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Abstract. The page rank of a commercial web site has an enormous
economic impact because it directly influences the number of potential
customers that find the site as a highly ranked search engine result. Link
spamming – inflating the page rank of a target page by artificially cre-
ating many referring pages – has therefore become a common practice.
In order to maintain the quality of their search results, search engine
providers try to oppose efforts that decorrelate page rank and relevance
and maintain blacklists of spamming pages while spammers, at the same
time, try to camouflage their spam pages. We formulate the problem of
identifying link spam and discuss a methodology for generating training
data. Experiments reveal the effectiveness of classes of intrinsic and re-
lational attributes and shed light on the robustness of classifiers against
obfuscation of attributes by an adversarial spammer. We identify open
research problems related to web spam.

1 Introduction

Search engines combine the similarity between query and page content with
the page rank [18] of candidate pages to rank their results. Intuitively, every
web page “creates” a small quantity of page rank, collects additional rank via
inbound hyperlinks, and propagates its total rank via its outbound links. A web
page that is referred to by many highly ranked pages thus becomes more likely
to be returned in response to a search engine query.

The success of commercial web sites crucially depends on the number of
visitors that find the site while searching for a particular product. Because of the
enormous commercial impact of a high page rank, an entire new business sector
– search engine optimization – is rapidly developing. Search engine optimizers
offer a service that is referred to as link spamming: they create link farms, arrays
of densely linked web pages that refer to the target page, thus inflating its page
rank. In 2004, the search engine optimization industry tournamented in the
“DarkBlue SEO Challenge”. The goal of this competition was to be ranked first
on Google for the query “nigritude ultramarine”, a nonsense term that used to
produce zero hits prior to the challenge and produced over 500,000 hits by the
competition deadline. Industry insiders believe that as many as 75 million out
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of the 150 million web servers that are online today may be operated with the
sole purpose of increasing the page rank of their target sites.

As the page rank becomes subject to manipulation, it loses its correlation to
the true relevance of a web page. This deteriorates the quality of search engine
results. Search engine companies maintain blacklists of link spamming pages,
but they fight an uneven battle in which humans identify and penalize spam-
ming pages and software tools automatically create new spamming domains, and
camouflage them, for instance by filling in inconspicuous content.

We formulate and analyze the problem of link spam identification, present a
method for generation of labeled examples, and discuss intrinsic and relational
features. Experiments with recursive feature elimination shed light on the rel-
evance of several classes of attributes and their contribution to the classifier’s
robustness against adversarial obfuscation of discriminating properties.

The rest of the paper is organized as follows. We discuss related work in
Section 2 and introduce our problem setting in Section 3. Section 4 introduces
the features and employed methods. Section 5 details our experimental results.
We discuss open research problems in Section 6 and conclude in Section 7.

2 Related Work

Henzinger [15] refers to automatic identification of link spam as one of the most
important challenges for search engines. Davison [8] studies the problem of recog-
nizing “nepotistic” links. A decision tree experiment using features that refer to
URL, IP, content, and some linkage properties indicates a number of relevant
features. Classifying links imposes the effort of labeling individual links, not just
entire pages, on the user. Lempel et al. [17] use similar features to classify web
pages into business, university, and other general classes.

Fetterly et al. [11] analyze the distribution of many web page features over
429 million pages. They find that many outliers in several features are link spam.
Pages that change frequently and clusters of near-identical pages are also more
likely to be spam [12,10]. They conclude that experiments should be conducted
to reveal whether these features can be used by a machine learning method.

Similarly, Broder et al. [5] and Bharat et al. [3] analyze large amounts of web
pages and observe that the in-degree and out-degree of web pages that should
be governed by Zipf’s law, empirically deviates from this distribution. They find
that “artificially” generated link farms distort the distribution.

