
Nonrigid Embeddings for Dimensionality Reduction

Matthew Brand

Mitsubishi Electric Research Labs,
Cambridge, MA, USA

Abstract. Spectral methods for embedding graphs and immersing data man-
ifolds in low-dimensional spaces are notoriously unstable due to insufficient
and/or numerically ill-conditioned constraint sets. Why show why this is en-
demic to spectral methods, and develop low-complexity solutions for stiffen-
ing ill-conditioned problems and regularizing ill-posed problems, with proofs of
correctness. The regularization exploits sparse but complementary constraints on
affine rigidity and edge lengths to obtain isometric embeddings. An implemented
algorithm is fast, accurate, and industrial-strength: Experiments with problem
sizes spanning four orders of magnitude show O(N) scaling. We demonstrate
with speech data.

1 Introduction

Embedding a graph under metric constraints is a central operation in nonlinear dimen-
sionality reduction (NLDR), ad-hoc wireless network mapping, and visualization of re-
lational data. Despite a recent wave of advances in spectral embeddings, it has not yet
become a practical, reliable tool. At root is the difficulty of automatically generating
embedding constraints that make the problem well-posed, well-conditioned, and solv-
able on practical time-scales. Well-posed constraints guarantee a unique solution. Well-
conditioned constraints make the solution numerically separable from poor solutions.
Spectral embeddings from local constraints are frequently ill-posed and almost always
ill-conditioned. Both problems manifest as a tiny or zero eigengap in the spectrum of
the embedding constraints, indicating that the graph is effectively nonrigid and there is
an eigen-space of solutions whose optimality is numerically indistinguishable.

Section 2 shows why small eigengaps are endemic to spectral methods for com-
bining local constraints, making it numerically infeasible to separate a solution from
its modes of deformation. To remedy this, section 3 presents a linear-time method for
stiffening an ill-conditioned problem at all scales, and prove that it inflates the eigengap
between the space of optimal solutions and the space of suboptimal deformations.

If a problem is ill-posed, the graph is qualitatively nonrigid and the space of optimal
solutions spans all of its degrees of freedom. Section 4 shows how to choose the most
dispersed embedding from this space in a semidefinite programming problem (SDP)
with a small number of variables and constraints, and proves feasability. Although SDP

for graphs has O(N6) complexity, our methods give a problem reduction that yields
embeddings of very large graphs in a matter of seconds or minutes, making million-
point problems practical on a ordinary consumer PC.
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2 Setting

This paper considers the family of Laplacian-like local-to-global graph embeddings,
where the embedding of each graph vertex is constrained by the embeddings of its
immediate neighbors (in graph terminology, its 1-ring). For dimensionality reduction,
the vertices are datapoints that are viewed as samples from a manifold that is somehow
curled up in the ambient sample space, and the graph embedding constraints are de-
signed to reproduce local affine structure of that manifold while unfurling it in a lower
dimensional target space. Examples include Tutte’s method [Tut63], Laplacian eigen-
maps [BN02], locally linear embeddings (LLE) [RS00], Hessian LLE [DG03], charting
[Bra03], linear tangent-space alignment (LTSA) [ZZ03], and geodesic nullspace analy-
sis (GNA) [Bra04]. The last three methods construct local affine constraints of maximal
possible rank, leading to the stablest solutions. Due to their simplicity, our analysis will
be couched in terms of LTSA and GNA. All other methods employ an subset of their
affine constraints, so our results will be applicable to the entire family of embeddings.

LTSA and GNA take an N-vertex graph already embedded in an ambient space R
D

with vertex positions X = [x1, · · · ,xN ] ∈ R
D×N , and re-embed it in a lower-dimensional

space R
d with new vertex positions Y = [y1, · · · ,yN ] ∈ R

d×N , preserving local affine
structure. Typically the graph is constructed from point data by some heuristic such as
k-nearest neighbors. The embedding works as follows: Take one such neighborhood of k
points and construct a local d-dimensional coordinate system Xm

