
Properties as Processes: Their Specification
and Verification

Joel Kelso and George Milne

School of Computer Science and Software Engineering,
University of Western Australia

{joel, george}@csse.uwa.edu.au

Abstract. This paper presents a novel application of an untimed pro-
cess algebra formalism to a class of timing-critical verification problems
usually modelled with either timed automata or timed process algebra.
We show that a formalism based on interacting automata can model sys-
tem components, behavioural constraints and properties requiring proof
without elaborating the underlying process-algebraic formalism to in-
clude explicit timing constructs; and that properties can be verified with-
out introducing temporal logic, model-checking, or refinement relation
checking. We demonstrate this technique in detail by application to the
Fischer mutual-exclusion protocol, an archetypal example of a system
that depends of timing constraints to operate correctly.

1 Introduction

Many complex systems are most naturally modelled as collections of components
that operate and interact concurrently. Such modelling allows a problem to be
decomposed into parts having behaviour that is, in isolation, readily described.
To operate correctly, some complex systems rely on timing relationships between
certain critical actions shared by two or more components. In order to verify the
correctness of such systems, the tools and methodologies used must be capable
of expressing timing constraints and temporal properties in a manner clearly
comprehensible to the user.

The contribution of this paper is twofold. Firstly, it demonstrates an intuitive
way of describing relative orderings among timing intervals as processes (i.e., as
state machines), which can be naturally composed with system model processes
to supply the timing-critical aspects of the model’s behaviour. This separation
of timed and untimed behaviour helps specification, as it allows greater freedom
in partitioning the work of constructing complex models.

Secondly, this paper describes how formal protocol verificationmaybe achieved
by use of a process algebraic equivalence checker coupled with the concurrent com-
position of (1) a system description, as a process, and (2) a process which describes
the property requiring proof, which is also presented as a state / action / new-state
type process. When both types of object are modelled as processes, there is no need
for design engineers to learn a separate property description language or model
checking tool in addition to a language with which to express system behaviour.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 503–517, 2005.
c© IFIP International Federation for Information Processing 2005



504 J. Kelso and G. Milne

We believe that this simplification, and the ability to express properties requiring
verification in a state machine type manner, is of real value in encouraging engi-
neers to adopt formal description and verification methods.

This paper uses the well-known Fischer protocol to illustrate both this treat-
ment of timing representation, and the composition-based property verification
technique.

A key feature of the methodology described in this paper is the central role of
the concurrent composition operator. Concurrent composition is the fundamental
mechanism for constructing system models in the process algebra paradigm; its
use for this purpose warrants no additional comment. In our methodology, con-
current composition plays two further significant roles, namely to enforce timing
constraints, and as the core of the composition-based verification technique.

1.1 Timing Constraints as Processes

Rather than encoding timing constraints as an integral part of a system model
(which is the usual case with timed automata [2] and timed process algebra [20]
modelling), timing constraints are encoded as separate processes that express
relationships between time intervals.

This is accomplished by first determining which actions in the system model
signify the boundaries of time critical time intervals, and then defining timing
constraint processes which express the allowable sequences of occurrences of these
events. When these processes are composed with the system model, they enforce
the timing relationships that they encode.

In this way the modelling of system behaviour can be decoupled from the tim-
ing constraints. This simplifies model development and experimentation, since
timed aspects of a model can be altered without modification of the time-
insensitive aspects.

1.2 Properties as Processes

The idea of expressing properties requiring proof as processes is a well-known
process algebraic technique, described for example in [6, 18, 22]. In the case where
a correctness specification is a complete description of a system, verification
proceeds by checking that the system implementation process is equivalent to
the specification process according to some semantic equivalence relation.

Frequently, however, total behavioural equivalence between two processes
is not the goal of the proof process. For certain systems, verifying correctness
consists of determining that certain properties do in fact hold for an imple-
mented system. Such properties do not constitute a complete specification but
are rather a particular relationship between a number of distinct actions. Veri-
fication of such properties then requires the demonstration that the occurrence
of the property actions in the constructed system model process have the same
sequence of occurrence designated by the property process.

One technique for accomplishing this is to abstract all non-property actions
from the model process, and then check that the model refines the property pro-
cess according to a semantic ordering relation (see [22] chapter 14 for example).



Properties as Processes: Their Specification and Verification 505

In this paper we describe an alternative proof mechanism that avoids the
introduction of the concept of process refinement orderings, and in which con-
current composition plays a crucial role.

