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Abstract. We define and study a quantitative generalization of the tra-
ditional boolean framework of model-based specification and verification.
In our setting, propositions have integer values at states, and properties
have integer values on traces. For example, the value of a quantitative
proposition at a state may represent power consumed at the state, and
the value of a quantitative property on a trace may represent energy
used along the trace. The value of a quantitative property at a state,
then, is the maximum (or minimum) value achievable over all possible
traces from the state. In this framework, model checking can be used
to compute, for example, the minimum battery capacity necessary for
achieving a given objective, or the maximal achievable lifetime of a sys-
tem with a given initial battery capacity. In the case of open systems,
these problems require the solution of games with integer values.

Quantitative model checking and game solving is undecidable, ex-
cept if bounds on the computation can be found. Indeed, many interest-
ing quantitative properties, like minimal necessary battery capacity and
maximal achievable lifetime, can be naturally specified by quantitative-
bound automata, which are finite automata with integer registers whose
analysis is constrained by a bound function f that maps each system K
to an integer f(K). Along with the linear-time, automaton-based view
of quantitative verification, we present a corresponding branching-time
view based on a quantitative-bound µ-calculus, and we study the rela-
tionship, expressive power, and complexity of both views.

1 Introduction

Traditional algorithmic methods for the verification of finite-state systems, with
a set P of boolean propositions, translate a system into a transition graph in
which each vertex corresponds to a state of the system and is labeled by the
propositions that hold in the state. A property of the system is specified by a
temporal-logic formula over P or by an automaton over the alphabet 2P . When
the system is closed (i.e., its behavior does not depend on the environment), ver-
ification is reduced to model checking [7]; for open systems, verification requires
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game solving [1]. While successful for verifying hardware designs [5] and com-
munication protocols [12], this approach cannot adequately handle infinite-state
systems that arise, for example, in general software verification. Much research
has therefore focused on infinite-state extensions, such as models whose vertices
carry a finite, but unbounded amount of information, e.g., a pushdown store,
or integer-valued registers [14]. Much of the reasoning about such systems, how-
ever, has still focused on boolean specifications (such as “is the buffer size always
bounded by 5?”) rather than answering quantitative questions (e.g., “what is the
maximal buffer size?”). Moreover, the main challenge in most infinite-state for-
malisms has been to obtain decidability for checking boolean properties, usually
by limiting the expressive power of the models or properties.

In contrast, the solution of quantitative questions, such as system power re-
quirements and system lifetime, has been considered on a property-by-property
basis. Often the solution consists, however, of two basic steps: first, a suitable
system of constraints is set up whose solution gives the intended quantitative
answer (a “dynamic program”); and second, by considering the characteristics
of the system (number of states or maximal initial battery power), a bound is
provided on the number of iterations required to solve the dynamic program.
We systematize this ad-hoc approach to answering quantitative questions about
infinite-state systems in order to make it accessible to design engineers. For this
purpose, we extend the traditional boolean verification framework to an integer-
based framework, which due to its generality permits the modeling of a wide
variety of quantitative aspects and properties of systems [6,4].1 In particular, we
generalize traditional boolean specification formalisms such as automata to the
integer-based framework, so that an engineer can express the desired quantitative
properties in a natural way. These quantitative automata are then automatically
translated into dynamic programs for model checking and game solving. Finally,
from parametric bounds given by the engineer, such as bounds on the value
of a quantity or on the number of automaton steps necessary for computing a
property, we automatically derive iteration bounds on solving the corresponding
dynamic program. In all the examples we study, such as maximal lifetime of
a system with given initial battery capacity, our generic, systematic approach
matches the best known previous, property-specific algorithms.