The TrustRank approach [14] propagates trust weights along the hyperlinks.
But while page rank is generated by every web page (including link farms), trust
rank is generated only by manually selected trusted web pages. The manual
selection of trusted pages, however, creates a perceptive bias as unknown and
remote websites become less visible. Wu and Davison [19] study a simple heutistic
that discovers some link farms: pages which have many inlinks and outlinks
whose domains match are collected as candidate pages. They use a paopagation
strategy, and remove edges between likely link farms to compute a page rank
that is less prone to manipulation.
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3 Problem Description

The correlation between page rank and relevance of a web page is based on
the assumption that each hyperlink expresses a vote for the relevance of a site.
The PageRank algorithm [18] calculates the rank (Equation 1) of a page y that
consists of a small constant amount (d corresponds to the probability that a
surfer follows a link rather than restarting at a random site, N is the number of
web pages), plus the accumulated rank of all referring pages x.

R(y) =
1 − d

N
+ d

∑

x→y

R(x)
outlinks(x)

(1)

Link spamming is referred to as any intentional manipulation of the page rank
of a web page. Pages created for this purpose are called link spam. Artificially
generated arrays of web pages violate the assumption that links are independent
votes of confidence, and therefore decorrelate page rank and relevance.

Several common techniques inflate the page rank of a target site. They are
often combined. We will describe these techniques briefly. A more detailed tax-
onomy of web spam techniques is presented by Gyöngyi [13].

Link farms are densely connected arrays of pages. A target page “harvests”
the constant amount of page rank that each page creates and propagates
through its links. Each page within the link farm has to be connected to
the central, strongly connected component of the web. The farming pages
have to propagate their page rank to the target. This can for instance be
achieved by a linear or funnel-shaped architecture in which the majority
of links points directly or indirectly towards the target page. In order to
camouflage link farms, tools fill in inconspicuous content, for instance, by
copying news bulletins.

Link exchange services create listings of (often unrelated) hyperlinks. In or-
der to be listed, businesses have to provide a back link that enhances the
page rank of the exchange service and, in most cases, pay a fee.

Guestbooks, discussion boards, and weblogs (“blogs”) allow readers to
create HTML comments via a web interface. Automatic tools post large
amounts of messages to many such boards, each message contains a hyperlink
to the target website.

In order to maintain a tight coupling between page rank and relevance, it is
necessary to eliminate the influence that link spam has on the page rank. Search
engines maintain a blacklist of spamming pages. It is believed that Google em-
ploys the BadRank algorithm. The “bad rank” (Equation 2) is initialized to a
high value E(x) for blacklisted pages. It propagates bad rank to all referring
pages (with a damping factor) thus penalizing pages that refer to spam.

BR(x) = E(x)(1 − d) + d
∑

x→y

BR(y)
inlinks(y)

(2)
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This method, however, is not suited to automatically detect newly created
link farms that do not include links to an older, already blacklisted site. Search
engines therefore rely on manual detection of new link spam. We focus on the
problem of automatically identifying link spam. We seek to construct a classifier
that receives a URL as input and decides whether the encoded page is created
for the sole purpose of manipulating the page rank of some page (“spam”), or
whether it is a regular web page created for a different purpose (“ham”).

The typical application scenario of a link spam identification method would
be as follows. Search engines interleave crawling and page rank updating. After
crawling a web page, the page’s impact on the page rank of referenced pages is
updated – the BadRank and blacklist status of the page are considered at this
point. In addition, the output of a spam classifier for the crawled page can now
be taken into account. Depending on the output, the page’s impact on the page
rank can be reduced, or the page can be disregarded entirely.

Since the class distribution of spam versus ham is not known, we use the
area under the ROC curve (AUC) as evaluation metric. The AUC equals the
probability that a randomly drawn spam page receives a higher decision function
value than a random ham page; the AUC is invariant of the class prior.