A similar approach to using a single language to specify system behaviour,
constraints and properties is explored for the Temporal Logic of Actions ([16])
in [1], where a close relationship between logical conjuntion of formulæ and
concurrent composition of processes is shown.

In section 2 we present the mechanism which underlies our property verifi-
cation technique. In section 3 we demonstrate the technique by application to
the Fischer protocol, showing in detail how timing constraints and correctness
properties are formulated as processes. In section 4 we discuss the significance
of this work and contrast it with related work.

2 Checking Properties via Composition

We show how the verification of a class of properties, safety properties, can be
performed in an process algebra (or interacting automata) based framework by
making use of the concurrent composition of processes and process equivalence
testing – provided that the process composition operation has certain features.

Our description of this technique is framed in terms of the Structural Op-
erational Semantics approach to formalising process behaviour [21]. Under this
approach, processes are identified with labelled transition systems (LTS). A LTS
is a rooted directed graph where each edge is labelled with an action. Each
vertex of the graph is a distinct state of the process, and each edge represents
a transition between states, with transition labels determining the interaction
between the process and its environment (or with other processes).

Labelled transition systems admit a variety of different equivalence relations
and orderings, such as trace equivalence, testing equivalence and bisimulation.
The technique we present here can be used with any of these process equivalence
relations, yielding criteria for the fulfillment of safety properties which vary in
sensitivity to internal (unobserved) process nondeterminism. Trace equivalence
is assumed here, since it is both simple and sufficiently discriminating for the
examples in this paper.

2.1 Safety Properties and Concurrent Composition

A safety property of a system is a property which states that “nothing bad” will
ever happen. When expressed as a process, a safety property process exhibits only
allowable behaviours – the set of behaviours that a system must not overstep if
it is to fulfill that property.

The concurrent composition of processes is used to verify that a system cor-
rectly satisfies a particular safety property using the following procedure:

1. The system model process is composed with the property process so that
they synchronise only for the events in the property process.

2. This composite process is compared to the system model process: if the two
are equivalent, then the system fulfills the safety property.



506 J. Kelso and G. Milne

Fig. 1. Example property and system processes

This procedure is summarised by an equation that must hold in order for system
S to fulfill property P :

S ∗ P ∼= S (1)

where S ∗ P denotes the concurrent composition of S and P .
To see how the concurrent composition of processes can be used to perform a

safety property check, consider an example property process P and two different
system component processes S and T , pictured in Figure 1. Process P represents
the property that all occurrences of actions a and b must begin with a and then
strictly alternate.

By having P operate in parallel with S and synchronising on actions a and b,
P can be considered to be “supervising” S, watching for occurrences of actions
a and b. Let us follow the possible activity of the combined process S ∗ P .

Both processes begin in state 1. In state S1, S can perform action a and
transition to state S2. Since P and S synchronise on action a, P participates in
this action and also transitions from state P1 to state P2.

In state S2, S can perform action c and transition to state S3. Since P is
uninterested in action c, S is free to perform this action without any change
in P . In state S3, S may again perform c and return to state S2. S may thus
perform any number of c actions while P remains in state P2.

In state S3, S may also perform a b action. In this case, P must be in state
P2, and is also ready to perform action b, returning both processes to state 1.

In this example, process S is never prevented from performing an action by
P . The behaviour of the composite process S ∗ P is thus equivalent to S, so S
satisfies property P .

Process T provides a contrasting example of a process that fails to satisfy
property P . By again following the concurrent behaviour of T and P we can see
how this is detected.

The initial behaviour of T and P is the same as S and P – both participate
in action a and transition to state 2. In state T2, T can only perform action a.
Since T and P synchronise on action a, P must also perform a. But in state P2,
P is only ready to perform action b. Neither process allows the other to continue,
and so the composite behaviour of T and P ends at this point. This behaviour
(a single occurrence of a) is clearly not equivalent to the behaviour of T , so T
does not satisfy property P .



Properties as Processes: Their Specification and Verification 507

These examples are extremely simple, but the technique operates correctly
for arbitrarily complex processes, including those where both system and prop-
erty are nondeterministic. The soundness of this property checking technique is
proven in [10].

