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Abstract. We introduce a quantitative concept for bisimulations by in-
tegrating the notion of amortisation (cf. [3]). This allows us to make
behavioural comparisons between nondeterministic systems that are in-
herently non-terminating and to analyse the relative long-term costs of
deploying them. To this end, we conservatively extend CCS to include
a new set of cost-based actions and define a cost-based quantitative re-
lation called amortised bisimulation. We demonstrate the applicability
of our approach by two case studies. In both cases the cost of addi-
tional administration is shown to amortise. We furthermore show that
the amortised preorder for speed introduced in [6] is naturally expressible
in our setting.

1 Introduction

Bisimulation equivalence [TI8/TT] has been developed as a notion of behavioural
equivalence for nondeterministic, conceptually nonterminating systems. Loosely
speaking, two systems are bisimilar (bisimulation equivalent) if each can simulate
the other where the roles of who is simulating whom can interchange at any
point of time. Bisimulation equivalence is a mathematically elegant, tractable
concept and several tools mechanising or assisting the decision process have
been developed (e.g. [215]).

However, bisimulation equivalence does not allow one to make any assessment
about the relative expenses of the two systems being compared. For example, one
would like to know whether one system (or a system’s component) is more cost
efficient than the other and to what extent. To make such assertions possible,
we suggest the notion of amortised bisimulations.

The main idea is to consider actions together with their costs and to modify
bisimulation equivalence in such a way that actions are matched with ” function-
ally equivalent” actions. The difference in their costs adds to the credit which
is accumulated during the mutual simulation. This accumulated credit is used
as a parameter in the definition of amortised bisimilarity. For a system p to
be considered less expensive than another system ¢, the amortised bisimulation
containing (p, ¢) should have nonnegative credit everywhere.

In more detail, we conservatively extend CCS to include a new set of
cost-based actions which cannot be hidden. We then define the cost-based quanti-
tative relation called amortised bisimulation. CCS along with its classical equiv-
alence relations of strong bisimilarity and observational equivalence on CCS
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processes may be recovered by simply discarding the new actions from the ac-
tion set. We demonstrate the usefulness of amortised bisimulations by presenting
two case studies. In both cases we show that the cost of additional administration
gets amortised.

The first study (based on [9]) compares a model of communication called
shared messaging communication (SMC) with the conventional message-passing
(MP) model. The authors of the model show experimentally that when large data
items are to be transferred as part of inter-task communication, the SMC model
is more efficient than MP in terms of the communication costs involved. In fact,
the truth of the authors’ claims is intuitively quite straightforward. But those
results cannot generally be proven without integrating costs into the operational
model of the respective systems. We substantiate their claim by defining suitable
amortised bisimulations.

The second case study considers a proxy server and is somewhat different in
nature. Again, we use costs to describe the expense for long- and short-distance
communication. Whether a proxy system is more efficient than a system without
a proxy, however, depends on the frequency with which a page is updated relative
to that of the accesses to it. The expense involved in a proxy server pays off,
only if pages are more frequently accessed than updated. We therefore cannot
establish any efficiency result without modelling this frequency in some way. We
present a simplified model of the entire system comprising a client, a proxy server
and a web server and show that under these assumptions the proxy server can
reduce the communication costs involved in transferring a page. On the other
hand, when pages are more frequently updated than accessed, the proxy server
becomes a bottleneck and then it is more efficient to do without it.

While our notion of costs is fairly general, it applies when the cost is measured
in terms of time. We pick the amortised faster-than preorder described in [6] and
show that it may be captured in our framework.

2 Amortised Bisimulations

A labelled transition system (LTS) L is a 3-tuple (P, A,—), where P is a set
of process states or processes, A is a (possibly countable) set of actions and
— C P x A x P is the transition relation.

