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Abstract. Estimating a non-uniformly sampled function from a set of
learning points is a classical regression problem. Kernel methods have been
widely used in this context, but every problem leads to two major tasks:
optimizing the kernel and setting the fitness-regularization compromise.
This article presents a new method to estimate a function from noisy
learning points in the context of RKHS (Reproducing Kernel
Hilbert Space). We introduce the Kernel Basis Pursuit algorithm, which
enables us to build a ¢;-regularized-multiple-kernel estimator. The general
idea is to decompose the function to learn on a sparse-optimal set of span-
ning functions. Our implementation relies on the Least Absolute Shrinkage
and Selection Operator (LASSO) formulation and on the Least Angle Re-
gression (LARS) solver. The computation of the full regularization path,
through the LARS, will enable us to propose new adaptive criteria to find
an optimal fitness-regularization compromise. Finally, we aim at proposing
a fast parameter-free method to estimate non-uniform-sampled functions.

Keywords: Regression, Multiple Kernels, LASSO, Parameter Free.

1 Introduction

The context of our work is the following: we wish to estimate the functional de-
pendency between an input x and an output y of a system given a set of examples
{(xi,9:),2; € RYy; € Ryi = 1...n} which have been drawn i.i.d from an un-
known probability distribution P(X,Y"). Thus, our aim is to recover the function
f belonging to a hypothesis space H which minimizes the following risk:

R[f] =E{(f(X) - Y)*} (1)

but as P(X,Y) is unknown, we have to look for the function f which minimizes
the empirical risk:
1 n )
Remplf] = n Z(f(xi) = Yi) (2)
=1
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Depending on H, this problem can be ill-posed and a classical way to turn it into a
well-posed one is to use regularization theory [IL2]. In this framework, the solution
of the problem is the function f € H that minimizes the regularized empirical risk:

n

Rocglf) = - 3201~ F(0)? +A2(1) (3)

i=1

where {2 is a functional which measures the smoothness of f and \ a regulariza-
tion parameter [3]. Under general conditions on H (Reproducing Kernel Hilbert
Space) [], the solution of this minimization problem is of the form:

flz) = Z@K (i, ) (4)

where K is the reproducing kernel of H.

The objective of the Kernel Basis Pursuit (KBP) is two-fold: to propose a
method to build a sparse multi-kernel-based solution for this regression problem
and to introduce new solutions for the bias-variance compromise problem. The
multiple kernel has two advantages: it allows us to build adapted solutions for
multiscale problems and it leads to an easier setting of the kernel hyperparame-
ters. The multiple kernel can be seen as a dictionary of spanning functions D and
the KBP solution will be a sparse decomposition of the function to be estimated
based on this family of functions. The question of sparsity is addressed by using
the Least Absolute Shrinkage and Selection Operator (LASSO) formulation [5],
namely using 2 = || 3|1 as a regularization term in equation (B)). Using the Step-
wise Least Angle Regression (LARS)[6] as a solver of optimization problem (3
enables us to compute the full set of regression solutions with varying A in equa-
tion (B]). This set of optimal solution is the so-called regularization path [7]. We
use this property to introduce some heuristics which set the bias-variance com-
promise dynamically. Combining a forward-iterative solver (LARS) with efficient
early-stopping heuristics make the KBP both sparse and fast.

The paper is organized as follows: in section 2l we will compare two common
strategies to face the problem of building a sparse regression function f: the
Matching Pursuit and the Basis Pursuit. We will explain the building and the
use of the multiple kernels, combined with the LARS in section[Bl Section[d]deals
with the setting of the bias-variance compromise and the kernel parameters. Our
results on synthetic and real data are presented in section Bl Section [ gives our
conclusions and perspectives on this work.