Specifically, the models we consider, quantitative structures, are graphs with
finitely many vertices, but every vertex is labeled by a set of quantitative propo-
sitions, each taking an integer value. For example, the label at each vertex may
represent the amount of power consumed when the vertex is visited, or it may
represent a buffer size, a time delay, a resource requirement, a reward, a cost,
etc. The properties we check are quantitative properties of infinite paths, each
representing a run of the system. For instance, we may ask for the peak power

1 It should be noted that we use the term quantitative, as in quantitative verification,
quantitative property, or quantitative µ-calculus, simply as referring to “integer-
based” rather than “boolean.” This is not to be confused with some literature, where
the term quantitative is used to refer to “probabilistic” systems, and real values are
obtained as results of evaluating boolean specifications [2,13,16,10].
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consumption along a path, or for the lifetime of a battery along the path given a
certain amount of initial battery power (i.e., the number of transitions along the
path until the initial battery power is used up). Such properties can be specified
by an extension of traditional automata. While a traditional automaton maps
infinite paths of a graph with boolean propositions (i.e., infinite words over the
alphabet 2P ) to “accept” or “reject”, we define quantitative automata, which
map each infinite path of a graph with quantitative propositions (i.e., infinite
words over the alphabet N

P ) to an integer. For example, if the proposition p ∈ P
describes the amount of power consumed when the current input letter is read,
then an automaton specifying battery lifetime, given initial power a ∈ N, maps
each word o1o2o3 . . . to the maximal k ≥ 0 for which

∑k
i=1 oi(p) is at most a. In

model checking, boolean properties of infinite paths can be interpreted either in
an existential or universal way, asking whether the property is true on some or
all paths from a given state. In quantitative verification, we ask for the maximal
or minimal value of a property over all paths from a state. For the battery life-
time property, this amounts to computing the maximal or minimal achievable
lifetime (note that this corresponds to the battery lifetime in the cases that a
scheduler resolves all nondeterminism in a friendly vs. an adversarial manner).
In a game, where two players (system components) decide which path is taken,
boolean properties are interpreted in an ∃∀ fashion (“does player 1 have a strat-
egy so that for all player 2 strategies the property is satisfied?”). Accordingly,
we interpret quantitative properties in a max min fashion (“what is the maximal
value of the property that player 1 can achieve no matter how player 2 plays?”).

Since quantitative automata subsume counter machines, model checking and
game solving are undecidable. However, unlike much previous work on infinite-
state verification, we do not focus on defining decidable subclasses, but we note
that in many examples that arise from verification applications, it is often easy
and natural to give a bound function. This function specifies, for given system
parameters (such as number of states, maximal constants, etc.), a threshold
when it is safe to conclude that the value of a quantitative property tends to
infinity. Accordingly, we specify a quantitative property as a quantitative-bound
automaton, which is a pair consisting of a quantitative automaton and a bound
function. Note that bounds are not constant but depend on the size of the struc-
ture over which a specification is interpreted; they are functions. We consider
value-bound functions, which constrain the maximal value of an automaton reg-
ister, and iteration-bound functions, which constrain the maximal number of
automaton transitions that need to be analyzed in order to compute the value
of the property specified by the automaton. Iteration bounds directly give ter-
mination bounds for dynamic programs, and thus better iteration bounds yield
faster verification algorithms. In particular, for the battery lifetime property, the
generic dynamic-programming algorithms based on iteration bounds are more
efficient than the finite-state algorithms derived from value bounds, and they
match the best known algorithms that have been devised specifically for the
battery lifetime property [6]. Given a value-bound function f , we can always ob-
tain a corresponding iteration-bound function g: for quantitative automata with
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|Q| control locations and k registers, and quantitative structures G, the itera-
tion bound g(G) = O(|Q| · |G| · f(G)k) is sufficient and necessary. Moreover, for
certain subclasses of quantitative automata it is possible to derive better itera-
tion bounds. For instance, for monotonic quantitative-bound automata (without
decreasing register values), we derive iteration-bound functions that are linear
with respect to given value-bound functions.

The verification problems for properties specified by quantitative-bound au-
tomata are finite-state, and therefore decidable. However, instead of reducing
these problems to boolean problems, we provide algorithms that are based on
generic and natural, integer-based dynamic programming formulations, where
the bound function gives a termination guarantee for the evaluation of the dy-
namic program. We expect these algorithms to perform well in practice, as they
(1) avoid artificial boolean encodings of integers and (2) match, in all the exam-
ples we consider, the complexity of the best known property-specific algorithms.
The use of bound functions can be viewed as a generalization of bounded model
checking [3] from the boolean to the quantitative case. In bounded model check-
ing, the engineer provides a bound on the number of execution steps of a system
along with a property. However, the bound is usually a constant independent
of the structure, whereas our bound functions capture when search can be ter-
minated without losing information about the structure. Therefore, in bounded
model checking, only the structure diameter constitutes a bound function in
our sense, because smaller bounds may give counterexamples but not proofs. Of
course, as in bounded model checking, our approach could be used to quickly
find counterexamples for quantitative verification problems even if the bound
function gives values that are smaller than necessary for proof.