Our LTSs are generated by an extension of Milner’'s CCS — see [] for an
introduction —, where in addition to the normal set of actions Act, = Act U{7}
there is a set of priced actions CAct which have a cost assigned to them by
a function C' : CAct — IN. Thus, the set of all actions is A = Act, U CAct,
where Act, {7} and CAct are assumed to be pairwise disjoint. Priced actions
differ from actions in Act — apart from carrying costs — in that they do not have
complements. We assume the usual CCS operators with their usual interleaving
operational semantics [8]. Specifically, we have action prefixing over A, (binary)
choice, (parallel) composition, restriction, relabelling (which is bijective by defi-
nition, cf. [7]) and process names (for recursion). With regard to CAct , a priced
action cannot synchronize with any other action, it cannot be restricted away
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and it cannot be renamed (Va € CAct : f(a) = a and flaee @ Act — Act).
Priced actions therefore are always visible. We use ~ to denote strong bisimi-
larity and =2 for observational equivalence (which treat priced and non-priced
actions alike).

To capture the idea of ”functional equivalence” formally, we introduce the
relation p over priced actions. For example, consider the task of getting books
from a library where costs are measured in terms of time. There are costs for
getting to (and back from) the library (action get to lib) and costs for accessing
the book of interest (access book). The walk to the local library might be short
but as its stock of books is not well sorted accessing them is more time consum-
ing than in the more distant, central library. Moreover, the book might not be in
the stock at all and can only be reserved (reserve book) as it has to be ordered
by an inter-library loan. Formulated in CCS, we obtain the two processes:

Central Lib ¥ get to lib,,,.access book cen.Central Lib
Local Lib % get to lib,,,.(access bookye.Local Lib + reserve book.Local Lib)

where the costs of actions are C(get to lib,.,) = 2, C(access bookcen) = 1
and C(get to lib,,.) = 1, C(access bookj,.) = 2 and C(reserve book) = 4.
Clearly, get to lib,,. and get to lib,,, are functionally equivalent and so are
access book,. and access book.en,. We also assume functional equivalence of
reserve book and access book.e,. Thus, all these pairs are in p. If we match
actions according to p then Central Lib and Local Lib describe functionally
equivalent processes. Moreover, given an initial credit of 1, Central Lib is more
cost efficient than Local Lib. The credit 1 is required to cover the expenses
for the longer walk to the central library and it amortises with the cheap ac-
cess of the book. So, in the setting of amortised bisimulations we can prove
Central Lib <7 Local Lib.

Formally, p C CAct , x CAct » and to allow a uniform treatment of actions,
we extend p and C to be defined over A with the following restrictions:

1. p restricted to Act, is the identity relation.
2. C(a) =0 for all a € Act, .

We call p a CAct -association and abbreviate C(a) to ¢, for all a € A. In the
examples, we define p by stating its definition over CAct -, only.

Definition 1. Let (P, A,—) be a labelled transition system over A = Act, U
CAct and let p be a CAct --association. A family (R;)icenw of binary relations
over P is a strong amortised p-bisimulation, if for all i € IN, (p,q) € R;:

1. p %/ implies 3¢/,b apb and ¢ = ¢’ and (9, ¢') € Riyey—c, ),
2. q - ¢ implies 3p/,a fapb and p > p' and (', q') € Ritey—c,):
where a,b € A. Each relation R; is called an i-slice of the amortised p-bisimulation.

We say p is amortised cheaper (more cost efficient) than q up to credit i, in no-
tation, p <2 q, if (p,q) € R; for some amortised strong p-bisimulation (R;)iemn -
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In case that i = 0 we simply write p < q. The i-index gives the mazximal credit
which p requires to bisimulate q. The credit cannot be higher than i as we do not
consider slices with a negative index.

To give a few simple examples, let a,b,d,e € CAct, ¢, = cq =1, ¢y = 2 and
ce = 3. Then a.b.0 < €.d.0, a.b.0 <” b.a.0, a.b.0 A” a.b.0 and b.a.0 <4 a.b.0
where p = {(a,b), (b,a), (a,e), (b,d)}. The underlying amortised p-bisimulations
are easily exhibited by the reader. To ease terminology, if p is understood from
the context we simly omit mentioning it. Some facts on amortised bisimulations
are given next.