.= [xi,x j, · · ·] ∈ R
d×k,

perhaps by local principal components analysis. Now consider the nullspace matrix
Qm ∈ R

k×(k−d−1), whose orthonormal columns are orthogonal to the rows of Xm and to
the constant vector 1. This nullspace is also orthogonal to any affine transform A(Xm) of
the local coordinate system, such that any translation, rotation, or stretch that preserves
parallel lines in the local coordinate system will satisfy A(Xm)Qm = 0. Any other trans-
form T (Xm) can then be separated into an affine component A(Xm) plus a nonlinear
distortion, N(Xm) = T (Xm)QmQ�

m . The algorithm LTSA (resp. GNA) assembles these
nullspace projectors QmQ�

m, m = 1,2, · · · into a sparse matrix K ∈ R
N×N that sums

(resp. averages with weights) nonlinear distortions over all neighborhoods in the graph.
Now let V ∈ R

d×N have row vectors that are orthonormal and that span the the column
nullspace of [K,1]; i.e., VV� = I and V[K,1] = 0. It follows immediately that if V ex-
ists and we use it as a basis for embedding the graph in R

d , each neighborhood in that
embedding will have zero nonlinear distortion with respect to its original local coor-
dinate systems [ZZ03]. Furthermore, if the neighborhoods are sufficiently overlapped
to make the graph affinely rigid in R

d , the transform from the original data X to the
embedding basis V must stretch every neighborhood the same way [Bra04]. Then we
can estimate a linear transform T ∈ R

d×d that removes this stretch giving Y = TV, such
that the transform from X to Y involves only rigid transforms of local neighborhoods
[Bra04]. I.e., the embedding Y is isometric.

When there is any kind of noise or measurement error in this process, a least-squares
optimal approximate basis V can be obtained via thin SVD of K ∈ R

N×N or thin EVD of
KK�. Because K is very sparse with O(N) nonzero values, iterative subspace estima-
tors typically exhibit O(N) time scaling. When K is built with GNA, the corresponding
singular values σN−1,σN−2, · · · measure the pointwise average distortion per dimension.

One of the central problems of this paper is that the eigenvalues of KK�—and in-
deed of any constraint matrix in local NLDR—grow quadratically near λ0 = 0, which
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is the end of the spectrum that furnishes the embedding basis V. (A proof is given in
the first two propositions in the appendix.) Quadratic growth means that the eigenvalue
curve is almost flat at the low end of the spectrum (λi+1 − λi ≈ 0) such that the eigen-
gap that separates the embedding basis from other eigenvectors is negligible. A similar
phenomenon is observed in the spectra of simple graph Laplacians1 which are also
sigmoidal with quadratic growth near zero.

3 Stiffening Ill-Conditioned Problems with Multiscale Constraints

In graph embeddings the constraint matrix plays a role akin to the stiffness matrix in
finite-element methods, and in both cases the eigenvectors associated with the near-zero
eigenvalues specify an optimal parameterization and its modes of vibration. The prob-
lem facing the eigensolver (or any other estimator of the nullspace) is that convergence
rate is a linear function of the relative eigengap |λc−λc+1|

λmax−λmin
or eigenratio λc+1

λc
between

the desired and remaining principle eigenvalues [Kny01]. The numerical stability of the
eigenvectors similarly depends on the eigengap [SS90]. As just noted, in local-to-global
NLDR the eigengap and eigenratio are both very small, making it hard to separate the
solution from its distorting modes of vibration. Intuitively, low-frequency vibrations
make very smooth bends in the graph, which incur very small deformation penalties
at the local constraint level. Since the eigenvalues sum these penalties, the eigenvalues
associated with low-frequency modes of deformation have very small values, leading to
poor numerical conditioning and slow convergence of eigensolvers. The problem gets
much worse for large problems where fine neighborhood structure makes for closely
spaced eigenvalues, making it impossible for iterative eigensolvers to accurately com-
pute the smallest eigenvalues and vectors.