2 Basis vs Matching Pursuit

The question of the sparsity of the solution f can be addressed in two different
ways. The first approach is based on stepwise method consisting in adding func-
tions from a dictionary whereas the second one is to use a regularization term
in equation (B)) that imposes sparsity of 3.
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Mallat and Zhang introduced the Matching Pursuit algorithm [8]: they pro-
posed to construct a regression function f as a linear combination of elementary
functions g; picked from a finite redundant dictionary D = {gx }. This algorithm
is iterative and one new function g; is introduced at each step, associated with a
weight §;. At step k, we get the following approximation of f: f (k) = Zle Bigi-
Given R the residue generated by f (%) the function gj41 and its associated
weight +1) are selected according to:

k
(9k+17ﬁ(k+1)) = argmingieD,BeRHR(k) - Zﬁ"ginz (5)
i=1

The improvements described by Pati et al. (Orthogonal Matching Pursuit al-
gorithm) [9] keep the same framework, but optimize all the weights 3; at each
step. A third algorithm called pre-fitting [I0] enables us to choose (gx 1, 3<+1))
according to R#+1)_ All those methods are iterative and greedy. The different
variations improve the weights or the choice of the function gr41 but the main
characteristic remains unchanged. Matching Pursuit does not allow to get rid of
a previously selected function gi, which means that its solution is sub-optimal.

The Basis Pursuit approach proposed by Chen et al. [11] is different: they con-
sider the whole dictionary of functions and look for the best linear solution to esti-
mate f, namely, the solution which minimizes the regularized empirical risk. Using
2 = ||B||1 leads to the LASSO formulation. Such a formulation requires costly and
complex linear programming [12] or modified EM implementation [I3] to be solved.
Finally it enables them to find an exact solution to the regularized learning problem.

The Stepwise Least Angle Regression (LARS) offers new opportunities, by
combining an iterative and efficient approach with the exact solution of the
LASSO. The fact that the LARS begins with an empty set of variables, combined
with the sparsity of the solution explains the efficiency of such method. The
ability of deleting dynamically useless variables enables the method to converge
to the exact solution of the LASSO problem.

3 Learning with Multiple Kernels

3.1 LARS
T
1
We note the matrix of the learning points: X = | ... | € R®*? _ Each column i
T
‘Tn
of the matrix X is a variable denoted by X; and each of them can be considered
as a single source of information. The LARS [6] is a stepwise iterative algorithm
which provides an exact solution to the LASSO (equation @) with 2 = [|5]]1).

LASSO can also be written as:

ming %?:1(% —a}p)?
Zi:l W1| <t

where t is the regularization parameter.

(6)
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When the variables X; are normalized, LARS turns this learning problem into
a variable selection problem. We note A the set of indexes of the active variables
and X 4 the learning set reduced to the variables that are in A. At each step
k, given the residue R*%) = y — f(k), the LARS selects the variable which is
most correlated with R*) and add its index to A. The ability of dynamically
suppressing a source of information which becomes useless enables the algorithm
to fit the LASSO solution. f(k) belongs to the space spanned by X 4, the 3(F)
are computed to minimize R**T1 under the constraints that each variable of
X 4 is equi-correlated with Rt This leads to the property that each f(k)
corresponds to an optimal solution of (@) for a given value of ¢: LARS computes
the whole regularization path.

Solving the LASSO is really fast with this method, due to the fact that it is
both forward and sparse. The first steps are not expensive, because of the small
size of A, then it becomes more and more time-consuming with iterations. But
the sparsity of ¢; regularization limits the number of required iterations. LARS
begins with an empty active set whereas other backward methods [13,[12] begin
with all # being non-zero and require to solve high dimensional linear system to
set irrelevant coefficients to zero. Given the fact that only one point is added (or
removed) during an iteration, it is possible to update the solution at each step
instead of fully computing it. This leads to a simple-LARS algorithm, similar to
the simple-SVM formulation [I4], which also increases the speed of the method.

3.2 Building a Multiple Kernel Regression Function

Vincent and Bengio [I0] proposed to treat the kernel K exactly in the same way
as the matrix of the learning points X. Each column of K is then considered
as a source of information that can be added to the active set to build a linear
estimation of f: f(z) = Y7, BiK(x;,x). This function f is [-linear in the
Reproducing Kernel Hilbert Space (RKHS) H spanned by K, and non-linear in
the original data space.