Proposition 2. Let (R;)iev be a family of relations satisfying the conditions
of Definition [l

1. If CAct =0 then each i-slice R; is a strong bisimulation.

2. Usev Ri is a strong bisimulation.

3. (Sj)jen, where for some constant | € IN, Six; = R; and S; = 0 for all
J <, is a strong amortised p-bisimulation.

4. (Tj)jen, where T; = Uigj R;, for all j € IN, is a strong amortised p-
bisimulation.

In general, we could have relaxed the restriction to IN in Definition [ by
allowing the family to be indexed over all the integers, provided a lower bound
[ exists such that for all i < I, R; = 0 and p <” ¢ if (p,q) € R;. In fact, for
convenience we will use negative indices in one example later and this is justified
in view of part [ of the proposition above.

A few basic properties of <? are given in the next proposition.
Proposition 3. Leti,j € IN.

(=?)iemnv is the component-wise largest strong amortised p-bisimulation.
<P c<?
7 = Yi+1-
~o <P = <P =<0~ where o denotes relational composition.
If p is reflexive then < is reflezive and ~C<?.
If p is transitive then <7 o <7 C <7, ;.
In particular, <P is transitive if p is transitive.

Crds Lo o~

To see that symmetry of p does not carry over to < consider p = a.0, ¢ = b.0,
co =1, =2and p = {(a,b), (b,a)}. We next list the congruence properties of
<! with respect to CCS-operators.

Proposition 4. Let p <7 q and r </ s where i,j € IN.

a.p <Z b.q whenever apb and k > i+ cq — ¢y > 0 where a,b € A.
p+r =< qg+s for k>max{i,j}.

plr=<pqlsfork>i+j.

plf1 <% qlf] for k>

p\a =<} q\a foranyac Act.

Crds Lo o~
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Note, that the congruence result for parallel composition only holds due to the
fact that priced actions cannot communicate. As a corollary of this proposition
we obtain the congruence results for <” where ¢ and j are chosen as 0.

We now consider the generalization of amortised bisimilarity to its weak
counterpart. A weak transition is defined as usual, just as @ = a if a # 7 and
7 = ¢. However, via p we can map priced actions to 7 and the weak matching has
to take these “visible 7-actions” into account. To formulate this, let epu (upe,
respectively) denote that 7pu; for all i where u = uq - - - uy, u; € CAct . The cost
function C' is extended to words by ¢, = ¢y, + -+ cu,, -

Definition 5. Let the preconditions be as in Definition[ll A family (R;)ien of
binary relations over P is a weak amortised p-bisimulation, if for all i € IN,

(p,q) € Ry:

7Ca]7

2. q LN q' implies ', a, u,v Japb, wvpe,p uay p and (0',q") € Rive,—cuanls

1. p -2 p' implies 3¢, b, u,v Japb, epuv, q uby q and (p',q') € Riye,,

v

where a,b € A and u,v € CAct*. Process p is (weakly) amortised cheaper (more
cost efficient) than q up to credit i, p=<Lq, if (p,q) € R; for some weak amortised
p-bisimulation (R;)iew. We write p=<£q if (p,q) € R; for some i-slice R;.

The assertions of Proposition Blremain valid for the weak case. Additionally,
we may replace ~ by & in clause 3 and clause 4. Finally, the congruence results
stated in Proposition [ carry over apart from closure under + which is lost for
standard reasons.

3 The Amortised Faster-Than Preorder

In [6], Liittgen and Vogler consider a timed version of CCS incorporating ur-
gent actions and a clock pulse action o. They then define a preorder called the
amortised faster-than preorder as the largest relation with index 0 in a family
of bisimulation relations indexed by the natural numbers. In their treatment,
every action is visible (this includes o as well as 7). Hence they work within a
strong bisimilarity setting. However, the conditions governing these bisimulation
relations is reminiscent of the treatment of sequences of internal actions in the
definition of weak bisimilarity. The number of clock actions executed up to a
given state thus gives the time of the next visible action.

