied by the set of negative exam-
ples but redundancy rules are not able to detect it. However, all the information nec-
essary to deduce this constraint is contained in the set of redundancy rules and K.
The reason for their inability to detect it is that the redundancy rules are in the form
of Horn clauses that are applied only when all literals in the left-hand side are true
(i.e., unit propagation is performed on these clauses). However, the powerful concept
of backbone of a propositional formula can be used here. Informally, a literal belongs
to the backbone of a formula if it belongs to all models of the formula [12]. Once
the literals in the backbone are detected, they can be exploited to update the version
space.

If an atom bij appears positively in all models of K ∧ R, then it belongs to its
backbone and we can deduce that cij ⊆ bij . Indeed, by construction of K ∧ R, the
constraint cij cannot reject all negative examples in E− and, at the same time, be more
general than bij . Thus, given a new negative example e in E−, we simply need to
build the corresponding clause κe, add it to K, and test if the addition of κe causes some
literal to enter the backbone of K∧R. The process above guarantees that all the possible
redundancies will be detected.

Example 5. We now apply this method to Example 4. To test if the literal ≥13 belongs
to the backbone, we solve R ∪ K ∪ {¬ ≥13}. If the redundancy rule ≥12 ∧ ≥23 → ≥13
belongs to R, we detect inconsistency. Therefore, ≥13 belongs to the backbone. The
version space can now be refined, by setting the literal ≥13 to 1, effectively removing
from the version space the constraint networks containing ≤13 or �13.
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5 Experiments

We have performed several experiments in order to validate the effectiveness of the
CONACQ algorithm and the various approaches to exploiting domain-specific knowl-
edge presented in Section 4. We implemented CONACQ using SAT4J.1 For each ex-
periment, the vocabulary contains 12 variables and 12 domain values per variable. The
target constraint networks are sets of binary constraints defined from the set of relations
{≤, �=, ≥}. The learner is not informed about the scope of the constraints, so the avail-
able library involves all 66 possible binary constraint scopes. The level of dependency
between constraints is controlled by introducing constraint “patterns” of various lengths
and type. Patterns are paths of the same constraint selected either from the set {≤, ≥}
(looser constraints) or {<, =, >} (tighter constraints). For example, a pattern of length
k based on {<, =, >} could be x1 > x2 > . . . > xk. Based on the parameter k and
the type of constraint, we examined 7 types of target networks. In the first, the vari-
ables were connected arbitrarily. In the others, we introduce a single pattern of length
n/3, n/2 or n, with constraints taken from either {≤, ≥} or {<, =, >}. The remaining
constraints in the problem were selected randomly.

We ran 100 experiments of each type and report average results in Table 3. The first
column specifies the length and type of allowed patterns. The three next columns report
the results obtained by the basic algorithm (CONACQ), the algorithm with redundancy
rules (CONACQ + rules), and the algorithm with redundancy rules and backbone de-
tection (CONACQ +rules + backbone). Each column is divided in two parts. The left
part is the number of models of the formula K. This number is obtained using the binary
decision diagram compilation tool CLab2 when |VB| is smaller than 104. An estimate,
exponential in the number of free literals in K, is presented otherwise. From Theorem 1,
this corresponds to the number of candidate networks encoded in the version space for
the acquired problem. The right part measures the average time needed to process an
example in seconds on a Pentium IV 1.8 GHz processor. Finally, the last column reports
the number of examples needed to obtain convergence of at least one of the algorithms.
The threshold on the number of possible examples is fixed to 1000. The training set
contains 10% of positive examples and 90% of negative examples. We chose such an
unbalanced proportion because positive examples are usually much less frequent than
negative ones in a constraint network. Negative examples were partial non-solutions to
the problem involving a subset of variables. The cardinality of this subset was selected
from a uniform distribution over the interval [2, 5].