We propose here a simple extension of this framework to the multiple kernel
setting: it consists in building a set of kernel {K;};=1, . n, which respectively
spans the spaces H;. Each source of information K;(x;,) is characterized by a
point z; of the learning set and a kernel parameter i. Hence, the multiple kernel
K can be written as:

K=[K..K..Ky] K&R"™, withs=nN\. (7)

Assuming that each column of K is normalized, the LARS will pick automat-
ically the most relevant K;(z;,-) among the whole set of sources of information.

The solution f is a weighted sum of Ki(z;,):

f(l‘):ZZﬁwK@(l‘],x) ,f€H1++HN (8)

i=1 j=1
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The Kernel Basis Pursuit algorithm consists in solving the following problem:

minﬁ ”y*Kﬂ”2 (9)
> 1Bl <t

It is important to note that no assumption is made on the kernels K; which
can be non-positive. K can associate kernels of the same type (e.g. Gaussian)
with different parameter values as well as different types of kernels (e.g. Gaussian
and polynomial). The resulting matrix K is neither positive definite nor square.

4 Setting of Regularization and Kernel Parameters

The optimization problem (@) requires the setting of several hyperparameters:
the bias-variance compromise t as well as the N kernel hyperparameters. Consid-
ering that each kernel has a single parameter, this would lead to N+1 parameters
to select. Thus, the model selection problem is difficult. It can be solved by cross-
validation but it is very expensive in time-computation. In the following section,
we propose some strategies to tackle this problem.

4.1 Optimization of Regularization Parameter

Finding a good setting for ¢ in equation (@) is very important: when ¢ becomes
too large, the LARS becomes equivalent to Ordinary Least Square (OLS) and it
requires the resolution of linear system of size s x s. Early stopping enable us to
decrease the time computation (which is linked to the sparsity of the solution)
as well as to improve the generalization of the learning (by regularizing).

One of the most interesting property of the LARS is the fact that it computes
the whole regularization path (section BI]). The LARS enables us to compute
a set of optimal solutions corresponding to different values of ¢, with only one
learning stage. We are going to take advantage of this property to dynamically
select the optimal ¢.

Different compromise parameters. We look for different expressions of the
regularization parameter t. The aim is to find the most meaningful one, namely
the easiest way to set this parameter.

— The original formulation of the LARS relies on the compromise parameter ¢
which is a bound on the sum of the absolute values of the 3 coefficients. ¢ is
difficult to set because it is somewhat meaningless.

— It is possible to apply Ljung criterion [I5] on the autocorrelation of the
residue. The parameter is then a threshold which decides when the residue
can be considered as white noise.

— Another solution consists in the study of the evolution of a loss function
(yi, f(xl)) with regards to the step j. The criterion is a bound on the vari-
ation of this cost.



Kernel Basis Pursuit 151

— v-KBP. It is possible to define a criterion on the size of A, namely on the
number of support vectors or on the rate of support vectors among the
learning set. It is important to note that v is then a threshold, whereas in
the »-SVM method where v can be seen as an upper bound on the rate of
support vectors [16].

However, all these methods require the a priori setting of a parameter which
is usually estimated by cross-validation.

Trap source. We propose a novel method for dynamically selecting the regu-
larization parameter based on a trap parameter. The idea is to introduce one or
many sources of information that we do not want to use. When the most corre-
lated source with the residue belongs to the trap set, the learning procedure is
stopped. We use two heuristics to build the trap sources:

— KBP-0,: we build a Gaussian kernel K, (z;,z;) = exp (, Hfrlzafg’a” ) and we
add it to the information sources. o is a very small bandwidth.

— KBP-RV: we add iid Gaussian random variables among the sources of infor-
mation. This heuristic has already been used for variable selection [17].

The use of a trap scale is closely linked to the way that LARS selects the
sources of information (section BI]). We illustrate the behavior of the trap scale
during the learning of a toy function: cos(exp(wz)) (figure[L(c)). The correlation
with the residue is an energetic criterion, that is why the first selected vari-
ables explain the low frequency regions of the cos(exp(wz)) function. The se-
lected sources of information belong to higher and higher scales with iterations
(figure [[(d)). If we further assume that y contains white noise, then there is no
correlation between noises occurring at two different instants: the noise is a lo-
cal phenomenon. As a consequence, the sources of information that explain the
noise will belong to narrow bandwidth Gaussian kernel K, and will be selected
at the end of the learning procedure. Moreover, the selection of a source from
K, means that there are no more correlated sources of information in other K,
namely the residue is only composed of components correlated with noise.