Definition 6. [the amortised faster-than preorder]| A family (R;)ien of
relations over P is a family of amortised faster-than relations if, for all i € IN,

(p,q) € R; and a € A:

k !
1. p 2 implies 3¢, k,1 [ 2> 275 ¢ and (v',q') € Riyns1].

a . . . o a o l
2. q — ¢ implies I k1 k+1 < i and p — —— p' and (p',q¢) €
Ri_ 1]
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o . . . g k

3. p—p implies 3¢,k [k>1—iandq— ¢ and (p',q¢') € Ri_141].
o . . . g k

4. q— ¢ implies 'k [k <i+1andp — p and (p',q¢) € Riy1-1].

Process p is amortised faster than q if there is a family (R;);emn of amortised
faster-than relations such that (p,q) € Rp.

We give two embeddings of the faster-than preorder in our setting. As men-
tioned before, Definition [0] has similarities with both weak and strong bisimula-
tion. Accordingly, we give two embeddings, one which characterizes the
amortised faster-than preorder as a weak amortised bisimulation while the sec-
ond identifies it with a strong amortised bisimulation.

In our first (straight forward) embedding we relate a clock pulse ¢ via p to
7 and vice versa. We further assume that this internal transition is different

from [6]’s 7 as 7’s are considered as visible there. Under these assumptions a

el o k a ol / . . . o*ag! 7 . .
transition sequence p — ———— p’ coincides with p = p’ in our setting

where € po**! pe. Thus, the faster-than preorder reduces to an instance of an
amortised weak bisimilarity.

Proposition 7. The amortised faster-than preorder is a weak amortised p-bisi-
mulation (<P) where CAct ={o}, ¢, =1 and p ={(7,0),(0,7),(0,0)}.

Note, that this amortised weak bisimulation also characterizes the weak
amortised faster-than preorder which, however, has not been defined in [6].

For the second embedding, we reformulate the faster-than preorder such that
the transition to be matched is a weak one in the sense that it may be preceded
and followed by a sequence of clock transitions.

Lemma 8. Characterization The faster-than preorder may be equivalently de-
fined by varying conditions (1) to (4) as follows.

k n

) p' implies I¢',m,n [k —m <i and q AR NN q
and (pl7 ql) € Rif(kJrl)Jr(ern)]'

2. q o e, q implies Ip' k1 [k —m <i and p AN P’
and (p/7 q/) € Rif(kJrl)Jr(ern)]'

3. p ok p' implies 3¢',m [k —m < i and q AN qd and (p',q) € Ri—ktm]-

1. p =

k
4. q AN q" implies I’k [k —m <iandp L p' and (p',q) € Ri_pym)/.

For the embedding we need a refinement of the original definition of amortised
p-bisimulation such that the matching of actions can be cost dependent. By itself,
this seems to be a reasonable assumption as, for example, if one has accumulated
in the simulation a huge credit one can be more generous in choosing matching
actions which are expensive. To cover this aspect, we define p as a family p =

(pi)ien-
Definition 9. Let p = (p;)icv and be a family of binary relations on CAct . A

family of binary relations over P, indexed by IN, is a cost dependent amortised
p-bisimulation, if for all i € IN, (p,q) € R; and a € Act :
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1. p =" p implies 3¢',b [apib and ¢ == ¢’ and (¢'.q) € Rige,—c, ]
2. q 2, q' implies Ip',a [ap;b and p = p' and (p',q') € Rite,—c,]-

Let p C? q denote the largest such relations.

The amortised faster-than preorder of [LV05] is a special case of the cost
dependent set up.

Proposition 10. The faster-than preorder is an instance of a cost dependent
strong amortised p-bisimulation.