Link spam identification is an adversarial classification problem [7]. Spam-
mers will probe any filter that is in effect and manipulate the properties of their
generated pages in order to dodge the classifier. Therefore, a high classification
accuracy is not sufficient to imply its practical usefulness. The practical bene-
fit of a classifier is furthermore dependent of its robustness against purposeful
obfuscation of attributes by an adversary. We study how the performance of clas-
sifiers deteriorates as an increasing number of attributes becomes obfuscated as
the corresponding properties of spam pages are adapted to those of ham pages.

4 Representing and Obtaining Examples

In this section, we address the issues of representing instances and obtaining
training examples. We describe our publicly available link spam data set.

Table 1 provides an overview on the features that we use in our experiments
to represent an instance x0. Many of these features are reimplementations of, or
have been inspired by, features suggested by [8] and [11]. Notably, however, the
tfidf representation of the page, and also other features including the MD5 hash
features, have not been studied for web spam problems before.

Figure 1 illustrates the neighborhood of the pivotal page x0 represented by
intrinsic and relational properties. Most elementarily, the tfidf (term frequency,
inverse document frequency) representation of the page content provides an in-
trinsic representation. It creates one dimension in the feature vector for each
word in the corpus. It gives large weights to terms that are frequent in the
document but infrequent in the whole document corpus.

The next block of attributes is determined for the page x0 itself as well
as for its predecessors pred(x0) and successors succ(x0). The features are de-
termined for every element x ∈ pred(x0) (or x ∈ succ(x0), respectively) and
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Table 1. Attributes of web page x0

Textual content of the page x0; tfidf vector.

The following features for x0 are computed (1) for the pivotal page itself (X =
{x0}). Here, no aggregation is necessary. (2) For the predecessors X = pred(x0). The
attributes are aggregated over the elements of X using aggregation functions sum
and average. (3) For the successors (X = succ(x0)). Aggregation functions sum and
average. Boolean features are aggregated by treating “true” as 1, and “false” as 0.
Number of tokens in keyword meta-tag, aggregated over all pages x ∈ X.
Number of tokens in title, aggregated over all pages x ∈ X.
Number of tokens in description meta-tag, aggregated over all pages x ∈ X.
Is the page a redirection? Aggregated over all pages x ∈ X.
Number of inlinks of x, aggregated over all pages x ∈ X.
Number of outlinks of x, aggregated over all pages x ∈ X.
Number of characters in the URL of x, aggregated over all pages x ∈ X.
Number of characters in the domain name of x, aggregated over all pages x ∈ X.
Number of subdomains in the URL of x, aggregated over all pages x ∈ X.
Page length of x, aggregated over all pages x ∈ X.
Domain ending “.edu” or “.org”? Aggregated over all pages x ∈ X
Domain ending “.com” or “.biz”? Aggregated over all pages x ∈ X.
URL contains tilde? Aggregated over all pages x ∈ X.

The following block of context similarity features are calculated (1) for predecessors
(X = pred(x0)) and (2) for the successors (X = succ(x0)); sum and ratio are used to
aggregate the features over all elements of X.
Clustering coefficient of X; sum and ratio of elements of X with links between them.
Elements of X with the same IP address as some other element of X; sum and ratio.
Elements of X that have the same length as some other element of X; sum and
ratio.
Pages that are referred to in x0 and also in an elements of X, sum and ratio.
Pages referred to from an element of X that are also referred to from another element
of X; sum and ratio.
Pages in X that have the same MD5 hash code as some other element of X. This
value is high if X contains many identical pages; sum and ratio.
Elements of X that have the same IP as x0.
Elements of X that have the same length as x0.
Pages in X that have the same MD5 hash code as x0.

aggregated over all elements x. Both, summation and averaging are used as
aggregation functions. The third block quantifies collective features of x0 and
its predecessors, and x0 and its successors. Some of them require further
elaboration.