The use of Gaussian random variables as a trap scale is more intuitive: it
supposes that when a random variable is selected as the most correlated source
with the residue, it remains no more interesting information in the residue. Figure
illustrates the evolution of the residue with iterations, the 3"¢ picture shows
the residue when a random variable is selected.

4.2 Optimizing Kernel Parameters

In this section, we propose a new method to set the kernel parameters of the
KBP in the Gaussian case, without using cross-validation. We aim at finding a
key parameter o representing the smallest bandwidth which can be useful for a
given problem. In this case: K,, ~ I, and f will interpolate y and overfit. Then,
we propose to build a series of larger and larger Gaussian parameters from this
key scale to improve the generalization of the learning.
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ok is obtained according to the following steps: a one nearest neighbor is
performed on the training data. Then, we focus on the shortest distances between
neighbors. The key distance Dj, is the distance between z; and x;, the two

nearest points in the input space. The corresponding key Gaussian parameter
o, 1s defined so that:

D2
Ko, (z:, ;) =exp (— ’“2) =0.1 (10)
20},
that is to say, the bandwidth oy is designed so that a learning point in high
density regions has little influence on its neighbors. For more robustness, it
is recommended to use an improved definition of Djy. Given S the set of the
one-nearest-neighbor distances. We define Dy as the mean distance of the 0.01
quantile of S.

Then, a series of bandwidth is build as follow (figure |1(a)):
0 = {Uk,gkp, Jkp270kp370kp4aO—kp530—kp6} with: p> 1 (11)

A small value of p provides more accuracy for the design of the sources of in-
formation, when p becomes close to 1, the family becomes exhaustive. However,
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Blocks Doppler

HeaviSine

Fig. 2. Toy signals and learning data

a small value of p leads to a more redundant family of functions, which penal-
izes the sparsity of the solution. In fact, when two sources of information are
correlated, they are both almost equi-correlated to the residue and the LARS
often selects both sources of information in two successive iterations. The 2"¢
line of table [l shows that the number of support vectors first decreases with
p due to this phenomenon. On the contrary, when p is too large, the accuracy
of the sources of information decreases and the LARS requires many sources of
information to describe a single region of the signal. That is why in our example
the size of the optimal active set A increases with p when p > 2.

Table 1. Estimation of the function cos(exp(wz)) (10 runs). Evolution of the best
solution in terms of sparsity (number of support vector) and Mean Square Error (MSE)
in function of parameter p.

D 1.2 1.5 2 2.5 3 4 5 6
MSE 0.02255 0.02225 0.02234 0.02198 0.02090 0.02050 0.02487 0.02543
Al 45.33 44.66 39.0 40.25 44.5 48.33 48.66  48.33

Cross-validations over synthetic and real data lead to set p = 3. We choose
to set the cardinality of o to 7, given the fact that experimental results are not
improved beyond this value.

KBP results presented in the next section rely on this parameter-free
Gaussian strategy (equation ([[])), but it is also possible to build multiple kernels
with different degrees of polynomial kernels or to mix different kernels.

5 Experiments

We illustrate the efficiency of the methodology on synthetic and real data. Tables
Pland Bl present the results with two different algorithms: the SVM and the LARS.
We use four strategies to stop the learning stage of the KBP.
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Table 2. Results of SVM and LARS for the cos(exp(z)) and Donoho’s classical func-
tions estimation. Mean and standard deviation of MSE on the test set (30 runs), number
of support vectors used for each solution, number of best performances. The total of
best performances sometimes exceeds 30 due to the fact the 2 different KBP can lead

to the same solution.