Proof. We define CAct = (IN x Act x IN) U IN and based on that cost function
C and cost dependent relations p;:

_Jk+lifa=(kal)
C(O‘)—{k ifo=k

For each i € IN, p; € (IN x Act x IN)?> U IN%. In its definition we distinguish
between two cases. If « = (k,a,l) and 8 = (m,b,n) then ap;8 if and only if
a=bk—m<iand (k+1)— (m+n) <i. If otherwise, « = k and 8 = m then
ap;( if and only if k —m < 4.

kal) . ) k !
In the transition system we consider, p (ka) p if and only if p > -2 p

k
and p +, p if and only if p " p’. It is now easily verified, that with Definition
and the instantiations given, amortised faster-than preorder is equal to the
induced cost dependent amortised p-bisimulation.

In comparison, the weak amortised bisimulation certainly gives a more natu-
ral characterization of the faster-than preorder. In addition, the characterization
as a strong amortised bisimulation has the following two drawbacks. First, its
generalization to a weak faster-than preorder is not straight forward. Second, as
priced actions cannot communicate, the parallel composition of transition sys-
tems in our and in the setting of [6] would yield different composed systems.

4 Shared Messaging Communication vs. Message Passing

In [9] the authors suggest and investigate a model called shared messaging com-
munication (SMC) in which the advantages of message-passing (MP) and shared
memory are combined. This is to reduce the communication costs (both in terms
of communication latency and memory usage) of sending large payloads by al-
lowing tasks to communicate data through special shared memory regions. The
communication primitives are used only to send references (called tokens) to the
shared memory region.
The following is a brief description of the system.

1. Each task operates on its private address space as well as on special memory
regions which are used for inter-task communication.
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2. Tasks communicate data in blocks of predefined size through tokens, which
they are not allowed to copy or modify.

3. The system provides interfacial primitives for obtaining memory, compos-
ing a token and sending it. Correspondingly it also provides primitives for
receiving a token, consuming it and releasing memory.

The authors consider an asynchronous communication model with a buffer for
tokens. However, the basic principles and the motivation for the SMC model also
hold in the synchronous communication setting.

The experimental results provided by the authors suggest that message-
passing channels outperform shared messaging communication (due to the extra
overhead involved in obtaining and releasing memory) when the payloads in
communication are of small size. At higher sized payloads the SMC outperforms
pure message-passing, since in SMC only a token is sent, as opposed to the
message passing model where the entire contents of the message are sent.

We confirm these observations by proving (for our abstract processes) that
up to a given credit, SMC is indeed amortised cheaper than MP. The credit
given reflects the overheads of obtaining and releasing memory.

The following actions are necessary to control the access to the shared ad-
dress space.

gum give unused memory (to be bound to a token t)

uo usage over (of the memory given by the token t)

st send token

rt  receive token

cps compose token: write the data to the shared memory specified by the token
csm consume token: read the contents of the memory specified by the token.

The communicational behaviour of a SMC process is described by SMC' Process:

SMC' Process 4 7. .Request Token + T.Receive Token
Request Token ¥ gum.Compose Token

Compose Token % Zkew_{o}(cps.)kSend Token
Send Token 4 st.SMC Process

Receive Token % rt.Consume Token

Consume Token % Zkewi{o}(csm.)k Usage QOver

Y wo.SMC Process

& [1& 1%

Usage Over

The definition of Compose Token reflects the fact that depending on the size
of the data to be transferred, it needs to be split into packets — the number
of packets is given by the index k — which then are sent one by one. Similar
arguments apply for receiving the data.

We may model the behaviour of a M P process as follows.

MP Process 4 7.Send Message + T.Receive Message
Send Message 4 Zkewi{o}(sm.)kMP Process
Receive Message % Zkew_{o}(rm.)kMP Process
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Comparing SMC' Process with MP Process, it is clear, that cps should be
matched with sm and csm with rm. The handling of tokens can be viewed as ad-
ministrative overheads which may be matched with an idle action on the message
passing side. For the sending of data, we therefore have the correspondence

T gum cps cps st
SMC Process — — — .-+ — —— SMC Process
T 1> sm sm 1>
MP Process — —— T MP Process
~

k times

and for receiving we have a respective matching. Clearly, sending or receiving
a token should involve lower costs than sending/receiving data packets. Thus
we associate with the former cost 1 and with the latter cost 2 (which could
have been any [ > 1, allowing for a similar analysis). This yields the following
CAct -association p:
cost SMC M P cost
1 gum 7 O

1 U0 T 0
1 st T 0
1 Tt T 0
0 eps sm 2
0 ecsm ™ 2

Proposition 11. Let p and C as in the above table. Then SMC Process is
amortised cheaper than MP Process up to credit 1: SMC' Process <] MP Process.

