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Abstract. This paper introduces a novel method for learning a wrapper for ex-
traction of text nodes from web pages based upon (k, l)-contextual tree lan-
guages. It also introduces a method to learn good values of k and l based on
a few positive and negative examples. Finally, it describes how the algorithm can
be integrated in a tool for information extraction.

1 Introduction

The World Wide Web is an indispensable source of information. Extracting its content
for further processing however, is difficult because it is formatted in HTML, which
is primarily focussed on presentation. A wrapper is a general name for a procedure
that extracts data (often from machine generated HTML-pages) based on the structure
of the documents, commonly without the use of linguistic knowledge. Various tools
are designed to facilitate wrapper building, but the process remains tedious. Hence the
efforts [5, 12, 13, 14, 17, 21] to create algorithms that learn wrappers from examples.

Several approaches [6, 7, 17] process documents in a string representation. Flatten-
ing the tree structure of the document to a string representation though can project sib-
ling nodes arbitrarily far from one another, and increases the complexity of the wrapper
to express relations between these nodes. In [13], documents are represented as (ranked)
binary trees; this improves locality and gives better results. An unranked tree represen-
tation is for the first time used in [12]. Combined with a number of ad-hoc design
decisions, it leads to superior results.

Note that most string-based approaches can extract a substring of a text node, while
most tree-based approaches aim to extract tree nodes (either a whole text node or a
subtree of the document). If a task needs sub-node extraction though, it is very natural
to learn first a wrapper to retrieve the containing text node, and focus then on learning
a (string based) wrapper that extracts the required information from this text.

The contributions of this paper are:

– The introduction of the notion of a (k,l)-contextual tree language for unranked trees
and an algorithm to infer such a language from positive examples (trees) only. A
major virtue is that this algorithm needs very few examples to learn. This algorithm
is then applied on marked trees to induce wrappers. We obtain better results than
[12] while avoiding its ad-hoc design decisions. All this is described in Section 2.
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– Whereas [12] needed cross validation to learn the parameters (i.e., a fully annotated
data set), we introduce a method to learn the parameters with only a few negative
examples (Section 3).

– In Section 4, we integrate our results into an interactive system that guides the user
in building a wrapper by posing equivalence queries. For example, if a user wants
to extract book prices from www.amazon.com, he clicks on an example page (in
the browser of the GUI-front end) on one or more prices. The algorithm then learns
a wrapper from these (positive only) examples and highlights all elements that are
extracted by this wrapper. When the current hypothesis is erroneous, the user can
either click on a highlighted item to indicate it as a false positive or click on an
item that is not yet highlighted to indicate that it is a false negative. The application
then adjusts the wrapper. This interaction continues (possibly with other example
pages), until the user is satisfied.

In Section 5 we round up with a discussion and a summary.

2 Induction from Positive Examples Only

In the language learning approach to information extraction setting, it is important that
we can start learning from positive examples only, because that is typically all we have
to begin with. Only after the learner has inferred a hypothesis, false positives give us
sensible negative examples, which we can then exploit to refine the hypothesis. Unfor-
tunately, the whole class of regular languages cannot be learned from positive examples
only [10] . Intuitively the reason is that there is no boundary to end the generalization,
and therefore the resulting language will accept everything. A common solution for this
negative result is to define a learnable subclass of the regular languages. Examples of
learnable subclasses of string languages are k-reversible languages [2], k-contextual
languages [16] and k-testable languages [9]. The latter two are often referred to as
k-local languages as they are equivalent [1]. Similar developments occurred for tree
languages. Algorithms for induction of string automata have been upgraded for tree
automata. Several works exist for ranked trees, e.g., [8, 11] (k-testable tree languages)
and [20] (probabilistic extensions). In ranked trees, the number of children of a node is
fixed in advance (determined by its label). HTML or XML documents are clearly not
ranked; hence an awkward encoding is needed in order to apply k-testable tree language
learning to Web information extraction [13].

Therefore, in this section, we introduce (k, l)-contextual tree languages, which are
unranked, and therefore directly applicable. But first some background is introduced.

