
Deriving Non-determinism from Conjunction
and Disjunction

1 Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences,
South Fourth Street No.4, Zhong Guan Cun, 100080, Beijing, P.R. China

2 Lehrstuhl für Praktische Informatik II, Fakultät für Mathematik und Informatik,
Mannheim Universität, D7,27, 68163, Mannheim, Deutschland

Abstract. In this paper, we show that the non-deterministic choice “+”,
which was proposed as a primitive operator in Synchronization Tree Logic
(STL for short) can be defined essentially by conjunction and disjunction
in the µ-calculus (µM for short). This is obtained by extending the µ-
calculus with the non-deterministic choice “+” (denoted by µM+) and
then showing that µM+ can be translated into µM. Furthermore, we also
prove that STL can be encoded into µM+ and therefore into µM.

1 Introduction

Compositional methods allow one to build up a large system by composing exist-
ing systems with the defined constructors and reduce the problem of correctness
for a complex system to similar and simpler correctness problems for the sub-
systems. Because the complexity of large systems is normally untractable, it is
necessary that a method for developing these systems is compositional (verti-
cally or horizontally) in order to avoid combinatorial explosion in specifying and
verifying these systems.

It is widely agreed that modal and temporal logics such as the µ-calculus
[5] and Hennessy-Milner Logic (HML for short) [4], are an appropriate tool for
the specification and proof of reactive systems. In many cases, these systems
can be modelled by the term language T [{ε}, {+}, Act,X] of an algebra with a
congruence relation ∼, where T [{ε}, {+}, Act,X] is constructed from a constant
ε by using a set Act of unary operators, a binary operator + and recursion.
T [{ε}, {+}, Act,X] is at the base of many process algebras, where Act repre-
sents a set of action names, + the non-deterministic choice and ε the system
performing no actions. The terms can be interpreted over trees labeled over Act -
synchronization trees - following the terminology of [8]. It is required that modal
logics L meet the condition of adequacy, namely,

∀t1, t2 ∈ T [{ε}, {+}, Act,X] (t1 ∼ t2 iff ∀φ ∈ L(t1 |= φ iff t2 |= φ)).
? This work is supported in part by CNSF-60493200 and CNSF-60421001.

Naijun Zhan1,� and Mila Majster-Cederbaum2

Keywords: Non-determinism, Synchronization Tree Logic, -calculus,
process algebra.

µ

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 351–365, 2005.
c© IFIP International Federation for Information Processing 2005

I.e, the congruence ∼ and the equivalence relation induced by the logic agree.
For example, HML has the property, i.e., two CCS terms are equal up to strong
bisimulation if and only if they satisfy the same HML properties, see [4].

On the other hand, it is desirable that the logics have compositionality, i.e.
there exists a connection between the connectives of these logics and the con-
structors of programs so that one can reduce the problem of correctness for a
complex system to similar and simpler correctness problems for the subsystems.
It seems that many classic modal logics like the µ-calculus and HML do not have
such a property.

Motivated by the above two requirements, Graf and Sifakis proposed a modal
logic, called Synchronization Tree Logic (STL) [2]. The language of formulae of
STL is generated from the constants ε,> by using the boolean connectives, the
set 2Act of unary operators where Act is a set of actions, the binary operator +
and fixpoint operators. The operator + of the logic is an extension of the one + of
programs. P |= φ1 +φ2 means that there exist P1 and P2 such that P ∼ P1 +P2,
P1 |= φ1 and P2 |= φ2. Therefore, T [{ε}, {+}, Act,X] is contained in STL, i.e.,
programs are formulae of the logic. In order to avoid confusions, we will use φP

to denote the formula corresponding to the program P . So, the verification of
an assertion P |= φ can be reduced to the syntax-directed proof of the validity
of the formula φP ⇒ φ.

It is clear that STL is more expressive than µM since it is not hard to encode
µM into STL, for example, [A]φ can be defined as ¬(A¬φSTL +>) and 〈A〉φ as
AφSTL + >, where A ⊆ Act and φSTL stands for the counterpart of φ in STL.
But for the converse direction, by our knowledge, it seems that until up to now
it is still open.

In this paper, we will study the issue of the definability of + in µM and give
an affirmative answer. We show that the choice + can be defined essentially by
conjunction and disjunction in µM. This is captured by extending µM with the
choice + to µM+ and then encoding µM+ into µM. Furthermore, we show that
STL can be translated into µM+, and we can thus claim that µM is as expressive
as STL.

The rest of this paper is organized as follows: Some basic notions are defined
in Section 2. Section 3 briefly reviews µM firstly, then extends it with the non-
deterministic choice + to µM+. Section 4 is devoted to encoding µM+ into µM.
STL and some related results are provided in Section 5. Section 6 is devoted to
translating STL into µM+. A short conclusion is given in Section 7.

2 Preliminaries

Consider a term language T built from the constants ε, τ , and a set X of pro-
cess variables by using a set Act of unary operators, a binary operator +, and
recursion.

Formally, T is formed according to the following rules:

– ε, τ ∈ T , X ⊆ T ,
– aP, P1 + P2, rec x.P ∈ T if a ∈ Act, x ∈ X , P, P1, P2 ∈ T .

352 N. Zhan and M. Majster-Cederbaum

We denote by T [{ε}, {+}, Act,X] the sub-language which consists of all the
well-guarded and closed terms in T , where rec x.P is well-guarded means that
any occurrence of the variable x in P is within the scope of an operator of Act.

For a given P ∈ T , the set of actions that occur in P is called its sort, denoted
S(P), inductively defined by S(ε) =̂ ∅, S(τ) =̂Act, S(x) =̂ ∅, S(aP) =̂ {a} ∪
S(P), S(P1 + P2) =̂ S(P1) ∪ S(P2), S(rec x.P) =̂ S(P).

Intuitively, we consider that elements of T [{ε}, {+}, Act,X] represent pro-
grams: Act is a set of atomic actions; + stands for non-deterministic choice; and
ε for the program performing no actions; τ can be conceived as a program that
behaves like chaos in CSP [3] which can do anything.