Proof. As it seems natural to start a simulation with credit 0, let us also consider
bisimulation slices with index -1. So we have (SMC Process, MP Process) € Ry
where (R;);ewu{—1y is the weak amortised p-bisimulation given by

SMC' Process MP Process condition on i

1. SMC' Process MP Process 1 =27, 7>0
2. Request Token Send Message 1 = 27, 720
3. Receive Token Receive Message 1 =27, 7=>0
4. Compose Token Send Message 1=25—1, 572>0
5. (cps.)*Send Token (sm.)*MP Process i=2j—1, j>1
6. Consume Token  Receive Message 1=25—-1, 520
7. (csm.)* Usage Over (rm.)*MP Process i=2j—1, j>1
8. Send Token MP Process 1=27—-1, j>1
9. Usage Over MP Process 1=27—-1, 57>1

where a pair of processes of a line is contained in R; if i satisfies the condition
of the last column.

By the monotonicity property, (SMC Process, MP Process) € R} for the
amortised p-bisimulation (R.);env where R, = R;_; for all ¢ € IN. This es-
tablishes SMC Process jf MP Process, i.e. SMC' Process is more cost efficient
than MP Process up to credit 1.



Amortised Bisimulations 329

5 Web Access with and Without a Proxy Server

In most computing environments, it is fairly common to find a caching proxy
server in operation. Caching proxy servers improve the performance of web-
access within the network by caching most frequently accessed pages of a web
server with predominantly static content and serving them to the clients in the
network. The main communication overhead is restricted to receiving header
information from the web-site. This information is used to determine whether
the cached copy in the proxy is the latest or needs to be updated. Caching
proxies also improve the performance of the web server by reducing the number
of direct accesses to the web-site from distant clients for its content.

We model greatly simplified versions of the clients and the proxy server. We
show that the use of the proxy server reduces the volume of traffic between the net-
work and the web server, while still serving up-to-date information to each client.

Let d request header, d serve header d request page and d serve page be all
the visible actions. The prefix ‘d’ indicates direct access to the web server rather
than via a proxy. In the absence of a proxy server, a typical client D Client has
the following definition.

D Client ¥ d request page.D Client’
D Client’ % d serve page.D Client

With the introduction of a proxy, the clients communicate only with the
proxy and are indeed set up to do just that. The actions involving communica-
tions of the clients with the proxy server are p request page and p serve page
which stand respectively, for requesting a page from the proxy and serving a
page from the proxy.

P Client ¥ p request page.P Client’
P Client’ ¥ p serve page.P Client

The proxy server requests the web server for the page and caches it when
it arrives (this initial request is done by ¢ request page). For future requests, it
merely asks for the header and compares it with its cached version. It requests
the full page only if the header information is different. Again we simplify the
design by assuming it serves only one request at a time.

Proxy 4o % p request page.First Copy
First Copy i request page.Request Sent

=

Proxy 4 p request page.Client Wait
Client Wait % d request header.Check Update
Check Update ¥ d serve header.Decide
DECIDE 4 7.No Update + 7. Update
Update 4 d request page.Request Sent
No Update 4 p serve page.Prozy

Request Sent ¥ d serve page.Cached

Cached

1=

p serve page.Proxy
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For the complete system, we consider just one client as this suffices to demon-
strate the benefits of a proxyE The entire system with the proxy server is