Quantitative automata specify dynamic programs. There is a second natural
way to specify iterative computation: through the µ-calculus [15]. In a quantita-
tive extension of the µ-calculus, each formula induces a mapping from vertices
to integers, and bound functions naturally specify a bound on the number of
iterations for evaluating fixpoint expressions. More precisely, for a µ-formula ϕ,
an iteration-bound function g specifies that if, during the iterative calculation
of the value of a fixpoint expression in ϕ on a structure G, a stable value is
not reached within g(G) iterations, then the value is infinity. While quantitative
extensions of the µ-calculus [13,16,10] have been defined before, they were inter-
preted over probabilistic structures and gave no iteration bounds. Finally, we give
a translation from linear-time quantitative-bound automata to the branching-
time quantitative-bound µ-calculus. For the purpose of game solving, as in the
boolean case, the translation requires that the automaton is deterministic. This
gives us symbolic algorithms for the quantitative verification of closed and open
systems. Moreover, we show that the relationship [9] between boolean µ-formulas
over transition graphs and boolean µ-formulas over game graphs carries over to
the quantitative setting: a quantitative-bound µ-formula computes a particu-
lar quantitative property over two-player game graphs iff the formula computes
the property over both existential and universal transition graphs (i.e., game
graphs where one of the two players has no choices). This shows that the same
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integer-based symbolic iteration schemes can be used for verifying a quantitative
property over both closed and open systems, provided the single-step operation
is modified appropriately; this was previously known only for boolean structures,
where the dynamic programs are degenerate [9].

2 The Integer-Based Quantitative Setting

Quantitative Properties. Let P be a nonempty, finite set of quantitative
propositions (propositions, for short). A quantitative observation (observation,
for short) is a function o: P → N mapping each proposition to a natural number
(possibly 0). Let O be the set of observations. A quantitative trace (trace, for
short) is an infinite sequence w ∈ Oω of observations. A quantitative property
(property, for short) is a function π: Oω → N ∪ {∞} mapping each trace to a
natural number or to infinity. Let Π denote the set of properties. These defi-
nitions generalize the boolean interpretation [7], where observations are maps
from propositions to {0, 1}, and properties are maps from traces to {0, 1}. The
following examples describe some quantitative properties.

Example 1 (Response time). Let P = {p}. Given a ∈ N, the property
rta: Oω → N maps each trace w to rta(w) = sup{k | ∃w′ ∈ O∗, w′′ ∈
Oω such that w = w′ · (p �→ a)k · w′′}. Thus, rta(w) is the supremal number
of consecutive observations mapping the proposition p to the value a in the
trace w. This may model the maximal time between a request and a response.
The supremum may be infinity. This happens if w = w′ · (p �→ a)ω, or if for all
k ≥ 0, the trace w contains a subsequence with at least k successive observations
mapping p to a (for example, p may be mapped to abaabaaabaaaab . . .).

Example 2 (Fair maximum). Let P = {p, q}. The property fm: Oω → N

maps each trace w to the supremal value of the proposition p on w if the
proposition q is nonzero infinitely often on w, and to 0 otherwise. The proposi-
tion q may model a fairness condition on traces [6]. Formally, fm(o0o1o2 . . .) is
sup{oj(p) | j ≥ 0} if lim sup{oj(q) | j ≥ 0} 	= 0, and 0 otherwise. The supremum
may be infinity.

Example 3 (Lifetime). Let P = {p, c}. Given a ∈ N, the property lta: Oω →
N maps each trace w = o0o1o2 . . . to lta(w) = sup{k | ∑k

j=0(−1)cj · oj(p) ≤ a},
where cj = 0 if oj(c) = 0, and cj = 1 otherwise. Intuitively, if a zero (resp.,
nonzero) value o(c) denotes resource consumption (resp., resource gain) in a
single step of o(p) units, then lta(w) is the supremal number of steps that can be
executed without exhausting the resource, given a initial units of the resource.