A structured operational semantics of T in Plotkin’s Style is defined as fol-
lows:

Act
aP

a→ P
Nd P1

a→ P ′
1

P1 + P2
a→ P ′

1, P2 + P1
a→ P ′

1

Rec P1[rec x.P1/x]
a→ P ′

1

rec x.P1
a→ P ′

1

Chaos
τ

a→ Q
for any a ∈ Act and Q ∈ T .

A process term P ∈ T determines a labelled transition system, i.e., a tuple
T (P) = (Σ,S(P),→, P), where Σ is the set of states which is reachable from
P , and P ∈ Σ is the initial state, →⊆ Σ × S(P) × Σ is the set of transitions,
derived from the above operational semantics.

Remark 1. 1. Any transition system representing a term of T [{ε}, {+}, Act,X]
is always finitely branching as only well-guarded terms are admitted;

2. The sort of each term of T [{ε}, {+}, Act,X] is finite as so is its syntax.

Definition 1. A binary relation S over T [{ε}, {+}, Act,X] is called a strong
bisimulation if (P,Q) ∈ S implies

– whenever P a→ P ′ then, for some Q′, Q
a→ Q′ and (P ′, Q′) ∈ S, for any

a ∈ Act; and
– whenever Q a→ Q′ then, for some P ′, P

a→ P ′ and (P ′, Q′) ∈ S for any
a ∈ Act.

Given two processes P,Q ∈ T [{ε}, {+}, Act,X], P and Q are strongly bisimilar,
written P ∼ Q, if (P,Q) ∈ S for some strong bisimulation S.

It is shown in [7] that ∼ is a congruence on T [{ε}, {+}, Act,X]. [1] proved
the following result, namely,

Lemma 1. For each P ∈ T [{ε}, {+}, Act,X], there exists a process of the form
Σm

i=1Σ
iai
j=1aiPi,j such that P ∼ Σm

i=1Σ
iai
j=1aiPi,j, where ai 6= aj if i 6= j.

Note that an empty sum is abbreviated as ε.

3 The µ- alculus and Its Extension with “+”

In this section, we first briefly review the µ-calculus; then extend the logic with
the non-deterministic operator “+”. We denote by µM+ the extension.

C

Deriving Non-determinism from Conjunction and Disjunction 353

For easing to encode STL into µM, we use the slightly generalized version
of the µ-calculus (see [9]) in the sense that modalities on sets of actions are
adopted rather than modalities on a single action, although the two formalisms
are equivalent if the set of actions is assumed to be finite.

3.1 µM

Let Act be a set of atomic actions, ranged over by a, b, c, A,B, . . . stand for
the subsets of Act. Let tt be propositional constant as usual, and X be a set of
variables, ranged over by x, y, z,

Formulae of µM are generated by:

φ ::= tt | x | ¬φ | φ ∨ φ | 〈A〉φ | [A]φ | µx.φ,

where A ⊆ Act and x ∈ X .
The notions of scope, bound and free occurrences of variables, closed and open

formulae, etc. are the same as in first-order predicate logic, where µx is treated
as quantifier. We will use fn(φ) to stand for the variables that have some free
occurrence in φ, and bn(φ) for the variables that have some bound occurrence in
φ. We say that φ is positive (negative) in the variable x if every free occurrence
of x in φ occurs within the scope of an even (odd) number of negations ¬. A
formula φ is said positive (negative) if for every x ∈ bn(φ), its scope in φ is
positive (negative) in x. A formula φ is called strongly positive if it is positive
and each occurrence of x is within the scope of an even number of negations ¬
for any x ∈ fn(φ). For example, let φ1=̂x∨µx.¬¬x, φ2=̂¬y∨µx.¬¬x. It is clear
that φ1 and φ2 both are positive; however, φ1 is strongly positive as well, but
φ2 is not. We say that x is guarded in φ if every occurrence of x in φ is within
the scope of 〈A〉 or [A] for some A ⊆ Act. A formula φ is called guarded if each
variable in bn(φ) is guarded.

If A = {a}, we directly write 〈a〉φ and [a]φ instead of 〈{a}〉φ and [{a}]φ
respectively.

We denote by Lµ(Act) the language of formulae of µM that are positive and
guarded, by cLµ(Act) the set of all closed formulae in Lµ(Act). As [11] showed
that any formula φ ∈ µM is equivalent to a positive guarded formula φ′, we
theorefore only focus on Lµ(Act) and cLµ(Act) in what follows.

A valuation ρ is a mapping with the type ρ : X → 2T [{ε},{+},Act,X], which
associates a set of processes with each propositional variable. ρ[x ; A] agrees
with ρ except for assigning A to x.

Definition 2. The semantics of Lµ(Act) under a valuation ρ is given by a sat-
isfaction relation between T [{ε}, {+}, Act,X] and Lµ(Act) relative to ρ, denoted
by |=ρ

µM, inductively defined as follows:

354 N. Zhan and M. Majster-Cederbaum

P |=ρ
µM tt,

P |=ρ
µM x, iff P ∈ ρ(x),

P |=ρ
µM ¬φ iff P 6|=ρ

µM φ,

P |=ρ
µM φ1 ∨ φ2 iff P |=ρ

µM φ1 or P |=ρ
µM φ2,

P |=ρ
µM 〈A〉φ iff ∃a ∈ A,∃P ′.P

a→ P ′ and P ′ |=ρ
µM φ,

P |=ρ
µM [A]φ iff ∀a ∈ A,∀P ′.P

a→ P ′ implies P ′ |=ρ
µM φ,

P |=ρ
µM µx.φ iff P ∈

⋂
{A | {Q | Q |=ρ[x;A]

µM φ} ⊆ A},

where P, P ′ ∈ T [{ε}, {+}, Act,X] and A ⊆ T [{ε}, {+}, Act,X].

Note that the restriction that all formulae of Lµ(Act) are positive guarantees
that the interpretation of a formula of the form µx.φ is well defined by the
Tarski-Knaster Theorem [10].