P System,;; & (P Client | meysmrt)\ip request page,p serve page’}/
~

=: ProzylInt
of which the main behaviour is given by
P System % (P Client | Prozy)\ Prozylnt.
It is clear that the two systems P System and D System ,where
D System ¥ D Client,

are not observationally equivalent since P System may perform actions which
are not in the sort of D System. However they are both functionally equivalent
from the point of view of the client. To set up p, we inspect how the actions
of P System and D System correspond during one round of communication. In
case that no updating is required the correspondence is

T drh dsh T

P System — — P System

drp dsp €

D System —— — D System

while in case of an updating we have:

T drh dsh T drp dsp T
P System — — — — — — —— P System

5 drp dsp £
D System — — — —

= =5 =5 D System

Note, that D System is actually not capable of performing any 7-transition, so
it can match d request page and d serve page only by staying idle. Thus, we
define p as given via the following table.

cost P System abbr. D System cost
wy ¢ request page irp d request page wy
wy d serve page dsp d serve page ws
wy d request page drp T 0
wo d serve page dsp T 0

uy d request header drh d request page w;
ug d serve header  dsh d serve page ws

We set v; := w; —wu; for i = 1,2, u := uy + ug, v := v1 + v and w := w1 + wo.
Thus, u gives the cost of a complete update round while v is the credit obtained
from one round without update. As the cost of getting a page is much higher
than that of getting a header, we have v > u (as we may assume w > u).
Furthermore, we require u # 0.

! Imagine a German living in India accessing the news Tagesschau every few minutes.
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As discussed in the introduction, it is necessary to model the relative frequen-
cies of update rounds against rounds without an update, in order to establish
any efficiency result. We proceed by introducing a decision maker DM . When-
ever the header of the page is provided by the web server, it has to be decided
whether the copy in the cache has to be updated or not. This decision is taken
by DM . Essentially, DM’s decision is nondeterministic, but we assume that the
number of update-decisions (b-actions) is never higher than n times the number
of no-update decisions (a-actions), for some fixed n. We then show for which n,
depending on the costs for long distance communications, the proxy system is
actually more efficient.

The decision maker is given by

DM ¥ a.(DM | }.---.b,0)
~
n times

and to enable it to interact with Prozy we replace DECIDE by
Decide ¥ a.No Update + b. Update.

The complete proxy-system now is

P System ¥ (P Client | Proxy | DM)\ ProzyInt U {a,b}
~ ~ rd
=H

where we do not introduce fresh names for the modified systems.

Proposition 12. Letu be the extra cost of one update of a page and v be the cost
saved if an update is not necessary. Assume that at any state of a computation,
the number of updates is never higher than n times the number of no-updates.
Then whenever n < 7, P System is more cost efficient than D System, that is

P System,;,,;,<"D System
where p and C are given in the table on page [F30.

Proof. For a derivative p of DM let A(p) := max{n | Ip’ : pip’}. It is easily
verified that
p ~ ¢ if and only if A(p) = A(q).

Thus A(m) := {p | A(p) = m} is an equivalence class of bisimilar processes and
by the congruence properties for <” we do not have to distinguish between dif-
ferent representatives in the semantic analysis. This reduces the cases to inspect
in the proof considerably.

We define the weak amortised p-bisimulation (R;);c v as the smallest relation
satisfying the conditions described by the following tabldd.

2 For the sake of readability, we omit the restriction set H in the proxy system.
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P System D System condition on i

init
1. P Client | Prozyg,. | A(0) D Client =0
2. P Client' | First Copy | A(0) D Client i=0
3. P

Client’ | Request Sent | A(0) D Client'" i=0

P System D System

4. P Client | Prozy | A(m) D Client i>m-u

5. P Client' | Client Wait | A(m) D Client i>m-u

6. P Client' | Check Update | A(m) D Client' i>m-u+uv;
7. P Client' |  Decide | A(m) D Client i>m-u+wv

8. P Client' | No Update | A(m) D Client i>m-u

9. P Client' | Update | A(m) D Client i>m-u+w
10. P Client’ | Request Sent | A(m) D Client i>m-u+ we
11. P Client' |  Cached | A(m) D Client i>m-u

As an example, we verify the properties of a weak amortised p-bisimulation
(Definition [l for case 7. All other cases are similar.