Example 4 (Peak running total). Let P = {p, c} as in the previous exam-
ple. The property prt: Oω → N maps each trace w = o0o1o2 . . . to prt(w) =
sup{∑k

j=0(−1)cj · oj(p) | j ≥ 0}, where again cj = 0 if oj(c) = 0, and cj = 1
otherwise. Intuitively, if a resource is being consumed or gained over the trace w,
then prt(w) is the initial amount of the resource necessary so that the resource
is never exhausted.
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Quantitative Structures. A quantitative system (system, for short) is a tuple
K = (S, δ, s0, 〈·〉), where S is a finite set of states, δ ⊆ S×S is a total transition
relation, s0 ∈ S is an initial state, and 〈·〉: S → O is an observation function
that maps each state s to an observation 〈s〉. A two-player quantitative game
structure (game, for short) is a tuple G = (S, S1, S2, δ, s0, 〈·〉), where S, δ, s0,
and 〈·〉 are as in systems, and S1 ∪ S2 = S is a partition of the state space
into player-1 states S1 and player-2 states S2. At player-1 states, the first player
chooses a successor state; at player-2 states, the second player. Note that systems
are special cases of games: if Si = S, for i ∈ {1, 2}, then the game is called a
player-i system. We use the term structure to refer to both systems and games.

s1
2

s0
2

s2
1

s3
5

s4
2

s5
3

Fig. 1.

A trajectory of the structure G is an infinite sequence
t = r0r1r2 . . . of states rj ∈ S such that the first state
r0 is the initial state s0 of G, and (rj , rj+1) ∈ δ for
all j ≥ 0. The trajectory t induces the infinite sequence
〈t〉 = 〈r0〉〈r1〉〈r2〉 . . . of observations. A trace w ∈ Oω is
generated by G if there is a trajectory t of G such that
w = 〈t〉. A player-i strategy, for i ∈ {1, 2}, is a function ξi:
S∗ × Si → S that maps every nonempty, finite sequence
of states to a successor of the last state in the sequence;
that is, (s, ξi(t, s)) ∈ δ for every state sequence t ∈ S∗ and
state s ∈ Si. Intuitively, ξi(t, s) indicates the choice taken
by player i according to strategy ξi if the current state of
the game is s, and the history of the game is t. We write Ξi for the set of player-i
strategies. For two strategies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, the outcome tξ1,ξ2 of ξ1 and
ξ2 is a trajectory of G, namely, tξ1,ξ2 = r0r1r2 . . . such that r0 = s0 and for all
j ≥ 0 and i ∈ {1, 2}, if rj ∈ Si, then rj+1 = ξi(r0r1 . . . rj−1, rj).

Consider the system K shown in Figure 1, with the initial state s0. Each
state si of K is labeled with the value 〈si〉(p) for a proposition p. Consider the
property rt2 from Example 1. For all traces w that correspond to trajectories of
K of the form (s0s1s2s3)∗, we have rt2(w) = 2. For all traces w that correspond
to trajectories of the form (s0s1s4s5)∗, we have rt2(w) = 3. Moreover, rt2(w) ≤ 3
for all traces w generated by K. Now consider a game played on the same struc-
ture K, where the state s1 is a player-2 state. Consider the property lt14 from
Example 3, supposing that 〈s〉(c) = 0 for all states s of K. The goal of player 2 is
to maximize lifetime given initially 14 units of the resource. Consider the strategy
where player 2 chooses s4 at the first visit to s1, and chooses s2 thereafter. This
strategy generates a trace w along which p is mapped to 2223 (2215)ω; hence
lt14(w) = 7. Note that all memoryless (i.e., history-independent) strategies lead
to smaller lifetimes.