Since the meaning of a closed formula φ is independent of valuations, we will
abbreviate P |=ρ

µM φ as P |=µM φ for any valuation ρ.
The following derived operators are useful:

ff =̂ ¬tt,
φ1 ∧ φ2 =̂ ¬((¬φ1) ∨ (¬φ2)),
φ1 ⇒ φ2 =̂ (¬φ1) ∨ φ2,

φ1 ⇔ φ2 =̂ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1),
νx.φ =̂ ¬(µx.¬φ{¬x/x}).

Convention: In order to improve the readability, in the later, we assume the
binding precedence among the operators as “¬” > “∨” = “∧” > “µx” = “νx”
> “⇒” = “⇔”.

3.2 µM+

µM+ is an extension of µM with the non-deterministic choice “+”. Informally,
φ+ψ holds in a process P means that there exist P1 and P2 such that P ∼ P1+P2,
P1 satisfies φ and P2 meets ψ.

Given a set Act of atomic actions and a set X of variables, formulae of µM+

are generated as follows:

φ ::= tt | x | ¬φ | φ ∨ φ | 〈A〉φ | [A]φ | φ+ φ | µx.φ,

where x ∈ X and A ⊆ Act.
Some notions for µM+ can be defined same as in µM. We will use L+

µ (Act)
to denote the language of formulae of µM+ that are guarded and positive and
cL+

µ (Act) to stand for the set of closed formulae in L+
µ (Act).

Deriving Non-determinism from Conjunction and Disjunction 355

Definition 3. A formula φ ∈ L+
µ (Act) is called strictly guarded, if each variable

x ∈ fn(φ)∪bn(φ) is guarded and does not occur in any sub-formula of the forms
x+ ψ or ¬x+ ψ.

Note that strictly guarded is stronger than guarded, for instance, 〈A〉(x+ y)
is guarded, but not strictly guarded.

Definition 4. The semantics of L+
µ (Act) under a given valuation ρ is given by

a satisfaction relation between T [{ε}, {+}, Act,X] and L+
µ (Act) relative to ρ,

denoted by |=ρ
µM+ . The definition of |=ρ

µM+ contains all clauses listed in Defini-
tion 2, in addition to including the following clause for interpreting “+”:

P |=ρ
µM+ φ1 + φ2 iff ∃P1∃P2.P ∼ P1 + P2, P1 |=ρ

µM+ φ1 and P2 |=ρ
µM+ φ2,

where P, P1, P2 ∈ T [{ε}, {+}, Act,X].

Since the meaning of a closed formula φ is independent of valuations, we
will abbreviate P |=ρ

µM+ φ as P |=µM+ φ for any valuation ρ. A formula φ is
valid, written |=µM+ φ, if P |=ρ

µM+ φ for any P ∈ T [{ε}, {+}, Act,X] and any
valuation ρ. Sometimes, we write φ directly instead of |=µM+ φ for simplicity.

It is clear that Lµ(Act) ⊆ L+
µ (Act) and cLµ(Act) ⊆ cL+

µ (Act).
Convention We will assume that “+” has a priority over all other binary oper-
ators, but “¬” has a higher priority to it. Given a set A ⊂ B, we will use Ā to
stand for the complement B −A.

3.3 Some Results on µM and µM+

From Definition 4, it is easy to see that “+” is monotonic. That is,

Proposition 1. If φ1 ⇒ φ2 and ψ1 ⇒ ψ2 then φ1 + ψ1 ⇒ φ2 + ψ2.

Definition 5. Given a set of process A ⊆ T [{ε}, {+}, Act,X], A is bisimulation
closed if ∀P ∈ A and ∀Q ∈ T [{ε}, {+}, Act,X], P ∼ Q implies that Q ∈ A. For
convenience, from now on, we will abbreviate bisimulation closed as B.C.. A
valuation ρ is B.C. if for all x ∈ X ρ(x) is B.C..

Regarding the above definition, we have the following results:

Lemma 2. If A1,A2 ⊆ T [{ε}, {+}, Act,X] are B.C., then

1. Ā1,A1 ∩ A2 and A1 ∪ A2 are B.C.,
2. {P ∈ T [{ε}, {+}, Act,X] | ifP a→ P ′ and a ∈ A then P ′ ∈ A1} is B.C.,
3. {P ∈ T [{ε}, {+}, Act,X] | ∃P ′ ∈ A1.∃a ∈ A.P

a→ P ′} is B.C.,
4. A1+A2 is B.C., where A1+A2 denotes the set {P | ∃P1 ∈ A1.∃P2 ∈ A2.P ∼

P1 + P2}.

For any set of processes A ⊆ T [{ε}, {+}, Act,X], we can associate with it
the following subset:

Ad =̂ {P ∈ A | if P ∼ Q and Q ∈ T [{ε}, {+}, Act,X] then Q ∈ A}.

The set Ad is the largest bisimulation closed set contained in A.

356 N. Zhan and M. Majster-Cederbaum

Lemma 3. For any set A,Ai ⊆ T [{ε}, {+}, Act,X] for i = 1, 2,
1. Ad is B.C., 2. Ad ⊆ A,
3. Ad = A if A is B.C., 4. Ad

1 ⊆ Ad
2 if A1 ⊆ A2,

5. Ad
1 +Ad

2 ⊆ Ad if A1 +A2 ⊆ A.

We use ρd to stand for the valuation defined by ρd(x) = ρ(x)d. By Lemma 3,
it is clear that ρd is B.C. for any valuation ρ. From now on, we will use BCV
to stand for the set of bisimulation closed valuations.

In the following, we will use |[φ]|ρ to denote the set of processes that meet φ
under the valuation ρ, i.e., |[φ]|ρ =̂ {P ∈ T [{ε}, {+}, Act,X] | P |=ρ

µM+ φ}. We
will write ρ ⊆ ρ′ if ρ(x) ⊆ ρ′(x) for any x ∈ X .

Proposition 2. For any φ ∈ L+
µ (Act), if φ is strongly positive and ρ ⊆ ρ′, then

|[φ]|ρ ⊆ |[φ]|ρ′ .