We propose to solve this problem by stiffening the mesh with longer-range con-
straints that damp out lower-frequency vibrations. This can be done without looking
at the point data. Indeed, it must, because long-range distances in the ambient space
are presumed to be untrustworthy. Instead we combine short-range constraints from
overlapping rings in the graph, as follows:

ALGORITHM: Neighborhood expansion
1. Select a subgraph consisting of a small set of overlapped neighborhoods and
compute an basis Vsubgraph for embedding its points in R

d .
2. Form a new neighborhood with at least d+1 points taken from the embedding
basis and add (LTSA) or average (GNA) its nullspace projector into K.

Because the K matrix penalizes distortions in proportion to the distances between
the points, these larger-scale constraints can significantly drive up the eigenvalues out-
side the nullspace, enlarging the eigengap. It can be shown that

Proposition 1. The nullspace of K is invariant to neighborhood expansions.

See the appendix for all proofs. Neighborhood expansion is physically analogous to
adding short ribs to a 2D plate to stiffen it against small-radius bends in 3D. However, in

1 E.g., see http://www.cs.berkeley.edu/˜demmel/ cs267/lecture20/lecture20.html
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Fig. 1. N = 500 points are randomly sampled from a square patch of a cylindrical surface in
R

D=3, and connected in a k = 4 nearest neighbors graph which is then isometrically embedded in
R

d=2. Spectral embedding methods preserve affine structure of local star-shaped neighborhoods;
convex optimization methods preserve edge lengths. Neither is sufficient for sparse graphs, while
more densely connected graphs present exploding compute costs and/or may not embed without
distortion and folds. Sparse graphs also yield numerically ill-conditioned problems. This paper
shows how to obtain well-conditioned problems from very sparse neighborhood graphs and com-
bine them with distance constraints to obtain high quality solutions in linear time.

mode

en
er

gy

constraint matrix sparsity pattern

density=4.76e−02 local, 5.51e−02 stiffened

low−frequency spectrum
local
stiffened

Stiffening the constraint matrix of a planar−embeddable graph

Fig. 2. Stiffening the embedding constraint matrix drives up the eigenvalues associated with low-
frequency bending modes. In this example, the constraint matrix is derived from N = 500 points
forming a 2D manifold embedded in R

256. The original graph (green) is shown in green super-
imposed on a random multiscale stiffening (blue). The low-frequency tail of the eigenspectrum
is plotted at center, before (green) and after (blue) stiffening. (The eigenvalue associated with the
constant eigenvector v0 = N−1/2 · 1 is suppressed.) The eigengap between the true 2D nullspace
and the remaining approximate nullspace is improved by almost 2 orders of magnitude, whereas
the original spectrum appears to have a 3D nullspace. The price is a modest 15% increase in
constraint matrix density, shown at right as dark blue dots superimposed on the original sparsity
pattern. However, the subspace computation is better conditioned and converges four times faster.

order to usefully improve the eigengap, one must brace against large-radius bends. For-
tunately, stiffening lends itself very naturally to a multiscale scheme: We construct a set
of neighborhood expansions that approximately covers the graph but adds constraints
on just a small subset of all vertices. Note that this subset of vertices plus their param-
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eterizations in the new neighborhoods constitutes a new embedding problem. Thus we
may recursively stiffen this problem in the same manner, and so on until the original
problem is stiffened at all scales:

ALGORITHM: Multiscale stiffening
1. Choose a constant fraction of vertices to be anchors.
2. Cover or partially cover the data with neighborhood expansions, adding con-
straints on any anchors that fall in an expansion.
3. Recurse only on the anchors, using their parameterizations in the neighborhood
expansions.

Proposition 2. If the number of neighborhoods and points is halved at each recursion,
multiscale stiffening can be performed in O(N) time with no more than a doubling of
the number of nonzeros in the K matrix.

For modern iterative nullspace estimators (e.g., LOBPCG [Kny01]), compute time of each
iteration is typically linear in the number of nonzeros in K while convergence rate is
supra-linear in the eigengap. Consequently, stiffening is a winning proposition. Figure 2
shows a simple example where stiffening the graph in figure 1 makes the spectrum rank-
revealing and cuts the EVD time by 3/4. However, due to the difficulty of implementing
the appropriate data structures efficiently in Matlab, there was no reduction in overall
“wall time”.