In order for this proof technique to work, the concurrent composition opera-
tion must have two important characteristics. Firstly, the operator must be able
to enforce synchronisation for actions in the property process, while allowing
free asynchronous activity for other actions. Secondly, the operator must allow
multi-way synchronisation. It must allow two or more processes to participate in
an interaction, so that property processes can synchronise on the same actions
present in the system processes. This enables a property process to monitor sys-
tem processes and restrict their behaviour to activity that correctly satisfies the
property. If the system processes do contravene the specified property, then the
equivalence check will detect the fact that the composite system’s activity has
been curtailed, signifying that the safety property is not satisfied.

The concurrent composition operator of the CIRCAL formalism [17], used
in this paper, has these characteristics. The CCS [19] parallel composition op-
erator cannot be used in this manner since CCS synchronisation operates with
complementary pairs of events, which are eliminated in the resulting composite
process. The CSP [9] generalised parallel operator is suitable since the set of syn-
chronisation events is an explicit parameter to the operator, and the operator
allows multi-way composition.

2.2 Modelling With CIRCAL

In this paper we adopt the CIRCAL process algebra [17, 18] for our definition of
model components, constraints and properties. Several different notations and
toolsets have been developed for defining complex systems as CIRCAL processes.
XCircal [18], used in this paper, is a C-like language in which the CIRCAL
process algebra operators have been embedded, while [6] defines an intuitive and
precise diagrammatic notation for CIRCAL processes. Also under development
is a library of functional language combinators (in Haskell) for defining and
manipulating CIRCAL processes [11], and a visual programming interface for
building processes in diagrammatic form.

These representations build upon the same underlying CIRCAL process for-
malism, and enable modellers to exploit the formalism’s important features.
Three of the formalism’s characteristics are particularly relevant to our proof
technique. Firstly, the CIRCAL composition operator fulfills the partial synchro-
nisation requirement necessary for the composition-based property verification
technique.

Secondly, the CIRCAL composition operator is a multi-way operator in which
an action shared by two processes remains visible in the composite process,
enabling additional processes to participate in the event. This allows processes
that implement behavioural constraints, diagnostic “probes” (see for example
[18]), and correctness properties to be composed into a system model without
having to modify the original processes.



508 J. Kelso and G. Milne

Thirdly, the fact that transitions are labelled with sets of events allows ar-
bitrary finite relations and functions to be constructed and incorporated into a
model. These can be used to connect and adapt process components, or as model
components in their own right.

3 Modelling and Verification Methodology

In this section we outline our modelling and verification methodology, then illus-
trate the methodology by application to a timing-dependent concurrent mutual-
exclusion protocol. The methodology proceeds in three phases.

1. The first phase consists of identifying critical actions in the system being
modelled and constructing processes that capture the essential details of the
system’s behaviour. This involves constructing explicit transition systems for
parts of the system that can be modelled as simple finite state behaviours,
and using concurrent composition and abstraction operations to construct
larger, more complex systems in a hierarchical fashion. This phase is illus-
trated in section 3.2. At this stage the detailed time-critical aspects of the
model may be ignored.

2. In the second phase, the model events that delimit critical timing inter-
vals are identified. Timing constraint processes that specify the necessary
relationships between these intervals are then constructed and composed to-
gether to obtain a timed system. This phase is illustrated in this paper in
section 3.3.

3. The third phase consists of the definition and verification of required system
properties, which is accomplished by the construction of property processes
and application of the constraint-based verification technique. This phase is
illustrated in section 3.4.

3.1 Modelling the Fischer Protocol

The Fischer Protocol [15] is a distributed algorithm for ensuring critical section
mutual exclusion between a number of concurrent processes. The protocol is
simple yet relies on timing constraints among its processes for correct operation.
It has become a standard for demonstrating verification techniques for timed
systems, see for example [3, 14, 24].

We demonstrate our property verification methodology by treating part of
the specification for correct operation of a Fischer protocol system as a safety
property. We model both the system and the protocol’s essential correctness
property (mutual exclusion) as processes, and verify that the modelled system
satisfies the property.

System Description. A Fischer protocol system consists of N workers. Each
worker goes about some independent activity (not modelled here) and occasion-
ally attempts to perform some activity which needs to be protected by a critical
section. It is assumed that in order to operate correctly, the system must have



Properties as Processes: Their Specification and Verification 509

the property that at most one worker is performing its critical section activity
at any instant.