Following [9], we define the clustering coefficient of a set X of web pages as the
number of linked pairs divided by the number of all possible pairs, |X |(|X | − 1).
The clustering coefficient is 1 if all elements in X are mutually linked and 0 if
no links between elements of X exist. The MD5 hash is frequently used as a
mechanism for digital signatures. It maps a text to a code word of 128 bit such
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?

Fig. 1. Neighborhood of page x0 to classify. The tfidf vector is calculated for x0; in-
trinsic features (second block of Table 1) are calculated for x0, pred(x0), and succ(x0);
context similarity features (third block of Table 1) for pred(x0) and succ(x0).

that collisions are “unlikely”. That is, when two documents have the same MD5
hash code, then it is unlikely that they differ. The MD5 features quantify the
number and ratio of predecessors and successors of x0 that are textually equal.

In total, each page is represented by 89 features plus its tfidf vector. Web
pages explicitly contain outbound links but, of course, not their inbound links.
To be able to determine the feature vector of a given page x0, it is necessary to
crawl its direct successors with standard web crawling tools (we use nutch [6]
for our experiments). Crawling backwards (moving from a page to its references)
can be achieved by specific search engine query tokens (e.g., “link:” in Google).

4.1 Crawling Examples

Training a classifier requires labeled samples. Deciding whether an example web
page is link spam requires human judgment, but we can exploit efforts already
exercised by other persons. The Dmoz open directory project is a taxonomy
of web pages that covers virtually all topics on the web. All entries have been
reviewed by volunteers. While the Dmoz entries do contain pages whose rank
is being inflated by link farms (e.g., online casinos) the listed pages themselves
contain valid content and there are no instances of spam. We create examples of
“ham” (non-link-spam) by drawing 854 Dmoz entries at random.

Search engine operators maintain blacklists of spamming pages. They could,
if public, provide a rich supply of examples of spam. In order to investigate their
distinct characteristics, we differentiate between guestbook spam and a second
class of spam that includes link farms and link exchange sites, and generate
distinct samples for these sets. We obtain 251 examples of guestbook spam by
drawing URLs from a publicly available manually edited blacklist that aims at
helping guestbook and weblog operators to identify and remove spam entries.

Link farms are never returned as a highly ranked search result – this is not
their goal – but they promote the ranking of their target site. After posting 36
search queries (e.g. ‘gift links”, “shopping links”, “dvd links”, “wedding links”,
“seo links”, “pharmacy links”, “viagra”, and “casino links”), we draw some of
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the top-rated search results. We manually identify 180 link farm and link ex-
change pages. In order to correctly decide which pages are link spam, we review
each page’s content and context (referring and linked pages). This careful man-
ual labeling consumed the largest part of the effort of assembling the data set.
We do not distinguish between link exchange and link farm pages because this
distinction cannot easily be made for many of the examples.

5 Experimental Evaluation

In our experiments, we want to explore how well guestbook spam and link farms
can be discriminated against regular web pages, and which features contribute
the most to a discrimination. In addition we are interested in the robustness
of classifiers against obfuscation of attributes by an adversarial spammer who
purposefully adapts properties of spam pages to those of ham pages. We use
the Support Vector Machine SVMlight [16] with standard parameters. We would
also like to find out which kernel is appropriate.

5.1 Finding Discriminative Features

In the following experiments we discriminate ham versus spam, where spam is
the union of all categories discussed in Section 3. In order to investigate possible
differences between guestbook spam and link farms, we furthermore discriminate
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guestbook spam against ham, and link farm plus link exchange pages versus
ham. In order to obtain learning curves, we randomly draw a training subset
of specified size from the sample, use the remaining examples for testing, and
average the results over 10 randomly resampled iterations.

We first study the suitability of several kernels for three instance representa-
tions: we consider the tfidf representation, a representation based only on link
based features (Table 1), and the joint attribute vectors of concatenated tfidf and
link features. We tune the degree (for polynomial kernels), the kernel width for
RBF kernels (on a separate tuning set) and use default parameters otherwise. Fig-
ure 2 shows that, on average, linear kernels perform best for the tfidf vectors and
link features. Both, RBF and linear kernels work for the combined representation;
polynomial kernels perform poorly for the link and combined representation.