So assume ((P Client’ | Decide | A(m))\H, D Client) € R; for some i >
m-u+v.

There are two transition possible for P System’s state.

One transition is

(P Client’ | Decide | A(m))\H —— (P Client' | No Update | A(m + n))\H

where the 7-action is due to DM’s decision that no update is required. This
decision will release n more b’s in DM and therefore the new state of the decision
maker is A(m+n). D System can match the 7-move only by staying idle. Hence,
we have to show:

(%) ((P Client" | No Update | A(m + n))\H, D Client) € R;
However as n < 7, we have v > n - u. Thus,
i>m-u+v>(m+n)-u
and, thus, condition 8 is verified for (x).
The other transition initially possible is — provided m > 0 —
(P Client’ | Decide | A(m))\H —— (P Client" | Update | A(m — 1))\H

where this 7-action is due to DM’s decision to update. Again, D System stays
idle and it is easily verified that

P Client’ | Update | A(m — 1))\H, D System) € R;
Y

by case 9.
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Now, assume D System performs the first move which can only be

d request page
—_

D Client D Client'.

P System can always match this (going via state No Update) by

d request header
>

(P Client’ | Decide | A(m))\H

(P Client' | Check Update | A(m + n))\H

with cost u1. We have to show that
((P Client" | Check Update | A(m +n))\H, D Client') € R,

which follows from case 6 if i + vy > (m + n) - u + v;. However, (m+n) - u <
m - u + v < ¢ by the preconditions.

6 Conclusions

In this paper we have proposed amortised p-bisimulation as a behavioural re-
lation which admits quantitative assertions on the cost relationship of the pro-
cesses under comparison. To this end, we have enriched CCS by priced actions
and studied basic properties of the resulting calculus. Depending on the relation
p, which determines which actions can match which in the bisimulation game,
amortised p-bisimulations can coincide with bisimilarity or just give a relation
without preferred properties like reflexivity or transitivity. Though the latter
can be considered as undesirable, we have pursued the policy of developing a
calculus which would satisfy certain needs highlighted by the case studies. For
example, the proof that in the presence of a proxy server, in general, a system
is more cost efficient, would have been much less clear if p was deemed to be
reflexive. But even in that case study, we were able to use the proof techniques
of standard CCS. We therefore believe that the proposed theory may be useful
for similar verifications, though, of course, more case studies are required to test
its applicability. Another indicator, which makes us believe that our definitions
are “right” or “natural” is the fact that only after we had fixed our notion of
amortised bisimulations, we came across Liittgen & Vogler’s work on amortised
faster-than preorders, which turned out just to be an instance of our more general
set—upE Aiming at expressing amortisation within bisimilarity it seems natural
to consider bisimulations with an extra cost component.

There are various questions regarding the algebraic properties of the compar-
ison relations that this work raises. For instance the properties of the p-relation
between actions (or action sequences) largely influences the corresponding nature
of the bisimilarity relation. The tradeoff between nice properties and wide ap-
plicability needs to be further studied. Another question we have not addressed

3 We acknowledge that our notation is highly influenced by [6].
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(and this is relevant in the context of CCS), is whether priced actions should
be allowed to communicate and synchronize, and if so what would be the costs
of such a communication and whether compatibility with parallel composition
could be achieved.

Behavioural equivalences and preorders have largely dominated the analysis
of the semantics of programs and systems. The literature does contain several
works ([II6IT0MA]) in which authors have compared the relative efficiencies of
systems by using time as a quantity to be captured behaviourally. The notion of
time is implicit also in the notion of computation and may be viewed as a cost
that may be captured behaviourally. However, the notion of cost in this paper
goes further. Costs are explicitly assigned to actions and cannot necessarily be
inferred from behaviour. The result is that the same behaviours under different
cost functions could yield radically different decisions as to the relative costs
of running competing systems. The analysis of long-term costs is important in
nondeterministic systems which theoretically may run forever. We hope to have
made a small step towards such an analysis.
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