To enact the Fischer protocol, the workers interact by reading from and
writing to a shared register. The register can take on one of N + 1 values, one
for each process plus an “empty” state Z. Figure 2 shows the basic operational
cycle of a Fischer protocol worker. Workers wait (or perform their non-critical
activity) in the start state (A) until the register becomes empty. They may then
indicate their intention to enter their critical section moving to the request state
(B), in which case they must set the register to indicate the fact, and then make
the transition to the wait state (C) within a certain time period. In the wait
state the worker will either notice that another worker has made a later request,
in which case this worker aborts its attempt to enter its critical section and
returns to the start state; or the waiting period will elapse and the worker enters
the critical section state (D). Eventually the worker exits its critical section and
returns to the start state, setting the shared register to the empty state.

3.2 Process Models of System Components

In the construction of our model of a Fischer protocol system, we utilise processes
to model two quite different classes of object. In the following section we use
processes to model abstract temporal constraints needed for the correct operation
of Fischer’s protocol. This leaves us free to model, in this section, the physical
elements of the protocol system without regard to timed behaviour.

Worker processes are modelled in CIRCAL as behavioural processes in a
straightforward way: a diagram of the worker process model is shown in Figure
3. The process has four states A, B, C and D. The transitions are labelled
with two varieties of actions. There are actions of the form xy, where x and y
are states; the purpose of these actions is to signal the activity of the process at
every transition. As we shall see later, these actions will be shared with constraint
and property processes in order to refine and analyse the system model.

Each transition is also labelled with an additional actions that indicate the
worker’s interaction with the shared register (which is also modelled as a process).
These actions take the form k := a, where the worker writes a process name a to
the register; or k == a (or k! = a), where the worker reads and tests the value of
the register. These actions are shared with the process model of the register, and
coordinate the activity of the worker process with the register process.

Fig. 2. The Fischer protocol worker process states



510 J. Kelso and G. Milne

Fig. 3. The Fischer worker process model

Process Fischer(Event ab,bc,ca,cd,da,ksetz,keqz,ksetp,
keqp,kneqp) {

Process A, B, C, D;
A <- (ab keqz) B
B <- (bc ksetp) C
C <- (ca kneqp) A + (cd keqp) D
D <- (da ksetz)
return A

}

Fig. 4. The XCircal code for the worker process

The XCircal code for constructing a worker process is given in Figure 4.1

This prototypical worker process is instantiated with events named to indicate
the worker process in which they occur. For reasons that will become clear later,
actions involving the empty register state also tagged with the worker’s name.
For example, the action pk == z indicates that process P is testing to see if the
register’s value has value Z.

FischerP <- Fischer(pab,pbc,pca,pcd,pda,pksetz,pkeqz,ksetp,
keqp,kneqp)

FischerQ <- Fischer(qab,qbc,qca,qcd,qda,pksetz,qkeqz,ksetq,
keqq,kneqq)

The Shared Register Model. Figure 5 shows a process which models the
shared register for a system of two worker processes. The process has one state
for each worker process, plus one state representing the “empty” state of the
register (labelled z). Write actions of the form k := a lead from every state
to the state a. For each state a, read actions of the form k == a lead from
a to itself. For clarity, Figure 5 omits the read transitions of the form k!=a :
for each A these are present as looping transitions for all states other than A.
Worker processes performing write actions cause the register to change state, and
worker processes will only be able to perform read actions if the register is in a
compatible state. For brevity, we have omitted XCircal code for the remainder
of the transition systems.
1 Since XCircal does not allow them in event names, the non-alphabetic characters

are transcribed to mnemonic characters in an obvious way.



Properties as Processes: Their Specification and Verification 511

Fig. 5. The shared register process for a system with two worker processes P and Q

Fig. 6. Diagram of untimed Fischer protocol system

Fig. 7. Register multiplexer process M



512 J. Kelso and G. Milne

The Untimed System. Figure 6 shows the Fischer protocol system of two
worker processes, using a simple but powerful (and fully formal) diagramming
notation introduced in [6]. In this notation, each rectangle represents an abstrac-
tion boundary containing one or more processes: all actions other than those ap-
pearing as “ports” on the rectangle’s perimeter are abstracted and hidden from
the exterior. In a simplified version of the notation, employed here, lines simply
connect ports with identical names (thus denoting a single shared action). At
the innermost level, processes are ultimately represented by transition diagrams.
For reasons of space, we only show a single level of nesting in a diagram: the
internal structure of internal processes are represented instead by process names.