2.1 Preliminary Definitions

We define the alphabet Σ as a finite set of symbols. The set of all finite trees with nodes
labeled by elements of Σ can be recursively defined as T (Σ) = {f(s) | f ∈ Σ, s ∈
T (Σ)∗}. We usually denote f(ε), where ε is the empty sequence, by f . A tree language is
any subset of T (Σ). The set of (k,l)-roots of a tree t = f(t1, . . . , tn) is the singleton {f}
if l=1; otherwise, it is the set of trees obtained by extending the rootf with (k, l−1)-roots
of k successive children of t (all children if k > n). Formally, we can define inductively1:

1 f(S) denotes {f(s) | s ∈ S}.
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R(k,l)(f(t1 . . . tn)) =
⎧
⎨

⎩

{f} if l=1
f(R(k,l−1)(t1) . . . R(k,l−1)(tn)) if l>1 and k>n
⋃n−k+1

p=1 f(R(k,l−1)(tp) . . . R(k,l−1)(tp+k−1)) otherwise
.

Finally, a (k, l)-fork of a tree t is a (k, l)-root of any subtree of t. The set of (k, l)-forks
of t is denoted by F(k,l)(t).

Example 1. Below we show graphically the (2, 3)-forks of a tree t. The first 6 of these
forks, are the (2, 3)-roots of t.
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2.2 (k,l)-Contextual Tree Languages

Let G be a set of trees over Σ, such that every tree in G has height at most l, and every
node of each tree in G has at most k children. The (k, l)-contextual tree language based
on G is defined as Lk,l(G) = {t ∈ T (Σ) | F(k,l)(t) ⊆ G}; i.e., a tree is part of the
language defined by a set of forks, if each of its (k, l)-forks is an element of that set.
Obviously, Lk,l(G1) ⊆ Lk,l(G2) iff G1 ⊆ G2. Let G be the set of forks of a given
set of examples. The (k, l)-contextual languages that accept these examples are those
based on a superset of G. Lk,l(G) is the least (most specific) language accepting the
examples.

Our inference algorithm avoids overgeneralisation by learning for a given k and l,
the most specific (k, l)-contextual language that accepts all the examples. It does so by
collecting all the (k, l)-forks of the examples. Checking for membership of a tree t in
Lk,l(G) is done by checking whether all (k, l)-forks of t are among the forks of G.

As is the case for local languages such as k-contextual languages [16, 1], k-testable
languages [9], and k-testable tree languages [8, 11], (k,l)-contextual tree languages
learned from a given training set are anti-monotone in the parameters; i.e., increasing
either k or l decreases the set of trees accepted by the learned language.

Our definition generalizes to unranked trees the notion of k-testable string language
“in the strict sense”. If we had wanted to generalize the more expressive notion of
k-testable, studied by McNaughton [15], we would have taken a set of sets of forks
for G (one for each example), and would have then accepted a tree if its forks are
a subset of those from one example. Our experiments (Section 2.5) indicate that k-
testable languages in the strict sense are sufficiently expressive, hence we explore only
the strict notion.

The local unranked tree automata of [12] correspond to the special case l = 2 in
our approach. The lack of expressiveness in vertical direction was remedied with some
extra preprocessing (see Section 2.4).
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2.3 Wrapper Induction

We follow [12, 13] for defining wrappers. A wrapper is a language that accepts only
trees that are correctly marked. Marking a node s consists of replacing it by a marked
equivalent sx. To decide whether to extract a node, the candidate node is marked. When
the wrapper accepts the resulting tree, the original text of the marked node is extracted.
The wrapper is learned from examples, as described above, where each example is a
HTML page with one target node marked. However, simply collecting all forks from a
few examples typically results in a too specific wrapper.