Nb kernel

Algorithm €e-SVM

0.032 + 0.0086
cos(exp(t)) 105.4
0
0.023 4+ 0.0071
59.3
0
0.039 + 0.0020
75.3
0

Doppler

Blocks

1
KBP-3_; [Bi

0.028 4 0.0051
87.3
0
0.019 £ 0.0068
47.1
0
0.025 4+ 0.0013
65.1
0

0.0072 £+ 0.0034 0.0114 £ 0.0013

54.2
16

Ramp

45.6
0

v-KBP

0.028 4 0.0052
85
0
0.019 £ 0.0060
47
0
0.026 £+ 0.0015
65
0
0.0112 +£ 0.0022
48
0

0.0028 = 0.0002 0.0028 £ 0.0002 0.0030 £ 0.0002
51.4 17.2 20
11 15 5

HeaviSine

Nb kernel
Algorithm  KBP- )", |5

0.020 + 0.0039
47.4 46
14 5

0.011 £ 0.0052 0.013 £ 0.0060
46.1 46
13 3

0.020 + 0.0011 0.020 £+ 0.0012
64.6 65

13

0.0072 + 0.0033 0.0073 £ 0.0035
20.1 18

v-KBP

cos(exp(t))
Doppler
Blocks

Ramp

0.0035 £ 0.0003 0.0036 £ 0.0003

HeaviSine 44.30 45

KBP-RV

0.026 £ 0.0047
95.3
0
0.020 £ 0.0053
48.8
0
0.024 £ 0.0012
69.4
0
0.0107 £ 0.0020
45.9
0
0.0029 =+ 0.0002
21.1
8

6 (Multiple Kernels)
KBP-RV

0.023 + 0.0059 0.020 £+ 0.0039
48.4
15
0.010 £ 0.0059
52.70
17
0.020 + 0.0012
67.5
10 9
0.0080 £ 0.0030
22.5
12 11 5
0.0032 £ 0.0003
48.2
0 0 0

KBP-0

0.029 £ 0.0062
95.3
0
0.019 £ 0.0056
51.3
0
0.024 £ 0.0012
65.2
0
0.0108 +£ 0.0015
49.7
0
0.0028 £ 0.0002
19.5
11

KBP-o,

0.021 + 0.0035
47.8
10
0.013 £+ 0.0055
49.80
5
0.019 + 0.0011
66.3
17
0.0077 £ 0.0029
20.3
4
0.0032 £ 0.0003
49.0
0

KBP-}", 3| is the classical method where a bound is defined on the sum of

the regression coefficient. This bound is estimated by cross-validation.
— v-KBP is based on the fraction of support vectors. v is also estimated by

cross-validation.

of information.!

KBP-RYV relies on the introduction of Gaussian random variables as sources

— KBP-0; relies on a Gaussian trap scale with very small bandwidth. We use

os = o of equation (EII])

To validate this approach, we compare the results with classical Gaussian e-SVM
regression. Parameters €, C' and o are optimized by cross validation. In order to

! To make KBP-0, and KBP-RV methods more robust, we wait until 3 information
sources from the trap-scale are selected to stop the learning stage.
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Table 3. Results of SVM and KBP for the different regression database. Mean and
standard deviation of MSE on the test set (30 runs), number of support vectors used for
each solution, number of best performances. The total of best performances sometimes
exceeds 30 due to the fact the 2 different KBP can lead to the same solution.

Nb kernel 1
Algo SVM KBP
19 e-SVM > 16 RV Os
0.007 + 0.007  0.008 4 0.010 0.010 & 0.011 0.011 4 0.009 0.010 + 0.011
pyrim — 47.1 29.7 31.2 33.6
— 0 0 0 0
0.021 4 0.005 0.022 4 0.006 0.021 4 0.006 0.021 %+ 0.005 0.021 + 0.006
triazines - 60.8 27.0 32.4 29.0
- 0 0 0 0
9.19+2.73  17.54+4.18 12.83+3.31 14.124+3.17 12.33 4 3.04
housing - 405.4 289.0 295.2 304.2
— 0 0 0 0
5.071+0.678 12.871 +0.461 9.293 + 0.518 9.181 + 0.421 10.311 4 0.513
abalone - 652.2 491.9 502.3 546.2
— 0 0 0 0
Nb kernel 6 (Multiple Kernels)
Algo KBP
Zi IBl' RV Os
0.006 £ 0.006 0.006 + 0.006 0.005 =+ 0.006
pyrim 47.0 48.1 49.3
13 17 18
0.019 4+ 0.006 0.020 + 0.005 0.020 + 0.008
triazines 23.0 27.1 27.8
22 8 9
10.52 4+ 3.56  11.034+3.31  10.13 4+ 3.23
housing 305.4 317.3 315.2
12 9 17
7.189 4+ 0.568 8.363 4 0.616 8.127 + 0.620
abalone 607.4 512.8 548.3
17 7 10