There are several things to note about the composite system.

– The complete Fischer protocol system consists of the concurrent composition
of the worker processes, the shared register process, and a register-access
mediation process (see below).

– For actions which involve the empty state Z, communication between the reg-
ister and worker processes are mediated by an additional process M (pictured
in
Figure 7). If these each of these events were modelled by a single system-
wide action, this would force each action to be synchronised across all worker
processes. This is clearly incorrect, since it would require all workers to ren-
dezvous for reads or writes involving the Z register value. Considering the
intended behaviour more carefully, we can see that outside of the register
itself, the action of each worker setting (or checking) a particular register
value are distinct events which can occur independently. Process M acts as
a junction that allows asynchronous access to shared register actions.

– All the register actions are abstracted from the FischerSystem process.
What remains visible to the outside are the transition-marking actions for
each worker process.

The XCircal code that defines an (untimed) Fischer system with two workers
is:

FischerSystem <- (FischerP * FischerQ * Register * Multiport) -
(pksetz pkeqz qksetz qkeqz kneqp kneqq kneqz
ksetp ksetq ksetz keqp keqq keqz)

3.3 Process Models of Timing Constraints

Since the Fischer protocol relies on timing constraints among its worker processes
for correct operation, the untimed model of the Fischer protocol presented above
is inadequate. Specifically, after indicating its intention to enter its critical sec-
tion, a worker process P needs to wait “long enough” to ensure that all other
workers are either (a) back at the start state, or (b) have already followed P ,
usurped P s place, and have sent P back to the start state.

One approach to modelling the timed behaviour of a Fischer protocol system
is to equip each worker with its own local clock, and predicate certain transitions



Properties as Processes: Their Specification and Verification 513

Fig. 8. Fischer protocol timing constraint between processes P and Q

on clock values. This is the Timed Automata approach, described for example
in [14].

Applying our methodology, we express the “workers wait long enough in state
C” condition purely in terms of the sequences of events allowed (or disallowed)
by timing interval restrictions. The condition that worker P waits long enough
for worker Q can be enforced by the requirement that the interval between the
qab and qbc event be longer than the interval from qab to any pcd event. In other
words, once a qab event has occurred, a pcd event may not occur (i.e. P must
wait) until qbc has occurred. A process that enforces this constraint is shown in
Figure 8.

The process shown in Figure 8 is an instance of a family of processes which
have the effect of disallowing a specific sequence of actions. In this case the
process disallows the subsequence qab → pcd in the set of all sequences of events
drawn from {qab, qbc, pcd}. Constraints based on disallowing longer sequences of
events can easily be generated, using an algorithm based on the Knuth-Morris-
Pratt string searching algorithm [13]. This process expresses the constraint that
requires P to wait for worker Q. To fully express the timing constraints for the
whole system a constraint process is needed for every ordered pair of distinct
workers, so n(n − 1) constraint processes are required for an n worker system.2

For our two-worker example, the two instantiated constraint processes are:

TimingPQ <- TimingConstraint(pcd,qab,qbc)
TimingQP <- TimingConstraint(qcd,pab,pbc)

Applying these timing constraints to our untimed system yields the process:

TimedFischer <- FischerSystem * TimingPQ * Timing QP

The relative timing interval constraint technique employed here is more
generic and less concrete than the use of clock variables in timed automata.
Unlike clock variables, relative timing interval constraints do not directly sug-
gest an implementation in terms of local clocks used by concurrent processes. It
is interesting to note that the nature of the CIRCAL composition operator allows
the timing interval constraint processes given in this subsection to be replaced
2 By using slightly more complex processes, this can be reduced to n constraint pro-

cesses for an n worker system. There are a number of different constraint processes
that correctly enforce the Fischer protocol’s timing requirements; the constraint pro-
cess used here is one of the simplest.



514 J. Kelso and G. Milne

by an alternative set of processes which express the necessary timing constraints
in another idiom – as discrete local clocks for each process for example – without
requiring modification to either the worker processes or the correctness property
process (described in the next section).

3.4 Process Models of Behavioural Properties

The mutual exclusion property says that only one process may be in its critical
section at a time. In our model, this property can be expressed in terms of
the events that mark each worker process entering (cd events) and leaving (da
events) its critical section. For a system of n worker processes, a simple n + 1
state property process indicates what sequences of events are compatible with
the mutual exclusion property. The two-worker version of this property process
is show in Figure 9.