A first problem is that text nodes are from an (almost) infinite alphabet and can-
not be learned from a small number of examples. To solve this, we follow [12, 13]:
More generalization is obtained by replacing all text nodes by a special symbol (@)2.
Sometimes this leads to overgeneralisation as a text node close to the target is needed
to disambiguate between a positive and a negative example. A preprocessor finds such
a distinguishing context and text nodes containing it are not replaced.

looseness 2 A second problem is that a small number of examples does not cover
all the variance of possible forks in areas far away from the targets. One can argue that
the forks containing the marker provide the local context needed to decide whether a
node should be extracted or not, while the other forks describe the general structure of
the document. The latter merely serve to decide whether the document is in the class
of documents that contains relevant information. Learning that class typically requires
substantially more examples than learning the local context. However, in our setting, we
assume all documents are from the right class; hence there is no need to learn the doc-
ument class and we can ignore all forks that do not contain the marker during learning
and extraction.

Combining the preprocessing of text nodes with the filtering of forks, one obtains a
lot more generalization and wrappers can be learned from a small set of examples.

2.4 Expressiveness

To compare the expressiveness of our languages with that of [12], we first explain the
latter briefly. As already mentioned above, after preprocessing, each text node is either
a marker (x), a distinguished context (c) or a generalized text node (@). The method
basically infers a (k, 2)-contextual language. However, the tree representing an example
is subject to two other preprocessing steps.

The first transformation replaces every node f into a node f.x, if its subtree contains
the x-node. If the subtree does not contain the x-node but a c-node then it is replaced
by f.c. Hence, limited information is passed infinitely upwards, making the method
not purely local. However, the subclass remains inferable and the expressiveness is
enhanced.

The second transformation in [12], although part of the inference algorithm, can
also be explained as a preprocessing step. The automaton accepts everything below a
node that is not of the form f.x, i.e., all subtrees below such nodes can be removed and
only the path from the root to the x-node is left, together with the siblings of the nodes

2 When the node is extracted, the original test is returned.
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on that path; parts farther away from the marked node are ignored. This enhances the
generalizing power of the resulting language (and reduces the expressiveness).

Example 2. The left tree below shows a tree after the first transformation, while the tree
on the right shows the result of applying the second transformation to that same tree.

@ c @ @ c x @ @ @

C D.c C C D.c C.x C D C

B.c B.x B

A.x

x

C D.c C.x

B.c B.x B

A.x

Thanks to the first transformation, the algorithm of [12] (K) can express some global
vertical relations. While added to retain information in the vertical direction, it can also
describe the relation between a node and an ancestor that is an arbitrary number of levels
higher. Our algorithm (KL) is purely local and does not have this expressiveness. Our
experiments showed that local information in the vertical direction (the l parameter)
was sufficient for all data sets.

The second transformation in K makes it less expressive than KL as all information
about the siblings of the target node is removed while KL retains the neighborhood.
We encountered several data sets where that information was needed to disambiguate
positive and negative examples3.

2.5 Experiments

We evaluate our approach on the WIEN4 data sets. We use the F1 score as a fitness
criterium. Given E, the number of text nodes extracted from the test set, C, the number
of correctly extracted text nodes, and T, the total number of text nodes to be extracted
from the test set. Precision(P) is defined as P=C/E, recall(R) as R=C/T. The F1 score is
defined as the harmonic mean: F1=2PR/(P+R).

Our algorithm as well as the K algorithm [12] are expressive enough to handle all
tasks of the WIEN data sets, i.e., given enough examples, they reach a 100% F1 score. In
those tasks where sub-node extraction is required, both algorithms return the text node
containing the substring to be extracted. In comparison, in [17] it is stated that neither
STALKER nor WIEN [14] are expressive enough to handle all tasks. Also STALKER
with Aggressive Co-testing still fails on some tasks according to [18]. Note that on the
tasks where the other algorithms did not reach the maximal score, this was not due
to the fact that the sub-node extraction posed extra difficulties. [12] compares the K
algorithm also with HMM [7] and BWI [6]. They report an experiment where the K
algorithm reaches a 100% F1 score whereas the other ones have a significantly lower
score on some (difficult) WIEN data sets (the number of examples was limited in this

3 E.g., a table with bargains. The aim is to extract those with a picture of the item. The picture,
when present, occupies the first cell of the row, ( a sibling of the cell containing the target ) .