Lemma 4. For any φ ∈ L+
µ (Act) which is strongly positive, any valuation ρ,

and A ∈ T [{ε}, {+}, Act,X], then

1. If ρ is B.C., then |[φ]|ρ is B.C. as well;
2. |[φ]|ρd ⊆ Ad if |[φ]|ρ ⊆ A.

Proof. Similar to the proof for Proposition 3 in Section 5.4 in [9], simultaneously
proving these two statements by induction on φ, the proof is done. a

As [9] pointed out that each formula of cLµ(Act) defines a bisimulation in-
variant property, the following theorem indicates that every formula in cL+

µ (Act)
is bisimulation invariant as well. The forward direction of the theorem follows
immediately from the above lemma; the converse direction comes from the fact
cLµ(Act) ⊆ cL+

µ (Act).

Theorem 1. For any P,Q ∈ T [{ε}, {+}, Act,X], P ∼ Q iff for each φ ∈
cL+

µ (Act), P |=µM+ φ iff Q |=µM+ φ.

The following lemmas can be proved by Definition 4.

Lemma 5.

(1) φ+ ff ⇔ ff (2) tt+ tt ⇔ tt
(3) [A]tt ⇔ tt (4) 〈A〉ff ⇔ ff
(5) φ+ ψ ⇔ ψ + φ (6) (φ+ ψ) + ϕ ⇔ φ+ (ψ + ϕ)
(7) 〈A〉φ1 ∧ [A ∪B]φ2 ⇒ 〈A〉(φ1 ∧ φ2) (8) φ+ (ϕ ∨ ψ) ⇔ (φ+ ϕ) ∨ (φ+ ψ)
(9) 〈A〉φ1 ∨ 〈A〉φ2 ⇔ 〈A〉(φ1 ∨ φ2) (10) [A]φ1 ∧ [A]φ2 ⇔ [A](φ1 ∧ φ2)

(11) 〈A1 ∪A2〉φ⇔ 〈A1〉φ ∨ 〈A2〉φ (12) [A1 ∪A2]φ⇔ [A1]φ ∧ [A2]φ

Lemma 6.
(1) ¬[A]φ⇔ 〈A〉¬φ
(2) ¬〈A〉φ⇔ [A]¬φ
(3) [A1]φ1 ∧ [A2]φ2 ⇔ [A1 − (A1 ∩A2)]φ1 ∧ [A1 ∩A2](φ1 ∧ φ2)∧

[A2 − (A1 ∩A2)]φ2

Deriving Non-determinism from Conjunction and Disjunction 357

4 Reducing cL+
µ (Act) to cLµ(Act)

In this section, we show that “+” is definable in µM by reducing cL+
µ (Act)

into cLµ(Act). The encoding is completed via the following three steps: firstly,
we prove that in some special cases, “+” can be defined by conjunction and
disjunction; then we show that the problem of eliminating “+” in a strongly
positive and strictly guarded formula φ can be reduced to one of the above
special cases; and finally we complete the encoding by proving that for any
φ ∈ cL+

µ (Act), there is a formula φ′ ∈ cL+
µ (Act) which is strictly guarded such

that φ⇔ φ′.
We say that φ implies ψ w.r.t. bisimulation closed valuations, denoted by

φ
bc⇒ ψ, if |[φ]|ρ ⊆ |[ψ]|ρ for any ρ ∈ BCV . φ bc⇔ ψ means φ bc⇒ ψ and ψ

bc⇒ φ. It

is clear that φ⇒ ψ implies φ bc⇒ ψ, and φ bc⇒ ψ iff φ⇒ ψ if φ, ψ ∈ cL+
µ (Act).

In order to attain the first step, we need the following proposition:

Proposition 3. 1. For any P,Q ∈ T [{ε}, {+}, Act,X], if P |=ρ
µM+ 〈A〉φ then

P +Q |=ρ
µM+ 〈A〉φ; and

2. If P |=ρ
µM+ [A]φ1 and Q |=ρ

µM+ [A]φ2 then P +Q |=ρ
µM+ [A](φ1 ∨ φ2).

The following lemma claims that in some special cases, “+” can be defined
essentially by conjunction and disjunction.

Lemma 7.

(
n∧

i=1

ni∧
j=1

〈Ai〉φi,j ∧
m∧

i=1

[Bi]ψi) + (
k∧

i=1

ki∧
j=1

〈Ci〉ϕi,j ∧
m∧

i=1

[Bi]χi)

bc⇔
n∧

i=1

ni∧
j=1

〈Ai〉(φi,j ∧ ψi) ∧
k∧

i=1

ki∧
j=1

〈Ci〉(ϕi,j ∧ χi) ∧
m∧

i=1

[Bi](ψi ∨ χi)

where all conjuncts in the formula of the left side of bc⇔ are strongly positive,
n, k ≤ m, ∀1 ≤ i ≤ n.Ai ⊆ Bi, ∀1 ≤ i ≤ k.Ci ⊆ Bi, and for any 1 ≤ i, j ≤ m, if
i 6= j then Bi ∩Bj = ∅.

Proof. “ bc⇒” can be easily proved by Proposition 3 and Lemma 4. So, we only
give a sketch for the proof of the converse direction. Assume

P |=ρ
µM+

n∧
i=1

ni∧
j=1

〈Ai〉(φi,j ∧ ψi) ∧
k∧

i=1

ki∧
j=1

〈Ci〉(ϕi,j ∧ χi) ∧
m∧

i=1

[Bi](ψi ∨ χi), (1)

where ρ is B.C.. By Lemma 1, P ∼ Σl
i=1Σ

iai
j=1aiPi,j , where l ≥ m and for

any 1 ≤ i, j ≤ l, if i 6= j then ai 6= aj . So, we have Σl
i=1Σ

iai
j=1aiPi,j |=ρ

µM+∧n
i=1

∧ni

j=1 〈Ai〉(φi,j ∧ψi) by Lemma 4. This implies that for each 1 ≤ i ≤ n and

358 N. Zhan and M. Majster-Cederbaum

1 ≤ j ≤ ni, there exist 1 ≤ ri ≤ l and 1 ≤ hj ≤ iari
such that ari

∈ Ai and
Pri,hj

|=ρ
µM+ φi,j ∧ ψi. Let P ′ =̂ Σn

i=1Σ
ni
j=1ari

Pri,hj
. It is obvious that

P ′ |=ρ
µM+

n∧
i=1

ni∧
j=1

〈Ai〉φi,j ∧
m∧

i=1

[Bi]ψi. (2)