4 Regularizing Ill-Posed Problems with Edge Length Constraints

Even if the eigenvector problem is numerically well-conditioned, it may be the case
that the graph is intrinsically nonrigid. This commonly happens when the graph is gen-
erated by a heuristic such as k-nearest neighbors. In such cases the embedding basis
V ∈ R

c×N has greater dimension c than desired (c > d). For example, the initial con-
straints might allow for a variety of folds in R

d , then V must span all possible folded
configurations. The embedding is thus ill-posed, and some regularization is needed to
choose from the space of possible embeddings. We will presume that in the most un-
folded configuration, some subset of vertices are maximally dispersed. For example,
we might maximize the distance between each vertex and all of its 4-hop neighbors.
In order to prevent the trivial solution of an infinitely large embedding, we must fix
the scale in each dimension by fixing some distances, i.e., edge lengths. Thus we seek
an embedding that satisfies the affine constraints encoded in the K matrix, maximizes
distances between a mutually repelling subset of vertices, and satisfies exact distance
constraints on some subset of edges. For this we adapt the semidefinite graph embed-
ding of [LLR95].

Formally, let mixing matrix U ∈ R
c×d have orthogonal columns of arbitrary nonzero

norm. Let error vector σ = [σ1, · · · ,σc]� contain the singular values of distortion matrix
K associated with its left singular vectors, the rows of V. The matrix U will select
a metrically correct embedding from the space of possible solutions spanned by the
rows of V. The target embedding, Y = [y1, · · · ,yN ] .= U�V ∈ R

d×N , will have overall
distortion ‖U�σ‖ and distance ‖yi − y j‖ = ‖U�(vi − v j)‖ between any two points (vi
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being the ith column of V). The optimization problem is to minimize the distortion
while maximizing the dispersion

U∗ = max
U

−‖U�σ‖2 +∑
pq

r2
pq‖yp − yq‖2 (1)

for some choice of weights rpq ≥ 0, preserving distances

∀i j∈EdgeSubset‖yi − y j‖ ≤ Di j (2)

on at least d edges forming a simplex of nonzero volume in R
d (otherwise the embed-

ding can collapse in some dimensions). We use inequality instead of equality because
the Di j, measured as straight-line distances, are chordal in the ambient space R

D rather
than geodesic in the manifold, and thus may be inconsistent with a low dimensional
embedding (or infeasible). The inequality allows some edges to be slightly shortened in
favor of more dispersed and thus flatter, lower-dimensional embeddings. In general, we
will enforce distance constraints corresponding to all or a random sample of the edges
in the graph. Unlike [LLR95] (and [WSS04], discussed below), the distance constraints
do not have to form a connected graph.

Using the identity ‖Y‖2
F = ‖U�V‖2

F = trace(U�VV�U) = trace(VV�UU�), we
massage eqns. 1-2 into a small semidefinite program (SDP) on objective G .= UU� 
 0:

max
G

trace((C− diag(σ)2)G) (3)

with C .= ∑
pq

r2
pq(vp − vq)(vp − vq)� (4)

subject to ∀i, j∈EdgeSubsettrace((vi − v j)(vi − v j)�G) ≤ D2
i j . (5)

In particular, when all points repel equally (∀pqrpq = 1), then C = VV� = I, and
trace(CG) = ∑pq ‖yp − yq‖2 = ‖Y‖2

F . Because V⊥1, the embedding is centered.
At the extreme of c = d, we recover pure LTSA/GNA, where U = T is the upgrade to

isometry (the SDP is unnecessary). At c = D−1 we have an alternate formulation of the
semidefinite graph embedding [LLR95], where range(V) = span(RN⊥1) replaces the
centering constraints (the LTSA/GNA is unnecessary). In between we have a blend that
we will call Nonrigid Alignment (NA). With iterative eigensolving, LTSA/GNA takes
O(N) time, but requires a globally rigid set of constraints. The semidefinite graph em-
bedding does not require rigid constraints, but has O(N6) time scaling. Nonrigid Align-
ment combines the best of these methods by using LTSA/GNA to construct a basis that
drastically reduces the semidefinite program. In addition, we have the option of com-
bining an incomplete set of neighborhoods with an incomplete set of edge length con-
straints, further reducing both problems. (A forthcoming paper will detail which subsets
of constraints guarantee affine rigidity.)