4 These are available at the RISE repository: http://www.isi.edu/info-agents/RISE/index.html.
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Table 1. Results for data sets with 5 examples

Data set ctx K KL
s1-1 89.1 100.0
s1-3 90.4 98.7
s1-4 78.8 100.0
s3-2 97.6 100.0
s3-3 98.2 100.0
s4-1 91.6 100.0
s5-2 93.8 98.9
s8-2 100.0 100.0
s8-3 100.0 100.0
s10-2 100.0 100.0
s10-4 100.0 100.0
s11-1 ✔ 100.0 100.0

Data set ctx K KL
s11-2 ✔ 100.0 100.0
s12-2 98.4 98.5
s13-2 100.0 100.0
s13-4 100.0 100.0
s14-3 99.5 100.0
s15-2 97.1 100.0
s19-4 100.0 100.0
s20-3 ✔ 98.5 100.0
s20-4 ✔ 97.5 100.0
s20-5 ✔ 97.5 100.0
s20-6 ✔ 98.5 100.0
s22-2 93.3 100.0

Data set ctx K KL
s23-1 97.6 100.0
s23-3 94.4 100.0
s25-2 97.2 100.0
s29-1 96.6 96.6
s29-2 100.0 87.8
s30-2 96.0 100.0

bigbook-2 94.3 100.0
bigbook-3 88.0 100.0

okra-1 ✔ 100.0 100.0
okra-2 ✔ 99.3 100.0
okra-3 ✔ 99.1 100.0
okra-4 ✔ 99.1 100.0

experiment). This is a strong indication that our method is more expressive than previ-
ous methods. Only the K algorithm has a comparable expressivity, however it contains
a number of ad-hoc design decisions.

A second experiment compares these both algorithms in their ability to learn from a
small set of positive examples. Each experiment randomly selects 5 examples (each one
target in a document) in a data set and compares the F1 score of both algorithms (for
optimal parameter setting) with the whole data set as test set. This experiment is not
intended to measure the number of examples needed by each algorithm but to measure
which one learns best from a given sample of (incomplete) data. We use a well-defined
subset of 36 extraction tasks from the available WIEN data tasks, namely those that
extract a complete text node and for which the information on the nodes to be extracted
is available in the WIEN data. Tasks aiming at the extraction of a n-tuple are split in n
extraction tasks. We refer to them with the name of the original data set and the index of
the field in the tuple. Table 1 shows for each data set the mean over 5 experiments. The
variance over the different experiments was low. In most cases when a mean does not
reach 100%, all the experiments do not reach 100%. The column ctx indicates whether
both algorithms used a (same) distinguishing context. One can observe that our KL
algorithm gives a better F1 score for 24 tasks out of 36 and a worse one for only 1 data
set. This is evidence that it learns better from a small set of positive examples.

3 Learning the Parameters

As shown in Section 2.5, our (k, l)-contextual tree language improves upon the local
unranked tree automata of [12] by being able to learn from fewer examples. However,
a problem shared with [12] is that the method needs parameter tuning for each task.
Selecting the optimal parameters requires to run the program on a set of completely
annotated documents to obtain precision and recall. Hence parameter selection is in
fact based on a large set of positive and negative examples.

Here, we describe how to learn parameters based on a small set of negative exam-
ples. In addition, it is indicated when (k, l)-contextual tree languages are not expressive
enough to reach a 100% F1-score for the extraction task at hand.
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3.1 Algorithm

Order relations. We can distinguish two order relations on languages. Firstly, a partial
order ≥ defined as L1 ≥ L2 ⇔ L2 ⊆ L1 which is anti-monotonic in the parameters.
Secondly, let S be a finite set of trees and #acc(S, L) the number of trees from S that
is accepted by the language L (the count). Then we define the total order ≥#

S as L1 ≥#
S

L2 ⇔ #acc(S, L1) ≥ #acc(S, L2) 5. Note that ∀S | L1 ≥ L2 ⇒ L1 ≥#
S L2, hence

≥#
S is also anti-monotonic in the parameters, i.e., the count decreases with increasing

parameter values.