Similarly, we get that for each 1 ≤ i ≤ k and 1 ≤ j ≤ ki, there exist 1 ≤
ri ≤ l and 1 ≤ hj ≤ iari

such that ari
∈ Ci and Pri,hj

|=ρ
µM+ ϕi,j ∧ χi. Let

P ′′ =̂ Σk
i=1Σ

ni
j=1ari

Pri,hj
. It is easy to show that

P ′′ |=ρ
µM+

k∧
i=1

ki∧
j=1

〈Ci〉ϕi,j ∧
m∧

i=1

[Bi]χi. (3)

Then, we add each summand of Σl
i=1Σ

iai
j=1aiPi,j to P ′ or P ′′ according to the

following algorithm: For each 1 ≤ i ≤ l, if ai ∈ Bj for some j ∈ {1, . . . ,m} then
let I1=̂{h | Pi,h |= ψj} and I2=̂{h | Pi,h |= χj}; otherwise, I1=̂{1, . . . , iai} and
I2 = ∅. Since P |=ρ

µM+ [Bj](ψj ∨χj), it is clear that I1 ∪ I2 = {1, . . . , iai}. Then,
let P ′ := P ′ +

∑
h∈I1

aiPi,h and P ′′ := P ′′ +
∑

h∈I2
aiPi,h. Because Bi ∩Bj = ∅

if i 6= j, it is easy to show that (2) and (3) keep invariant for each cojoining.
Additionally, it is easy to see that P ′ + P ′′ ∼ P . Hence, from Lemma 4,

P |=ρ
µM+ (

n∧
i=1

ni∧
j=1

〈Ai〉φi,j ∧
m∧

i=1

[Bi]ψi) + (
k∧

i=1

ki∧
j=1

〈Ci〉ϕi,j ∧
m∧

i=1

[Bi]χi). a

Furthermore, applying the above lemma, we can complete the second step
by proving the following results:

Lemma 8. For any φ ∈ L+
µ (Act), if φ is strictly guarded and strongly positive,

then there exists φ′ in which no + occurs such that φ′ bc⇔ φ and φ′ is strictly
guarded and strongly positive.

Proof. By induction on the structure of φ. Here, we only list the proofs for some
interesting cases.

. φ = ¬ψ
Suppose ρ ∈ BCV and fn(φ) ⊆ {x1, . . . , xn}. Let ¬ρ be defined by ¬ρ(x) =
T [{ε}, {+}, Act,X] − ρ(x) for any x ∈ X . By Lemma 2.1., ¬ρ is B.C.. It is
easy to see that |[ϕ]|ρ = |[ϕ{¬x1/x1, . . . ,¬xn/xn}]|¬ρ for any ϕ ∈ L+

µ (Act)
whose free variables are in {x1, . . . , xn}.
Since φ is strictly guarded and strongly positive, so is ψ{¬x1/x1, . . . ,¬xn/xn}.
By the induction hypothesis, there is ψ′ in which no + occurs such that
ψ{¬x1/x1, . . . ,¬xn/xn}

bc⇔ ψ′ and ψ′ is strictly guarded and strongly posi-

Deriving Non-determinism from Conjunction and Disjunction 359

tive. Besides,

|[φ]|ρ = T [{ε}, {+}, Act,X]− |[ψ]|ρ
= T [{ε}, {+}, Act,X]− |[ψ{¬x1/x1, . . . ,¬xn/xn}]|¬ρ

= T [{ε}, {+}, Act,X]− |[ψ′{¬x1/x1, . . . ,¬xn/xn}]|ρ
= |[¬ψ′{¬x1/x1, . . . ,¬xn/xn}]|ρ

Hence, let φ′=̂¬ψ′{¬x1/x1, . . . ,¬xn/xn}. It is obvious that no + occurs in
φ′, φ′ is strictly guarded and strongly positive and φ bc⇔ φ′.

. φ = 〈A〉φ1

As φ is strictly guarded and strongly positive, this implies the following two
cases:
1. φ1 is equivalent to a disjunction of some formulae of the form x1∧· · ·xn∧

χ1 ∧ · · · ∧ χ`, where n, ` ≥ 0, x1, · · · , xn ∈ V ar, and for each 1 ≤ i ≤ `,
χi ∈ Lµ(Act) which is strictly guarded and strongly positive;

2. φ1 is strictly guarded and strongly positive.
In either of the two cases, by the induction hypothesis, it is easy to construct
a formula φ′ in which no + occurs such that φ′ is strictly guarded and φ′ bc⇔ φ.

. φ = φ1 + φ2

Since φ is strictly guarded and strongly positive, so are φ1 and φ2. By the
induction hypothesis, there exist φ′i such that φ′i is strongly positive and
strictly guarded, φ′i

bc⇔ φi and no + occurs in φ′i for i = 1, 2.
We consider the following two cases:

1. φ′1
bc⇔ ff or φ′2

bc⇔ ff . If so, let φ′=̂ff . By Lemma 5.(1), we have that
φ′1 + φ′2

bc⇔ ff . On the other hand, by Proposition 1, it follows that
φ

bc⇔ ff . Hence, φ′ is what we want.
2. φ′1 6

bc⇔ ff and φ′2 6
bc⇔ ff . Using the laws of Boolean Algebra, Lemma 5.9–12

and Lemma 6, we can transform φ′1 and φ′2 equivalently as follows:

φ′1 ⇔
m1∨
i=1

(
m1,i∧
j=1

m1,i,j∧
h=1

〈A1,i,j〉φ1,i,j,h ∧
m′

1,i∧
j=1

[B1,i,j]ψ1,i,j), (4)