Although this method does require an estimate of the local dimension for the ini-
tial LTSA/GNA, it inherits from semidefinite graph embeddings the property that the
spectrum of X gives a sharp estimate of the global embedding dimension, because the
embedding is spanned by V. In fact, one can safely over-estimate the local dimension—
this reduces the local nullspace dimension and thus the global rigidity, but the additional
degrees of freedom are then fixed in the SDP problem.



Nonrigid Embeddings for Dimensionality Reduction 53

4.1 Reducing the SDP Constraints

The SDP equality constraints can be rewritten in matrix-vector form as A�svec(G) = b,
where svec(G) forms a column vector from the upper triangle of X with the off-diagonal
elements multiplied by

√
2. Here each column of A contains a vectorized edge length

constraint (e.g., svec((vi −v j)(vi −v j)�) for an equality constraint) for some edge i ↔
j; the corresponding element of vector b contains the value D2

i j. A major cost of the SDP

solver lies in operations on the matrix A ∈ R
c2×e, which may have a large number of

linearly redundant columns. Note that c2 is relatively small due to the choice of basis,
but e, the number of edges whose distance constraints are used in the SDP, might be very
large. When the problem has an exact solution (equation 5 is feasible as an equality),
this cost can be reduced by projection: Let F ∈ R

e× f , f � e be a column-orthogonal
basis for the principal row-subspace of A, which can be estimated in O(e f 2c2) time
via thin SVD. From the Mirsky-Eckart theorem it trivially follows that the f equality
constraints,

F�A�vec(G) = F�b (6)

are either equivalent to or a least-squares optimal approximation of the original equality
constraints. In our experience, for large, exactly solvable problems, it is not unusual to
reduce the cardinality of constraint set by 97% without loss of information.

Proposition 3. The resulting SDP problem is feasible.

When the problem does not have an exact solution (equation 5 is only feasible as an
inequality), one can solve the SDP problem with a small subset of randomly chosen
edge length inequality constraints. In conjunction with the affine constraints imposed
by the subspace V, this suffices to satisfy most of the remaining unenforced length
constraints. Those that are violated can be added to the active set and the SDP re-solved,
possibly repeating until all are satisfied.

These reductions yield a practical algorithm for very large problems:

ALGORITHM: Nonrigid LTSA/GNA

1. Obtain basis: Compute extended approximate nullspace V and residuals σi of (stiff-
ened) K matrix.
2. SDP: Find G maximizing eq. 3 subject to eq. 6 or eq. 5 with a constraint subset.
2a. Repeat 2 with violated constraints, if any.
3. Upgrade to isometry: Factor G → Udiag(λ)2U� and set embedding Y =
diag(λ)U�V.

4.2 Related Work

Recently [WSS04] introduced an algorithm that applies the LLR embedding to densely
triangulated graphs, and [WPS05] introduced a related scheme called �SDE which uses
a landmark basis derived from LLE to reduce the semidefinite program. We can high-
light some substantial differences between our approach and �SDE: 1) Because LLE

is quasi-conformal and has no isometry properties, one would expect that a much
higher-dimensional LLE basis will be necessary to span the correct isometric embed-
ding (this we have verified numerically), either substantially increasing the SDP time
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pre−image

NA, 0.42 seconds

GNA, 0.78 seconds

SDP, 191. seconds

Fig. 3. A 2D NA embedding of a 4-neighbors graph on 300 points in R
256 perfectly recovers

the pre-image. The LTSA/GNA solution has five affine degrees of freedom associated with the
distorted subgraphs on the bottom boundary. The SDP solution “foams” around large cycles where
the graph is nonrigid.

or decreasing solution quality if a lower-dimensional basis is used. 2) If the manifold
has nonzero genus or concave boundary, the number of randomly selected landmarks—
and thus basis dimensions—needed to span the isometric embedding can grow expo-
nentially; not so for the LTSA/GNA basis, which depends only on local properties of
the manifold. 3) graph triangulation increases the number of graph edges by a fac-
tor of k2and the complexity of the SDP problem by k6—a major issue because k it-
self should grow quadratically with the intrinsic dimension of the manifold. Thus we
can solve problems 2 orders of magnitude larger in considerably less time, and report
exact solutions.