Solutions. A solution is a (k, l)-contextual language that is consistent with the ex-
amples. We define a solution L1 to be better than L2 when it extracts more solutions
from the documents used to learn the wrapper; more formally, when #acc(S, L1) ≥
#acc(S, L2) where S has a tree for each candidate node (with the candidate marked
cnfr. Section 2.3). Hence the best solution is the solution that is maximal in the or-
der ≥#

S .

Heuristic. In what follows, we denote with [k, l] the (k, l)-contextual language learned
from the given examples. Due to the anti-monotonicity, we have that #acc(S, [k, l]) ≤
#acc(S, [k −1, l]) and #acc(S, [k, l]) ≤ #acc(S, [k, l −1]), hence #acc(S, [k −1, l])
and #acc(S, [k − 1, l]) are upper bounds on the value of #acc(S, [k, l]). The algorithm
uses them to estimate the value of #acc(S, [k, l]) and, at each step, computes the count
of the language with the best estimate. The search stops when the best estimate cannot
improve upon the best current solution.

Initialisation. All (k, 1)-contextual languages extract all single node forks from the
examples, hence are overly general and of no interest. Therefore, the search starts from
the (1, 2)-contextual language as it has the largest count.

Algorithm. To reduce the space requirements, our algorithm maintains for a given l-
value the count of at most one (k, l)-contextual language. If the (k, l)-contextual lan-
guage is a solution, then the (k + 1, l)-contextual language is of no interest as it has a
lower count; if it is inconsistent, then its count is discarded as soon as the count of the
(k + 1, l)-contextual language is computed. These counts are maintained in a front (of
the search). For each l-value, the front maintains the k-value (F.k[l]), the count (F.c[l])
and whether it is a solution (F.sol[l]) (see the right of Figure1). In each step, the algo-
rithm selects the minimal value l such that the language [F.k[l], l]) is most promising
for exploration (the function BestRefinement): [F.k[l], l] is not a solution and the esti-
mation of its refinement has the highest bounds on its count. For k > 1, the refinement
is the language [F.k[l] + 1, l], however for k = 1, also [1, l + 1] is a refinement.

Example 3. Given the data in Figure 1, the languages [1, 5], [4, 3] and [2, 5] are can-
didates for refinement. Although [4, 3] has the highest count, its refinement [5, 3] has
a count bounded by 33 while both refinements of [1, 5] have a count bounded by 48,
hence the latter is selected for refinement.

5 A total order over equivalence classes with the same count.
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1 2 3 4 5 k

2 33
3 52
4 27
5 48
l

k c sol

2 5 33 No
3 4 52 No
4 3 27 Yes
5 1 48 No
l

Fig. 1. Parameter Space and Data Representation

A final point to remark is that it is useless to consider a language [k, l] with k larger
than MaxK(P, N, l), the maximum branching factor for the forks of a given depth l
(it depends on l because only the forks containing the target are considered). Indeed, an
increase of k will not affect the number of extractions. The algorithm below achieves
this by setting the k-value at level l to ∞ and the count to 0 when refining it. When this
happens for all l values, then it means that no wrapper based on (k, l)-contextual tree
languages is expressive enough to reach a 100% F1-score. Note that there is always a
solution when all examples come from a single document. The final set of forks then
becomes ultimately the set of marked versions of the whole document.

Algorithm 1. Learning the Parameters

Input: P and N , The sets of positive and negative examples.
Output: The parameters k and l of the wrapper.
1: calc(P ,N , 1, 2) // initialisation
2: bestL = 2
3: while not F.sol[bestL] do
4: if F.k[bestL]=1 then
5: calc(P ,N , 1, bestL+1)
6: end if
7: calc(P ,N , F.k[bestL]+1, bestL)
8: bestL = BestRefinement(F );
9: end while

10: return F.k[bestL] and bestL

Function: calc(P ,N , k, l)
1: if k > maxK(P ,N , l) then
2: F.k[l]=∞
3: F.c[l]=0
4: else
5: F.k[l]=k;
6: W = learnWrapper(P , k, l)
7: F.sol[l]=W rejects all N
8: F.c = cnt(extractions(W ,P ,N ))
9: end if