Fig. 9. Mutual-exclusion property for two processes P and Q

3.5 Verification

The behaviour of a protocol system (including the shared register and timing
constraint processes) for two or three workers is simple enough that the mutual
exclusion property can be verified by printing out the critical section behaviour
and inspecting it. Figure 10 shows the complete behaviour of a two-worker proto-
col system, with all actions except critical section actions hidden by the abstrac-
tion operator. It clearly conforms to the two-worker mutual exclusion property
(the two being in fact identical). Larger systems can be verified by using the
technique described in section 2. Treating the mutual exclusion property as a
safety condition (it expresses the allowable behaviours for a correct system), our
correctness condition is

TimedFischer * MutexProperty ∼= TimedFischer

where T imedFischer is the system model process (including timing constraint
processes) and MutexProperty is the mutual exclusion property for the appro-
priate number of workers. Using the current generation of CircalSystem tools we
have successfully performed this verification for systems of at most 5 workers.



Properties as Processes: Their Specification and Verification 515

Start State Transition Label End State
----------- ---------------- ---------

1 ["Pcd"] -> 2
1 ["Qcd"] -> 3
2 ["Pda"] -> 1
3 ["Qda"] -> 1

Fig. 10. Critical section behaviour of worker, register and timing constraint processes

4 Discussion

The ability of a modelling formalism to accurately represent timing information
is becoming increasingly significant when designing a range of complex, concur-
rent systems such as asynchronous digital logic circuits [8, 23, 5] and network
communication protocols [4].

In this paper we present a practical modelling and verification methodology
which exploits the characteristics of a specific process algebraic composition
operator. This approach differs from existing methodologies.

Rather than augment an automata model with clocks and timed transitions,
temporal constraints are expressed as relative timing interval constraint pro-
cesses. The primary requirements for use of the interval timing constraints tech-
nique are that (a) the critical states and time intervals in the system are cleanly
delimited by actions, and that (b) timing constraints can be expressed as rela-
tionships between these intervals. For the example in this paper the constraint
relationship takes the form a relative differences in interval duration for two
intervals that start at the same moment. Other timing properties known to be
amenable to expression as interval constraints include intervals required to be
overlapping (or non-overlapping); and intervals required to be entirely contained
within other intervals. Cowie [7] describes a methodology for translating a class
of constraints normally expressed in an interval algebra to constraint processes.

Our methodology contrasts with previously described methodologies for mod-
elling and verifying timing-dependent systems. Timed Automata [2] are formal
automata models which include a real-valued local clock value for each process,
and allow transitions to be predicated on clock values. The Uppaal and TVS
systems are toolsets that include model-checkers for Timed Automata (Fischer
protocol verification examples for each are reported in [14] and [3]).

Timed process algebra [20] extend untimed process algebra (such as CCS,
CSP or ACP) with operators for expressing the possibility that transitions may
be delayed a certain period after they become active. [24] describes the Fischer
protocol in terms of a discrete-time and a real-time process algebra.

A third approach to modelling and analysing timed systems is to introduce
timing components (e.g. clock processes and “clock tick” actions) into an un-
timed framework such as an untimed process algebra – an example of this ap-
proach is given in this is given in [4].

The methodology described in this paper contributes to the state of the art
of formal methods by providing (1) an alternative technique for defining con-



516 J. Kelso and G. Milne

straints in timing-critical systems: separate constraint processes which define
relationships between critical timing intervals; and (2) an alternative technique
for verifying properties in such systems: the composition-based verification tech-
nique, which does not require the introduction of temporal logic, model-checking
or refinement relation checking.

This elegant approach does not introduce any additional mathematical con-
cepts, and capitalises on a concept already very familiar to engineers: processes
described by state transition diagrams. The use of state-machine based property
and constraint definition does not, of course, guarantee superior expressiveness
and comprehensibility in all cases: it depends very much on the system and prop-
erties in question. The methodology presented in this paper does however present
a lower barrier of entry to a population design engineers that would otherwise
be unlikely to adopt formal methods techniques, and provides an additional set
of tools for the experienced formal methods practitioner.

The example presented here is simple, due to space constraints. We can
report a number of observations about the application of the methodology to
larger systems (for example, see [12]).