φ′2 ⇔
m2∨
i=1

(
m2,i∧
j=1

m2,i,j∧
h=1

〈A2,i,j〉φ2,i,j,h ∧
m′

2,i∧
j=1

[B2,i,j]ψ2,i,j), (5)

where
. ∀1 ≤ i ≤ 2,∀1 ≤ j ≤ mi.(∀1 ≤ k1, k2 ≤ mi,j .k1 6= k2 ⇒ Ai,j,k1 ∩

Ai,j,k2 = ∅) ∧ (∀1 ≤ k1, k2 ≤ m′
i,j .k1 6= k2 ⇒ Bi,j,k1 ∩ Bi,j,k2 = ∅) ∧

(∀1 ≤ k1 ≤ mi,j ,∀1 ≤ k2 ≤ m′
i,j .Ai,j,k1 ⊆ Bi,j,k2 ∨Ai,j,k1 ∩Bi,j,k2 =

∅));
. B1,i1,j1 = B2,i2,j2 or B1,i1,j1 ∩ B2,i2,j2 = ∅ for all 1 ≤ i1 ≤ m1, 1 ≤

j1 ≤ m′
1,i1

, 1 ≤ i2 ≤ m2, 1 ≤ j2 ≤ m′
1,i2

;

360 N. Zhan and M. Majster-Cederbaum

. for all i = 1, 2, 1 ≤ j1 ≤ mi, 1 ≤ k1 ≤ mi,j1 1 ≤ j2 ≤ m3−i, 1 ≤ k2 ≤
m′

3−i,j2
, Ai,j1,j2 ⊆ B3−i,j2,k2 or Ai,j1,j2 ∩B3−i,j2,k2 = ∅.

By Lemma 5.5–8, we have

φ′1 + φ′2
bc⇔

m1∨
i1=1

m2∨
i2=1

(
m1,i1∧
j=1

m1,i1,j∧
h=1

〈A1,i1,j〉φ1,i1,j,h ∧
m′

1,i1∧
j=1

[B1,i1,j]ψ1,i1,j) +

(
m2,i2∧
j=1

m2,i2,j∧
h=1

〈A2,i2,j〉φ2,i2,j,h ∧
m′

2,i2∧
j=1

[B2,i2,j]ψ2,i2,j) (6)

Thus, according to Lemma 5 and Lemma 7, for each disjunct of the right
hand of (6), there is a formula ϕi,j that is equivalent to the disjunct w.r.t.
BCV , strictly guarded, strongly positive and no + occurs in it, where
1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. So, let φ′=̂

∨m1
i=1

∨m2
j=1 ϕi,j . It is easy to see

that φ′ meets the requirement.
. φ = µx.φ1

Since φ is strictly guarded and strongly positive, so is φ1. Therefore, by
the induction hypothesis, there exists φ′1 in which no + occurs such that
φ′1 is strictly guarded and strongly positive and φ′1

bc⇔ φ1. By Lemma 4,
it is easy to see that µx.φ1

bc⇔ µx.φ′1. Thus, let φ′=̂µx.φ′1. a

Finally, in order to encode cL+
µ (Act) into cLµ(Act), we need to show the

following lemma:

Lemma 9. For any φ ∈ cL+
µ (Act), there exists φ′ ∈ cL+

µ (Act) such that φ′ is
strictly guarded and φ⇔ φ′.

Proof. In order to prove the lemma, we need to show the following equations:
µx.φ1[〈A〉φ2[(x� φ3) + φ4]] ⇔ µx.φ1[〈A〉φ2[µy.(φ1[〈A〉φ2[y]]� φ3) + φ4]] (7)

νx.φ1[〈A〉φ2[(x� φ3) + φ4]] ⇔ νx.φ1[〈A〉φ2[νy.(φ1[〈A〉φ2[y]]� φ3) + φ4]] (8)

µx.φ1[[A]φ2[(x� φ3) + φ4]] ⇔ µx.φ1[[A]φ2[µy.(φ1[[A]φ2[y]]� φ3) + φ4]] (9)

νx.φ1[[A]φ2[(x� φ3) + φ4]] ⇔ νx.φ1[[A]φ2[νy.(φ1[[A]φ2[y]]� φ3) + φ4]] (10)

µx.φ1[〈A〉φ2[(¬x� φ3) + φ4]] ⇔ µx.φ1[〈A〉φ2[νy.(¬φ1[〈A〉φ2[y]]� φ3) + φ4]] (11)

νx.φ1[〈A〉φ2[(¬x� φ3) + φ4]] ⇔ νx.φ1[〈A〉φ2[µy.(¬φ1[〈A〉φ2[y]]� φ3) + φ4]] (12)

µx.φ1[[A]φ2[(¬x� φ3) + φ4]] ⇔ µx.φ1[[A]φ2[νy.(¬φ1[[A]φ2[y]]� φ3) + φ4]] (13)

νx.φ1[[A]φ2[(¬x� φ3) + φ4]] ⇔ νx.φ1[[A]φ2[µy.(¬φ1[[A]φ2[y]]� φ3) + φ4]] (14)

where � ∈ {∧,∨}, φi[] stands for a formula with the hole [], the formula at
the left side of each equation is guarded.

We only prove (9) as an example, the others can be proved similarly.1

Since φ1[[A]φ2[(x� φ3) + φ4]] is guarded, by Knaster-Tarski Theorem, it is
clear that µx.φ1[[A]φ2[(x�φ3)+φ4]] is the unique least solution of the equation

x = φ1[[A]φ2[(x� φ3) + φ4]] (15)

1 Note that in the proofs for (15)–(14), we need to let ¬y = (¬x � φ3) + φ4 in order
to guarantee the resulted formulae are still positive.

Deriving Non-determinism from Conjunction and Disjunction 361

Let y be a fresh variable and y = (x � φ3) + φ4. It is easy to see the least
solution of (15) is equivalent to the x-component of the least solution of the
following equation system:

x = φ1[[A]φ2[(x� φ3) + φ4]]
y = (x� φ3) + φ4

Meanwhile, it is easy to rewrite the above equation system to the following one

x = φ1[[A]φ2[y]]
y = (φ1[[A]φ2[y]]� φ3) + φ4

It is not hard to derive the least solution of the above equation system as

(µx.φ1[[A]φ2[µy.(φ1[[A]φ2[y]]� φ3) + φ4]], µy.(φ1[[A]φ2[y]]� φ3) + φ4.