The algorithm is sketched in Algorithm 1. F is the array representing the front
as shown in Fig. 1. For a given l value, the values F.k[l], F.c[l], and F.sol[l] give
respectively the k-value, the count and whether [k, l] is a solution. It is initialized for
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l = 2 with k-value 1. The function BestRefinement(F ) returns the l-value of the
best candidate for refinement (as described above) if it exists, otherwise it either returns
the l-value of the solution or reports failure. The function calc(P, N, k, l) updates F [l]
with the appropriate values. Note that two refinements are computed when the selected
best candidate has a k-value of 1.

3.2 Learning with Context

We define a new preprocessing step to identify a distinguishing context, to replace the
ad hoc procedure in [12, 13] that returns zero or one context string. For each positive
example we collect the set of text nodes that occur in the marked (k, l)-forks for that
example. We define the context as the set of text nodes that is the common subset of
all these sets. This way text nodes are only generalized when there is a positive ex-
ample for which they do not occur in its parameterized neighborhood. This procedure
guarantees that (given sufficient examples) all the strings in the resulting set are context
for the target node. It is possible though that some discriminative context string is not
found (for example the target is a node with as context either c1 or c2). We haven’t yet
encountered the need for a more elaborate procedure. Note that the count of a wrapper
decreases with increasing context and that, given this procedure, the context increases
with an increase in k or l, hence the anti-monotonicity property is still valid and our
algorithm can easily be extended to learn a wrapper with context.

Not all data sets need a context. In principle, one could learn the wrapper with
context and the wrapper without context independently of each other. However, one
can easily integrate both in one algorithm that maintains two fronts and selects the most
promising point of both for refinement. Note that, for a given point (k, l), the count of
the wrapper with context is bounded by the count of the wrapper without context; i.e.,
the latter value can be used as an extra bound on the count of the former (hence selection
is such that the former will only be evaluated when that bound is already known).

4 Induction with Equivalence Queries

Arbitrary sets of positive and negative examples contain often redundant information. It
is more efficient to use queries. The system will ask itself the information that it needs
to improve its hypothesis. In this section we present a system based on the algorithms
from previous section, that uses equivalence queries[3]. The system allows the user to
inspect its hypothesis by checking the extraction results (possibly for different pages).
When detecting an error, the user signals it to the system as a counterexample (a false
positive or a false negative), so that it can update its hypothesis.

In Section 4.1 we indicate how to adapt the algorithm of previous section for an
efficient interactive use. In Section 4.2 we discuss some details of the implementation
of our system and finally in Section 4.3 we give an evaluation of its usability.

4.1 Interactive Algorithm

After each interaction the system updates its hypothesis. This is done by finding the
≥#

S -most general language that is consistent with the current set of examples. For
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this update step we can use the algorithm from Section 3. However, an incremen-
tal algorithm is feasible. This would certainly improve the timings in Table 2 (see
Section 4.3).

Adding a positive example (a false negative) to the set of examples increases the
set of forks, hence the counts of all wrappers. However, a (k, l)-wrapper that covers
negative examples still does so and cannot become a solution. It means that the search
of a solution can start from the current front. The initialization of the new search for
parameters consists of updating the count fields (F.c) in the front.

Adding a negative example (a false positive) does not affect the set of forks. How-
ever the solution is invalid as it covers the new negative example. After updating the
(true) solution fields (F.sol)6, the search can resume from the current front.

In short, the algorithm from Section 3 can be used. When a new example is received,
the values in the front are updated and the search resumes.

4.2 Implementation

Representing the wrappers as sets of forks is straightforward, and works fine most of
the time. For some tasks (requiring large k and l-values, and with pages with a large
branching factor), the time for learning and extraction becomes noticeable and becomes
an annoyance in an interactive application. We developed an implementation that repre-
sents the wrappers by unranked tree automata based on a technique described in [19].
This substantially reduces the memory consumption and the execution time without
affecting the language accepted by the wrapper.