Based on these results, we can make several important observations. Firstly, we
note that the rate of convergence improves if we exploit domain-specific knowledge.
In particular, the variant of CONACQ using redundancy rules and backbone detection
is able to eliminate all redundant networks in all experiments with patterns. In con-
trast, the performance of the first two algorithms decreases as the length of redundant
patterns increases. This is clearly noticeable, in the case of the basic algorithm, if one
compares the top-line of the table, where no redundant pattern was enforced, with the
last line in the table, where a pattern of length n was present, keeping the number of

1 Available from http://www.sat4j.org.
2 Available from http://www-2.cs.cmu.edu/˜runej/systems/clab10.html.
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Table 3. Comparison of the CONACQ variants (CSPs have 12 variables, 12 values, 18 constraints)

CONACQ CONACQ CONACQ

+rules +rules
Redundant Pattern +backbone

Length {constraints} |VB|(secs) |VB|(secs) |VB|(secs) #Exs

none 4.29 × 109 (0.11) 6.71 × 107 (0.32) 1.68 × 107 (2.67) 1000
n/3 {≤, ≥} 4.10 × 103 (0.11) 64 (0.31) 1 (2.61) 360
n/2 {≤, ≥} 1.72 × 1010 (0.11) 4.10 × 103 (0.32) 1 (2.57) 190
n {≤, ≥} 1.44 × 1017 (0.11) 2.62 × 105 (0.32) 1 (2.54) 90
n/3 {<, =, >} 2.68 × 108 (0.11) 1.02 × 103 (0.32) 1 (2.60) 280
n/2 {<, =, >} 7.38 × 1019 (0.11) 4.19 × 107 (0.32) 1 (2.58) 170
n {<, =, >} 2.08 × 1034 (0.11) 6.87 × 1010 (0.32) 1 (2.54) 70
n {<, =, >} 9.01 × 1015 (0.11) 2.04 × 104 (0.32) 1 (0.24) 1000

examples constant in both cases. When no redundant pattern was enforced, simply com-
bining redundancy rules with CONACQ is sufficient to detect much of the redundancy
that is completely discovered by backbone detection. Secondly, we observe that for
patterns involving tighter constraints (<, =, or >), significantly better improvements
are obtained as we employ increasingly powerful techniques for exploiting redundancy.
Thirdly, we observe that the learning time progressively increases with the sophisti-
cation of the method used. The basic CONACQ algorithm is about 3 times faster than
CONACQ+ rules and 25 times faster than CONACQ+rules+ backbone. Clearly, there
is a tradeoff to be considered between learning rate and learning time.

6 Related Work

Recently, researchers have become interested in techniques that can be used to acquire
constraint networks in situations where a precise statement of the constraints of the
problem is not available [4, 10, 14, 15]. The use of version space learning as a basis for
constraint acquisition has received most attention from the constraints community [1,
2, 13]. Version space learning [11] is a standard approach to concept learning. A variety
of representations for version spaces have been proposed in an effort to overcome the
worst-case exponential complexity of version space learning [5–8].

The approach we propose is quite novel with respect to the existing literature on
both constraint acquisition and version space learning. We formalise version space
learning as a satisfiability problem, which has the advantage of being able to exploit
advances in SAT solvers, backbone detection, and unit propagation, to dramatically en-
hance learning rate. However, it is incorporating domain-specific knowledge into the
acquisition process that gives the approach considerable power.

7 Conclusions

Users of constraint programming technology need significant expertise in order to model
their problems appropriately. In this paper we have proposed a SAT-based version space
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algorithm that is capable of learning a constraint network from a set of examples and
a library of constraints. This approach has a number of distinct advantages. Firstly,
the formulation is generic, so we can use any SAT solver as a basis for version space
learning. Secondly, we can exploit efficient SAT techniques such as unit propagation
and backbone detection to improve learning rate. Finally, we can easily incorporate
domain-specific knowledge into constraint programming to improve the quality of the
acquired network. Our empirical evaluation convincingly demonstrated the power of
exploiting domain-specific knowledge as part of the acquisition process.
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