Next, we study learning curves for the tfidf representation, the attributes of
Table 1, and the joint features. Figure 3 shows that link and merged representa-
tions work equally well for guestbook spam, the merged representation performs
best for link farms. For the mixed spam dataset, tfidf is the most discrimina-
tive feature set, but the offset to the combined representation is small. Using the
combined represantation is always better than using only the link based features.
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Which features are discriminative? We use 10 resampled iterations of re-
cursive feature elimination and determine the average rank of all features. The
recursive feature elimination procedure initialy uses an active feature set con-
taining all features. It then trains a Support Vector Machine, eliminates the
feature with the least weight from the active set, and recurs. The best (highest
ranked) features are those that remain in the active set longest.

Table 2 presents the 20 highest ranked link features for the “spam vs. ham”
discrimination. We do not rank tfidf features for individual words. Treated as a
whole, the entire block of tfidf features has the highest rank. Among the most
discriminative link features are the number of inbound and outbound links of
pred(x0), the title length of succ(x0); also, clustering coefficient and the MD5
feature are relevant.

5.2 Robustness Against Adversarial Obfuscation

The previous experiments show that today the tfidf representation is the most
discriminative feature set. Once a spam filter is in effect, spammers can be ex-
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Table 2. RFE ranking for spam vs. ham

SignRankAttribute
- 1 Average number of inlinks of pages in pred(x0).
+ 2 Average number of tokens in title of pages in succ(x0).
+ 3 Number of elements of pred(x0) that have the same length as some other

element of pred(x0).
- 4 Average number of in- and outlinks of pages in pred(x0).
+ 5 Average number of outlinks of pages in pred(x0).
+ 6 Number of tokens in title of x0.
- 7 Summed number of outlinks of pages in succ(x0).
- 8 Summed number of inlinks of pages in pred(x0).
+ 9 Clustering coefficient of pages in pred(x0).
+ 10 Summed number of tokens in title of pages in succ(x0).
+ 11 Number of outlinks of pages in succ(x0).
+ 12 Average number of characters of URLs of pages in pred(x0).
- 13 Number of pages in pred(x0) and succ(x0) with same MD5 hash as x0.
- 14 Number of characters in domain name of (x0).
- 15 Number of pages in pred(x0) with same IP as x0.
+ 16 Average number of characters in domain name of pages in succ(x0).
- 17 Average Number of in- and outlinks of pages in succ(x0).
+ 18 Number of elements of succ(x0) that have the same length as some other

element of succ(x0).
+ 19 Average number of in- and outlinks of elements in succ(x0).
+ 20 Number of pages in succ(x0) with same IP as x0.

pected to probe the filter and to modify properties of their link farms in order to
deceive the filter. Any single feature of a set of web pages can, at some cost, be
adapted to the distribution which governs that attribute in ham pages. For in-
stance, the tfidf feature can be obfuscated by copying the content of a randomly
drawn ham page from the Dmoz directory, the number of inbound or outbound
links can be decreased by splitting pages or increased by merging pages.

We consider the following classifiers and study their robustness against such
obfuscations of discriminative attributes.

1. A purely text-based classifier which refers to only the tfidf features.
2. A simple contextual classifier uses the set of intrinsic features of the pivotal

page x0 with aggregation function identity.
3. The complex contextual classifier utilizes all features.