Firstly, increasing structural and behavioural complexity of systems does
not appear to present a major problem in system modelling. We find that the
encapsulation of system processes as components with well defined interfaces
(the process signature) and encapsulated state provides an “object oriented”
environment that allows the construction of clean, hierarchical models.

Secondly, whilst some entities such as finite variables and logical relations can
be naturally modelled as component processes, this does not appear to be the
case for arithmetic or dynamically sized data structures (even when restricted
to finitely bounded versions).

We see this methodology being used, as in the Fischer protocol example, to
analyse complex systems in terms of sequences of critical events. Experimenta-
tion and modelling at this level can be used to develop correct algorithms and
protocols.

We would like to acknowledge that this research has been funded in part by
the Australian Research Council.

References

1. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages, 17(3), 1995.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

3. Marcel Ammerlaan, Ronald Lutje Spelberg, and Hans Toetenel. XTG - an engi-
neering approach to modelling and analysis of real-time systems. In 10th Euromicro
Workshop on Real Time Systems, pages 88–97. IEEE Computer Society Press, jun
1998.

4. A. Cerone, A. J. Cowie, G. J. Milne, and P. A. Moseley. Modelling a time-dependant
protocol using the CIRCAL process algebra. Lecture Notes in Computer Science,
2102:124–138, 1997.



Properties as Processes: Their Specification and Verification 517

5. A. Cerone, D. A. Kearney, and G. J. Milne. Integrating the verification of timing,
performance and correctness properties of concurrent systems. In The International
Conference on Application of Concurrency to System Design, pages 109–119. IEEE
Computer Society Press, 1998.

6. A. Cerone and G. J. Milne. A methodology for the formal analysis of asynchronous
micropipelines. In International Conference on Formal Methods in Computer-Aided
Design (FMCAD’00), number 1954 in Lecture Notes in Computer Science, pages
246–262. Springer-Verlag, 2000.

7. Alex Cowie. The Modelling of Temporal Properties in a Process Algebra Framework.
PhD thesis, University of South Australia, 1999.

8. S. B. Furber and P. Day. Four-phase micropipeline latch control circuit. IEEE
Transactions on VLSI Systems, 4(2):247–253, June 1996.

9. C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

10. Joel Kelso. Proof of the soundness of the concurrent composition property check-
ing technique. Technical Report Report-05-003, School of Computer Science and
Software Engineering, Univeristy of Western Australia, 2005.

11. Joel Kelso and George Milne. The prototype Haskell CIRCAL system.
http://www.csse.uwa.edu.au/FormalSpecification/HaskellCircal/, 2003.

12. Joel Kelso and George Milne. An interacting automata model of a fault-tolerant
scada system. Technical Report Report-05-004, School of Computer Science and
Software Engineering, Univeristy of Western Australia, 2005.

13. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6(1):323–350, 1997.

14. K. J. Kristoffersen, F. Laroussinie, K. G. Larsen, P. Pettersson, and Wang Yi.
A composition proof of a real-time mutual exclusion protocol. Technical Report
RS-96-55, Aalborg University, Denmark, 1996.

15. Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Com-
puter Systems, 5(1):1–11, 1987.

16. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

17. George J. Milne. CIRCAL and the representation of communication, concurrency
and time. ACM Transactions on Programming Languages and Systems, 7(2):270–
298, 1985.

18. George J. Milne. Formal Specification and Verification of Digital Systems.
McGraw-Hill, 1994.

19. Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

20. Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process
algebras. In Kim Guldstrand Larsen and Arne Skou, editors, Computer Aided
Verification, 3rd International Workshop, CAV ’91, volume 575 of Lecture Notes
in Computer Science, pages 376–398. Springer, 1992.

21. G. Plotkin. Structural operational semantics. Technical Report DAIMI FN-19,
Aahus University, 1981 (reprinted in 1991).

22. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
23. Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,

1989.
24. J. Vereijken. Fischer’s protocol in timed process algebra. Technical Report CSR

94/32, Eindhoven University of Technology, Computing Science Department, 1994.


	Introduction
	Timing Constraints as Processes
	Properties as Processes

	Checking Properties via Composition
	Safety Properties and Concurrent Composition
	Modelling With CIRCAL

	Modelling and Verification Methodology
	Modelling the Fischer Protocol
	Process Models of System Components
	Process Models of Timing Constraints
	Process Models of Behavioural Properties
	Verification

	Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