Therefore, (9) follows.
Repeatedly applying (7)–(14), for any given formula φ ∈ cL+

µ (Act), we can
rewrite it to φ′ which is strictly guarded such that φ⇔ φ′. a

Example 1. Let φ = µx.〈A〉x + µy.[C]¬(〈B〉¬y + ¬x) ∨ 〈C〉tt, where A ∩ B =
B ∩ C = A ∩ C = ∅. Applying the rewriting rule (13), it results that

φ⇔ µx.〈A〉x+
µy.([C]¬(νz.¬(〈A〉x+ µy′.([C]¬z ∨ 〈C〉tt)) + 〈B〉¬y) ∨ 〈C〉tt)

⇔ µx.〈A〉x+ µy.([C]¬(νz.¬(〈A〉x+ ([C]¬z ∨ 〈C〉tt)) + 〈B〉¬y) ∨ 〈C〉tt)
⇔ µx.〈A〉x+ µy.([C]¬(νz.¬〈A〉x+ 〈B〉¬y) ∨ 〈C〉tt)
⇔ µx.〈A〉x+ µy.([C]¬(¬〈A〉x+ 〈B〉¬y) ∨ 〈C〉tt)
⇔ µx.〈A〉x+ µy.([C][B]y ∨ 〈C〉tt)
⇔ µx.〈A〉x ∨ (〈A〉x ∧ 〈C〉tt)
⇔ µx.〈A〉x,

where φ1 = 〈A〉x+ µy.([] ∨ 〈C〉tt), φ2 = ¬([]), φ3 = tt, φ4 = 〈B〉¬y. a

Note that in the above example, we can also unfold µy.[C]¬(〈B〉¬y + ¬x) ∨
〈C〉tt first, then apply Lemma 7 and obtain the same result.

Directly from Lemma 9 and Lemma 8, we can conclude:

Theorem 2. ∀φ ∈ cL+
µ (Act), ∃φ′ ∈ cLµ(Act).φ⇔ φ′.

In the later, we will use En to denote the above implicit translating function
from cL+

µ (Act) to cLµ(Act).

5 Synchronization Tree Logic

[2] proposed a logic, called Synchronization Tree Logic (STL) for the specification
and proof of programs, described by T [{ε}, {+}, Act,X]. Formulae of STL can

362 N. Zhan and M. Majster-Cederbaum

be obtained from the constants ε, > by using logical connectives, consistent
extensions of the operators a ∈ Act, + and fixpoint operators. Therefore, STL
contains T [{ε}, {+}, Act,X], i.e., terms of T [{ε}, {+}, Act,X] are formulae of
STL if we look recursive operators of T [{ε}, {+}, Act,X] as greatest fixpoint
operators. Its semantics is defined by associating with a formula a set of terms
(synchronization trees) representing unions of congruence classes of the strong
congruence relation.

Given a set Act of atomic actions and a set X of variables, formulae of STL
are constructed by the rule:

φ ::= ε | > | x | ¬φ | Bφ | φ+ φ′ | φ ∨ φ′ | µx.φ,

where x ∈ X and B ⊆ Act.
In what follows, we will use LSTL(Act) to stand for the set of formulae of

STL that are guarded and positive and cLSTL(Act) for the subset of LSTL(Act)
in which all formulae are closed.

Definition 6. Given a valuation ρ ∈ BCV , the semantics of LSTL(Act) is given
by a satisfaction relation between T [{ε}, {+}, Act,X] and LSTL(Act) relative to
ρ, denoted by |=ρ

STL, inductively defined as follows:

P |=ρ
STL >,

P |=ρ
STL ε iff P ∼ ε,

P |=ρ
STL ¬φ iff P 6|=ρ

STL φ,

P |=ρ
STL Bφ iff ∃I ⊆ N.I 6= ∅, I is finite,

∀i ∈ I(∃ai ∈ B and ∃Pi.Pi |=ρ
STL φ), P ∼ Σi∈IaiPi,

P |=ρ
STL φ1 ∨ φ2 iff P |=ρ

STL φ1 or P |=ρ
STL φ2,

P |=ρ
STL φ1 + φ2 iff ∃P1, P2.P1 |=ρ

STL φ1, P2 |=ρ
STL φ2 and P ∼ P1 + P2,

P |=ρ
STL µx.φ iff P ∈

⋂
{A | A is B.C. and |[φ]|ρ[x;A] ⊆ A},

where A ⊆ T [{ε}, {+}, Act,X], B ⊆ Act.

Some notions and derived operators can be defined similarly as in µM and
µM+. In what follows we will use ⊥ to denote ¬>. Note that in STL all valuations
are restricted to be in BCV .

[2] proved the following results:

Proposition 4. |[φ]|ρ is B.C., for any ρ ∈ BCV and φ ∈ LSTL(Act).

Proposition 5. For each P ∈ T [{ε}, {+}, Act,X],

|[φP]| = {P ′ ∈ T [{ε}, {+}, Act,X] | P ∼ P ′}.

More results on STL can be found in [2].

Deriving Non-determinism from Conjunction and Disjunction 363

6 Reducing cLSTL(Act) to cLµ(Act)

In this section, we define a function Tr : LSTL(Act) → L+
µ (Act) such that for

any φ ∈ LSTL(Act), P ∈ T [{ε}, {+}, Act,X] and ρ ∈ BCV , P |=ρ
STL φ iff

P |=ρ
µM+ Tr(φ). Moreover, according to Theorem 2, for each φ ∈ cLSTL(Act)

and P ∈ T [{ε}, {+}, Act,X], P |=µM+ Tr(φ) iff P |=µM En(Tr(φ)). Thus, this
completes the reduction from cLSTL(Act) to cLµ(Act).