We use the following experimental protocol to assess the three classifiers’
robustness. We first train the classifiers using their respective attribute sets. Now
we simulate the adversary’s attempts to deceive the classifiers. The adversary
obfuscates an increasing number of attributes, starting with the entire block of
tfidf features (this can be achieved by pasting the textual content of a “ham”
page into the spam page), and subsequently obfuscating additional attributes in
the order of their discriminatory power (Table 2). The obfuscation of attributes
is simulated as follows. For each instance, the value of the obfuscated attributes
is replaced by the attribute value of a randomly drawn ham page. This simulates
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that the adversary has adapted the generation program to match some property
of the link farm pages to that of natural web pages. We evaluate the performance
of the four classifiers on the obfuscated test sets.
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Fig. 4. Influence of attribute obfuscation

Figure 4 shows that the purely text-based classifier is immediately rendered
useless when the content of the spam pages is replaced by the content of a ran-
domly drawn page from the Dmoz directory. The combined classifier that utilizes
multiple features deteriorates slightly slower. However, Figure 4 emphasizes the
need to re-train a classifier quickly when the underlying distribution changes.

6 Open Problems

The problem area of link spam contains a plentitude of open research questions.
We summarize some of them.

Collective Classification. Rather than classifying individual web pages,
search engine operators will have to classify all pages on the web. Hence,
the problem intrinsically is a collective classification problem. A benchmark
collective classification data set has to include a network of example instances
with a reasonable degree of context. Because of the small world property of
the web, such a dataset quickly becomes very large.

Game Theory. Link spam identification is an adversarial classification prob-
lem [7]. Rather than being stationary, the distribution of instances is changed
by an adversary over time. The adversary probes any link spam filter that
is being used by a search engine, and modifies properties of the generated
link spam such as to dodge the filtering algorithm. Possible modifications
include, for instance, changing the link topology, generating pages with dif-
fering content and experimenting with various sub-domain names. The topic
of learning the ranking function of a search engine from rankings and page
features is adressed by Bifet et al. [4]. Yet, identifying conditions under which
a filtering strategy can be shown to be an equilibrium of the “spam filtering
game” is a great challenge.

Identifying “Google Bombers”. Search engines associate the anchor text
that is used to refer to a page with that page. By referring to target pages
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with anchor terms that have a negative connotation, malicious sites cause
these targets to become search results for negative query terms. This form of
web spam is often referred to as “Google bombing”. For instance the query
“miserable failure” usually returns the CVs of George W. Bush or Michael
Moore as the first result, depending on whose supporters are currently head-
ing this particular Google bombing arms race. Adali et. al [1] study the layout
of an optimal link bomb. The influence of more general collusion topologies
on page rank is examined by Baeza-Yates et al. [2]. But the development of
methods that decide whether a reference is unbiased or malicious is still an
open research goal.

Other Forms of Web Spam. Click spamming is a particularly vicious form of
web spam. Companies allocate a fixed budged to the sponsored links program
of, for instance, Google. The sponsored link is returned along with results of
related search queries until the budget is used up. Rivaling companies now
employ “click bots” that post a search query, and then automatically click
on their competitor’s sponsored link until the budged is exceeded and the
link disappears. This practice undermines the benefit of the sponsored link
program, and search engine operators therefore have to identify whether a
reference to a sponsored link has been made by a human, or by a “rogue
bot”. This classification task is extremely challenging because the state-less
HTTP protocol provides hardly any information about the client.

7 Conclusion

We motivated and introduced the problem of link farm discovery. We discussed
intrinsic and contextual features of web pages, and presented a methodology
for collecting training examples. Our experiments show that today the tfidf rep-
resentation of the page provides the most discriminatory attribute set. Many
additional contextual attributes contribute to a more accurate discrimination.
We identify the most discriminatory relational attributes.

Our experiments also show that a purely text-based classifier is brittle and
can easily be deceived; the contextual classifiers have the potential to be more
robust because deceiving them requires to adapt a larger number of properties
to the distribution of values observed in ham pages. In order to be able to react
to purposeful obfuscation of characteristic properties of link farms, a repository
of discriminatory features is required.

Web spam is a major challenge for search engines. We sketched open research
challenges; research in this direction has the potential to substantially improve
search engine technology and make it more robust to manipulations.
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