distinguish the benefit of the early stopping methods from the benefits of the
multiple kernel learning, we also give the results of KBP algorithm when using
a single kernel. In this case, the kernel is chosen by cross-validation. Even with
a single kernel, the KBP relies on a multiple kernel architecture to be add the
trap scales. KBP-RV and KBP-o, are fully parameter-free. We use the method
describe in the previous section to build our multiple kernels, with p = 3.

5.1 Synthetic Data

We test our method for the learning of cos(exp(wz)) regression function. We try
to learn:
f(z) = cos(exp(wx)) + b(x) (12)

where b(z) is a Gaussian white noise of variance o7 = 0.15. We also tested
the method over classical synthetic data described by Donoho and John-

stone [1§].
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For all signals, we use x € [0, 1], drawn according to a uniform distribution.
We use 400 points for the learning set and 1000 points for the testing set. The
noise is added only on the learning set. Parameters (v, Y, [3;|...) are computed
by cross validation on the learning set. Table 2] presents the results over 30 runs
for each dataset.

These results point out the sparsity and the efficiency of KBP solutions.
Figure illustrates how multiple kernel learning enables the regression func-
tion to fit the local frequency of the model. The results with different Donoho’s
synthetic signals enable us to distinguish the benefits of the KBP method from
the benefits of the multiple kernels. The KBP improves the sparsity of the solu-
tion, whereas the multiple kernels improve the results on signals that require a
multi-scale approach.

e-SVM achieves the best results for Ramp and HeaviSine signals. This can be
explained by the fact that the Ramp and HeaviSine signals are almost uniform
in term of frequency. The € tube algorithm of the SVM regression is especially
efficient on this kind of problem.

The results from the different KBP are very close (and often similar), that is
why the total of best performances sometimes exceeds 30 (the number of run).
Then, KBP-RV and KBP-o, become very attractive, due to the fact that they
are parameter-free methods. KBP obtains the best results for 4 experiments,
and parameter-free-KBP for 3 experiments on a total of 5 experiments.

5.2 Real Data

Experiments are carried out over regression data bases available in the UCI
repository [20]. We compare our results with [19].

The experimental procedure for real data is the following one: Thirty train-
ing/testing set are randomly produced. Respectively 80% and 20% of the points
are used for training and testing. Hyperparameters (v, >, [3;]...) are computed
by cross-validation on the learning set. Table [3] presents mean and standard
deviation of MSE (mean square error) on the test set.

e-SVM solution is not really competitive but it gives an interesting information
on the number of support vectors required for each solution. KBP-RV and KBP-o
results are very interesting: they are parameter free using the heuristic describe in
section 2] moreover the KBP-RV achieves the best results for pyrim.

6 Conclusion

The Kernel Basis Pursuit algorithm enables us to meet two objectives: proposing
a sparse multi-kernel-based solution for the regression problem and introducing
new solutions for the bias-variance compromise problem and the kernel setting.

The sparsity is due to ¢ regularization, and the interpretation of the K;(z;, -)
as simple source of information enables the KBP to deal with multiple kernels. The
heuristics proposed to set the different parameters or compromises of the KBP rely
both on the LARS properties and the multiple kernel: multiple kernels allow easy
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and efficient setting for the kernel parameters and the fact that LARS computes the
whole regularization path enables us to implement powerful early-stopping strate-
gies. The KBP gives good results on synthetic and real data. In the meantime, the
required time computation is reduced compared with SVM, due to the sparsity of
the obtained solutions. Moreover, the KBP becomes fully parameter-free in the
KBP-RV and KBP-o0y, cases and though they achieve very competitive results.

The perspectives of this work are the following ones: we now plan to use this

description of the data for signal classification purpose. Then, the idea would be
to optimize the representation of the data for the classification task.
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