4.3 Example

In this example, the source manifold is a square planar patch, which is embedding iso-
metrically in R

4 through the toric map that takes each ordinate (x) → (sin x,cosx). R
4

is in turn embedded in R
8 by the same map, and so on until the ambient space has

D = 256 dimensions. The patch is randomly sampled in R
D and each point connected

to its four nearest neighbors. The graph is too sparsely connected to determine a rigid
embedding for either LTSA/GNA or the LLR SDP (see figure 3). Nonrigid GNA yields
near-perfect embeddings. For example, figure 3 depicts the pre-image and three em-
beddings of a small N = 300 point, K = 4 neighbors graph. Ordinary LTSA/GNA has a
7-dimensional nullspace, indicating that some subgraphs have unwanted affine degrees
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of freedom. This can be resolved by increasing K, but that risks bringing untrusted edge
lengths into the constraint set. SDE can fix most (but not necessarily all) of these DOFs
by fully triangulating each neighborhood, but that increases the number of edges by a
factor of K2 and the SDP time complexity by a factor of K6. Even for this small problem
NA is almost three orders of magnitude faster than untriangulated SDE; that gap widens
rapidly as problem size grows.

Empirically, NA exhibits the predicted linear scaling over a wide range of problem
sizes. Working in MatLab on a 3GHz P4 with 1Gbyte memory, 102 points took roughly
0.3 seconds;103 points took roughly 2 seconds; 104 points took 21 seconds; 105 points
took roughly 232 seconds; we see linear scaling in between. The dominant computation
is the EVD, not the SDP.

5 Application to Speech Data

The TIMIT speech database is a widely available collection of audio waveforms and
phonetic transcriptions for 2000+ sentences uttered by 600+ speakers. We sought to
model the space of acoustic variations in vowel sounds. Starting with a standard repre-
sentation, we computed a vector of D = 13 mel-cepstral features for each 10 millisecond
frame that was labelled as a vowel in the transcriptions. To reduce the impact of tran-
scription errors and co-articulatory phenomena, we narrowed the data to the middle
half of each vowel segment, yielding roughly N = 240,000 samples in R

13. Multiple
applications of PCA to random data neighborhoods suggested that the data is locally
5-dimensional. An NA embedding of the 7 approximately-nearest neighbors graph with
5-dimensional neighborhoods and a 25-dimensional basis took slightly less than 11
minutes to compute. The spectrum is sharp, with ¿99% of the variance in 7 dimensions,
¿95% in 5 dimensions, and ¿75% in 2 dimensions. A PCA rotation of the raw data
matches these percentages at 13, 9, and 4 dimensions respectively. Noting the discrep-
ancy between the estimated local dimensionality and global embedding dimension, we
introduced slack variables with low penalties to explore the possibility that the graph
was not completely unfolding. Since this left the spectrum substantially unchanged, we
conjecture that there may be topological loops or unnoticed 7-dimensional clusters, and
indeed some projections of the embedding showed holes.

Figure 4 shows how the phonemes are organized in the two principal dimensions of
the NA and PCA representations. The NA axes are clearly correlated with the physical
degrees of freedom of the speech apparatus: Roughly speaking, as one moves to the
right the mouth narrows horizontally, from iy (beet) and ey (bait) to ao (bought) and
aw (bout); as one moves up the mouth narrows vertically with the lower lip moving
forward and upward, from ah (but) and eh (bet) to ow (boat) and uh (book). The third
dimension (not shown) appears to be correlated with the size of the resonant chamber at
the back of the mouth, i.e. tongue position. After considerable study, it is still not clear
how to interpret the raw PCA axes.