We added a graphical user interface to our application, which is basically a HTML-
compliant browser, that allows the user to right-click on an element of the page to
add an extra example. The system colors the background of all elements that are ex-
tracted by its hypothesis. A click on a colored element is interpreted as a false pos-
itive, a click on a plain element is interpreted as a false negative. This way the user
is restricted to give only counterexamples to the equivalence query posed by the
system.

Table 2. Number of interactions needed to learn the wrappers

Data set P/N ms
s1-1 1/1 87
s1-3 4/1 915
s1-4 1/0 27
s3-2 1/1 56
s3-3 1/1 127
s4-1 1/0 10
s5-2 2/1 230
s8-2 1/1 38
s8-3 1/2 181

Data set P/N ms
s10-2 1/1 33
s10-4 1/1 555
s11-1 1/2 885
s11-2 1/2 766
s12-2 1/2 108
s13-2 1/2 45
s13-4 1/1 584
s14-3 1/0 26
s15-2 1/0 18

Data set P/N ms
s19-4 1/1 53
s20-3 1/0 35
s20-4 1/1 1364
s20-5 1/1 1568
s20-6 1/1 1472
s22-2 2/1 200
s23-1 1/2 242
s23-3 1/1 38
s25-2 1/1 25

Data set P/N ms
s29-1 3/2 2446
s29-2 4/2 5628
s30-2 2/1 46

bigbook-2 1/2 2013
bigbook-3 1/1 723

okra-1 1/2 123
okra-2 1/1 684
okra-3 1/2 235
okra-4 1/1 536

6 When the example is from a new document, also the counts are updated.
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4.3 Evaluation

To evaluate our system, we use the same tasks as in the second experiment of Sec-
tion 2.5. Each task is learned until a 100% F1-score is obtained. In Table 2 we show
the number of interactions that are needed to learn the wrapper. The first column con-
tains the data set, the second indicates the numbers of positive and negative examples7

needed, and the last column indicates the total time needed by all the learning steps
in Algorithm 1. The number of examples needed (P+N) is in the same range as those
reported in [18] forAggressive Co-Testing for tasks where the latter reaches 100% F1-
score. The system is highly responsive and suited for interactive use.

5 Conclusion

We have introduced a new subclass of the regular unranked tree languages, called (k, l)-
contextual tree languages, that is learnable from positive examples only. We applied this
class of languages to the problem of wrapper induction by representing a wrapper as
a language of marked trees. Experiments on generally used data sets show the expres-
siveness of this wrapper representation to be superior over other approaches. We made
an in-depth comparison with a wrapper inference algorithm based on Local Unranked
Tree automata [12], which corresponds to (k, 2)-contextual tree languages; they lack
expressivity and their authors tweak the representation of the documents by annotat-
ing the path from the root to the target node. An experiment learning wrappers from a
small set of positive examples shows that our pure local languages usually yield a better
wrapper than theirs.

Both our new algorithm as [12] need to tune parameters for each task. In [12] this
is solved by evaluating wrappers on a sufficiently large set of completely annotated
documents (representing positive and negative examples) to find the optimal param-
eter setting for a given extraction task. We developed a technique that learns a good
parameter setting from a small set of positive and negative examples.

Another limitation of [12] was the need for an ad-hoc preprocessing step to identify
a so called distinguishing context that in some applications is needed to disambiguate
positive from negative examples. We developed a technique that preserves text nodes
close to the target node when they occur in all examples.

We integrated the algorithm in an interactive system that allows a user to build a
wrapper by selecting an initial positive example, and possibly a small number of false
positives or false negatives, in sample documents. Experiments show that the resulting
system is indeed able to learn a wrapper from a few positive and negative examples
for a large number of extraction tasks. Interestingly, the system indicates failure when
the extraction task is not expressible as a (k, l)-contextual tree language. In this case,
one could switch to more expressive languages, e.g., the tRPNI algorithm [4] that needs
a set of completely annotated documents (so far we have not met an existing data set
requiring this).

7 P/N = 1/0 means that the initial (1,2)-wrapper given one positive example is a solution.
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