Definition 7. The function Tr is inductively defined as follows: Tr(⊥) =̂ ff ,
Tr(>) =̂tt, Tr(x) =̂x, Tr(ε) =̂ [Act]ff , Tr(¬φ) =̂¬Tr(φ), Tr(Bφ) =̂ [B]Tr(φ)∧
[B̄]ff∧〈B〉Tr(φ), Tr(φ1∨φ2) =̂Tr(φ1)∨Tr(φ2), Tr(φ1+φ2) =̂Tr(φ1)+Tr(φ2),
Tr(µx.φ) =̂µx.Tr(φ).

Theorem 3. For any P ∈ T [{ε}, {+}, Act,X] and φ ∈ LSTL(Act), Tr(φ) ∈
L+

µ (Act) and P |=ρ
STL φ iff P |=ρ

µM+ Tr(φ). Where ρ ∈ BCV .

Proof. Tr(φ) ∈ L+
µ (Act) is obvious by Definition 7, the proof for the second part

can proceed by induction on the structure of φ. a

The following theorem that follows directly from Theorem 3 and Theorem 2
indicates that applying Tr and En, STL can be translated into µM.

Theorem 4. For all P ∈ T [{ε}, {+}, Act,X], φ ∈ cLSTL(Act), En(Tr(φ)) ∈
cLµ(Act) and P |=STL φ iff P |=µM En(Tr(φ)).

Corollary 1. For any P,Q ∈ T [{ε}, {+}, Act,X], Q |=µM En(Tr(φP)) iff P ∼
Q.

Below we present an example to show how to translate a formula φ ∈
cLSTL(Act) into cLµ(Act), and indicate that for any P ∈ T [{ε}, {+}, Act,X],
En(Tr(φP)) is exactly the characteristic formula of P up to ∼. Given an equiva-
lence or preorder � over processes, the characteristic formula for a process P up
to it is a formula φP such that given a process Q, Q |= φP if and only if Q � P .

Example 2. Suppose Act = {a, b, c}, P =̂rec x.(a b x+a c ε) and Q=̂rec x.[a (b x+
c ε)]. Thus, by Definition 7,

Tr(φP) ⇔ νx.[〈a〉(〈b〉x ∧ [¯{b}]ff ∧ [b]x) ∧ [¯{a}]ff ∧ [a](〈b〉x ∧ [¯{b}]ff ∧ [b]x)]
+ [〈a〉(〈c〉[Act]ff ∧ [¯{c}]ff ∧ [c][Act]ff) ∧ [¯{a}]ff ∧ [a](〈c〉[Act]ff
∧ [¯{c}]ff ∧ [c][Act]ff)]

Moreover, we can get

En(Tr(φP)) ⇔ νx.〈a〉(〈b〉x ∧ [¯{b}]ff ∧ [b]x) ∧ 〈a〉(〈c〉[Act]ff ∧ [¯{c}]ff
∧ [c][Act]ff) ∧ [¯{a}]ff ∧ [a]((〈b〉x ∧ [¯{b}]ff ∧ [b]x)
∨ (〈c〉[Act]ff ∧ [¯{c}]ff ∧ [c][Act]ff))

It is easy to see that En(Tr(φP)) is exactly the characteristic formula of P and
Q 6|=µM En(Tr(φP)) since P 6∼ Q. a

364 N. Zhan and M. Majster-Cederbaum

7 Concluding Remarks

In this paper, we investigated the definability of the non-deterministic operator
+ introduced in STL as a primitive in the µ-calculus. This was captured via
extending the µ-calculus with the non-deterministic operator + to µM+ first
and then showing that µM+ can be encoded into the modal µ-calculus.

Furthermore, we proved that STL can be translated into the modal µ-calculus
by encoding it into µM+. Thus, if Act is finite, we can get the decidability of
STL by the decidability of the µ-calculus [5]. In fact, we could translate other
STL-like modal logics into the µ-calculus, for example, it is easy to encode the
modal process logic presented in [6] into the µ-calculus according to the results
shown in this paper.

The converse procedure to translate Lµ(Act) into LSTL(Act) can be obtained
easily. Thus, we see that the µ-calculus is as expressive as STL.

In summary, the significance of this work lies in:

. We proved that the non-deterministic choice + is definable in the µ-calculus, so
that we can compare the expressiveness between the µ-calculus with process
algebra-like modal logics such as STL, for example, it was shown in this
paper that the µ-calculus is as expressive as STL.

. A connection between the connectives of the µ-calculus and the operators
of T [{ε}, {+}, Act,X] has been established in this paper. This thus makes
it possible that syntax-directed proofs for programs defined in terms of
T [{ε}, {+}, Act,X] can be done in the µ-calculus;

. We indirectly presented an algorithm to construct the characteristic formula
up to ∼ for a given finite-state process specified by T [{ε}, {+}, Act,X] syn-
tactically and compositionally.

References

1. L. Aceto and M. Hennessy. Termination, deadlock, and divergence. Journal of
ACM, Vol. 39, No.1:147-187. January, 1992.

2. S. Graf and J. Sifakis. A logic for the description of non-deterministic programs
and their properties. Information and Control, 68:254-270. 1986.

3. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
4. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

Journal of ACM, 32:137-161. Jan., 1985.
5. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer

Science, 27:333-354. 1983.
6. K.G. Larsen and B. Thomsen. A modal process logic. In the proc. of LICS’88,

pp.203-210. IEEE Computer Science Society, 1988.
7. R. Milner. A complete inference system for a class of regular behaviours. Journal

of Computer and System Sciences, 28:439-466. 1984.
8. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
9. C. Stirling. Modal and Temporal Properties of Processes. Springer-Verlag, 2001.

10. A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific J.
Math., 5:285-309. 1955.

11. I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional Mu-
calculus. Information and Computation, 157:142–182. 2000.

Deriving Non-determinism from Conjunction and Disjunction 365

	Introduction
	Preliminaries
	The μ-Calculus and Its Extension with “+”
	μM
	μM^+
	Some Results on μM and μM^+

	Reducing $c{\mathcal L}_{\mu}^{+}(Act)$ to $c{\mathcal L}_{\mu}(Act)$
	Synchronization Tree Logic
	Reducing $c{\mathcal L}_{\rm STL}(Act)$ to $c{\mathcal L}_{\mu}(Act)$
	Concluding Remarks
	References