A low-dimensional representation is advantageous for speech recognition because
it makes it practical to model phoneme classes with full covariance Gaussians. A long-
standing rule-of-thumb in speech recognition is that a full-covariance Gaussian is com-
petitive with a mixture of 3 or 4 diagonal-covariance Gaussians [LRS83]. The im-
portant empirical question is whether the NA representation offers a better separa-
tion of the classes than the PCA. This can be quantified (independently of any down-
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Fig. 4. LEFT: A thin slice along the two principal axes of an NA embedding of 2.5×105 vowel fea-
ture vectors. TIMIT phoneme labels are scatter-plotted according to their embedding coordinates.
The distribution of phonemes is well correlated with mouth shape (see discussion in section 5).
MIDDLE: Normalized spectra of the NA and PCA representations, showing the fraction of total
variance captured in each dimension. RIGHT: An equivalent slice through the PCA representation
slice scatter-plot is far less interpretable. Some sounds (e.g., ix in debit) depend little on lip shape
and are thus distributed freely through both plots.

stream speech processing) by fitting a Gaussian to each phoneme class and calculating
the symmetrized KL-divergence between classes. Higher divergence means that one
will need fewer bits to describe classification errors made by a (Gaussian) quadratic
classifier. We found that the divergence between classes in the d = 5 NA representa-
tion was on average approximately 2.2 times the divergence between classes in the
d = 5 PCA representation, with no instances where the NA representation was infe-
rior. Similar advantages were observed for other values of d, even, surprisingly, d = 1
and d = D.

Even though both representations are unsupervised, we may conclude that preserv-
ing short-range metric structure (NA) is more conducive to class separation than pre-
serving long-range distances (PCA). We are now working on a larger embedding of
all phonemes which, when combined with the GNA out-of-sample extension, will be
incorporated into a speech recognition engine.

6 Discussion

We have demonstrated that rigidity is a key obstacle for viable nonlinear dimension-
ality reduction, but by stiffening the constraint set and recasting the upgrade to isom-
etry as a small SDP problem, problems that are severely ill-posed and ill-conditioned
can be solved—in linear time. At time of submission, we have successfully embed-
ded problems of up to 106 points, and it appears that the principal challenge in using
these methods will be the most advantageous choice of basis dimension. The is a matter
of finding the eigengap of ill-posed problems, and we hope to make connections with
an existing literature on large-scale physical eigenproblems. Another issue is the initial
problem of graph building—at 105 points, the approximate nearest-neighbor algorithms
that make graph-building tractable begin to make substantial errors. For NLDR to be
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practical above 107 points—the size of bioinformatic and econometric problems—the
problem of reliable graph-building will have to be solved.
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A Analysis of Local-to-Global Spectral Models and Misc. Proofs
We can view the constraint matrix K as a discrete approximation to a convolution of a
candidate embedding Z with a filter If we plot columns of K, this filter resembles an
inverted Laplacian. Analysis shows that this is indeed the case:

Proposition 4. Let Z .= [z1, · · · ,zN ] ∈ R
d×N with zi = z(yi) be a data parameterization

given by some C2 multivalued map z : M → R
d on the intrinsic coordinates yi. Let

K .=
(

∑
m

SmQmQ�
mdiag(wm)S�

m

)
diag(∑

m
Smwm)−1 (7)

where binary indexing matrix Sm ∈ {0,1}N×k select k points forming the mth neigh-
borhood and neighborhood weight vector wm ∈ R

k assigns points weights accord-
ing to their distance from the neighborhood center: ({wm}i ∝ exp(−‖{Xm}i −
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Xm‖2/2σ2)/σ). Then each column of K is a discrete difference of Gaussians opera-
tor with the parameterization error ‖ZK‖2

F approximating ‖z− G∗ z−�2G∗ z‖2, the
difference between z and a smoothed version of itself, minus its convolution with a
Laplacian-of-Gaussian operator.

Proof. (prop. 4) For simplicity, we will first consider the case of a 1D manifold sampled
at regular intervals. Recall that K is an average of neighborhood nullspace projectors,
each of the form Nm = QmQ�

m = I− 1
k 11� − PmP�

m , where Pk ∈ R
k×d is an orthogonal

basis of centered local coordinates Xm − Xm1�. Because orthogonalization is a linear
operation, 1

k −{Nm}i�= j is proportional to ‖{Xm}i − Xm‖ · ‖{Xm} j − Xm‖, the product
of the distances of points i and j from the clique centroid. Viewing the elements of the
matrix PmP�

m as surface heights, we have a quadratic saddle surface, maximally positive
in the upper left and lower right corners, and maximally negative in the upper right and
lower left corners. In our simplified case, Pm = k−1/2 · [− j,1 − j, · · · , j − 1, j]� where
k = 2 j + 1 is the size of each neighborhood, and elements in each column of K are
Gaussian-weighted sums along the diagonals of Nm. Precisely, for the pth non-boundary
neighborhood, the nth nonzero subdiagonal element in a column of K is

Kp+n,p = −1
k

i=2 j

∑
i=n

(1 +(i− j)(i− j − n)
3

j( j + 1)
)e−(i− j)2

= −1
k

3
j( j + 1)

i=2 j

∑
i=n

{(1 − (i− j)2)e−(i− j)2

−(1 − n(i− j))e−(i− j)2
+

j( j + 1)
3

e−(i− j)2}.

Note that (1−(i− j)2)e−(i− j)2
is a Laplacian-of-Gaussian, and that if we hold i = n and

iterate over n (the elements of a column in K), we obtain a difference of Gaussians and
LoG’s, each with finite support; summing over i gives a superposition of these curves,
each with a different support. To generalize to non-regular sampling, simply increment
i by the difference between neighboring points. To generalize to multidimensional man-
ifolds, note that the above arguments apply to any subset of points forming a geodesic
line on M , and by the linearity of K and the Laplacian operator, to any linear combina-
tion of different subsets of points forming different geodesics.

Proposition 5. The near-zero eigenvalues of I − G−�2G grow quadratically.

Proof. (prop. 5) Consider the harmonic equation, which describes how the graph vi-
brates in the space normal to its embedding: −(I − G −�2G)Y (x, t) = d2Y (x,t)/d2t,
with Y (x,t) being the displacement at time t and position x (in manifold-intrinsic co-
ordinates). For periodic motion, set Y (x, t) = sin(ωt) ·Y (x), with Y (x) being a vibra-
tional mode. After substitution and cancellation, the harmonic equation simplifies to
(I − G −�2G)Y (x) = ω2 ·Y (x), confirming that the mode Y (x) is an eigenfunction of
the operator I − G − �2G. One can verify by substitution that Y (x) = sin(ax + b) for
a ∈ {1,2, · · · ,N} ,b ∈ R is an orthogonal basis for solutions (eigenvectors) with eigen-
values on the sigmoid curve ω2 = 1 − (1 + a2/

√
2π)e−a2

. A series expansion around
a = 0 reveals that the leading term is quadratic.
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Proof. (prop. 1) Expansion generates a new neighborhood whose parameterization is
affine to those of its constituent neighborhoods, thus its nullspace is orthogonal to K.

Proof. (prop. 2) Because of halving, at any scale the number of vertices in each neigh-
borhood expansion is, on average, a constant v � N that is determined only by the
intrinsic dimensionality and the average size of the original local neighborhoods. Halv-
ing also guarantees that the total number of neighborhood expansions is ∑i( 1

2 )iN < N.
Together these establish O(N) time. In each of the fewer than N neighborhood expan-
sions, a point receives on average d constraints from new neighbors—the same or less
than it receives in each of the N original neighborhoods.

Proof. (prop. 3) Since F is a variance-preserving rotation of the constraints, one can
always rotate the f -dimensional row-space of F = [f1, · · · , f f ] so that ∀if�i b > 0 . Then
any infeasible solution G̃ can be scaled by z > 0 such that ∀if�i A�svec(zG̃) ≤ f�i b, with
any differences made up by nonnegative slack variables.


	Introduction
	Setting
	Stiffening Ill-Conditioned Problems with Multiscale Constraints
	Regularizing Ill-Posed Problems with Edge Length Constraints
	Reducing the sdp Constraints 
	Related Work
	Example

	Application to Speech Data
	Discussion
	Analysis of Local-to-Global Spectral Models and Misc. Proofs


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