3 Quantitative-Bound Automata

3.1 Specifying Quantitative Properties

Syntax. We specify properties using automata. Let O be a given finite set of ob-
servations. Quantitative automata run over input traces in Oω. The configuration
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of a quantitative automaton consists of a control location and an array of regis-
ters with values in N. The transitions of quantitative automata are guarded by
conditions on the values of the registers and the input observation, and involve,
in addition to an update of the control location, also an update of the register
values. A k-register update function is a recursive function u: N

k×O ⇀ N
k which

may be partial. Let U denote the set of update functions. A quantitative automa-
ton (automaton, for short) is a tuple A = 〈Q, k, q0, γ〉, where Q is a finite set of
control locations, k ∈ N is a number of registers, q0 ∈ Q is an initial location,
and γ: Q → 2U×Q is a transition function that maps each location q to a finite
set γ(q) of pairs consisting of an update function and a successor location. We
require that the transition function γ defines a total relation, namely, for each
location q ∈ Q, each observation o ∈ O, and all register values x ∈ N

k, there
exists (u, q′) ∈ γ(q) such that u(x, o) is defined. For technical convenience, we
furthermore assume that the automaton has a sink location qhalt ∈ Q: if the cur-
rent location is qhalt , then for all observations, the next location is qhalt and the
values of the registers remain unchanged; that is, γ(qhalt) = {(λx. λo.x, qhalt )}.
We write R for the array of registers, and R[i] ∈ N for the value of the i-th
register, for 0 ≤ i < k.

Semantics. A configuration of the automaton A is a tuple (q, v0, v1, . . . , vk−1) ∈
Q × N

k that specifies the current control location and the values of the reg-
isters. The initial configuration of the automaton is cinit = (q0, 0, 0, . . . , 0),
where all k registers are initialized to 0. For an input o ∈ O, the config-
uration c′ = (q′, v′0, v

′
1, . . . , v

′
k−1) is an o-successor of the configuration c =

(q, v0, v1, . . . , vk−1), denoted by c o−→c′, if there is a transition (u, q′) ∈ γ(q) such
that u(v0, v1, . . . , vk−1, o) = (v′0, v′1, . . . , v′k−1). A run of the automaton A over
a trace o0o1o2 . . . ∈ Oω is an infinite sequence c0c1c2 . . . of configurations such
that c0 = cinit, and cj

oj−→ cj+1 for all j ≥ 0. The value of the run r = c0c1c2 . . .
is defined as valA(r) = lim sup{R[0](cj) | j ≥ 0}, that is, the value of r is
the maximal value of the register R[0] which occurs infinitely often along r, if
this maximum is bounded; and otherwise the value is infinity. In other words,
valA(r) = ∞ iff for all k ≥ 0, the value of the register R[0] is infinitely often
greater than k.

An automaton is monotonic if along every run, the value of each register can-
not decrease. An automaton is deterministic if for every configuration c and input
o ∈ O, there is exactly one o-successor of c. While a deterministic automaton has
a single run over every input trace, in general an automaton may have several
runs over a given trace, each with a possibly different value. According to the
nondeterministic (or existential) interpretation of automata, the value of an au-
tomaton A over a trace w, denoted valnondet

A (w), is the supremal value of all runs
of A over w. Formally, valnondet

A (w) = sup{valA(r) | r is a run of A with 〈r〉 =
w}. An alternative is the universal interpretation of automata, where the value
of A over a trace w, denoted valuniv

A (w), is the infimal value of all runs of A over
w; that is, valuniv

A (w) = inf{valA(w, r) | r is a run of A with 〈r〉 = w}. Note
that a deterministic automaton A can be viewed as both a nondeterministic and
a universal automaton. The (nondeterministic) automaton A specifies (or com-
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putes) the property π ∈ Π if for all traces w ∈ Oω , we have valnondet
A (w) = π(w).

This definition captures traditional Büchi automata as a special case: keep one
register R[0], which is set to 1 whenever the automaton visits a Büchi accepting
control location, and set to 0 otherwise.

Model Checking and Game Solving. Let K be a quantitative system. For
a quantitative automaton A, the max-value of K with respect to A, denoted
valmax

A (K), is the supremal value of all traces generated by K, where we choose
the nondeterministic (rather than the universal) interpretation of automata.
Formally, valmax

A (K) = sup{valnondet
A (w) | w is a trace generated by K}. The

min-value of K with respect to A, denoted valmin
A (K), is the infimal value

of all traces generated by K; that is, valmin
A (K) = inf{valnondet

A (w) |
w is a trace generated by K}. Now consider a game G. The value of a strat-
egy pair ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 with respect to a deterministic automaton A
is the value valA(ξ1, ξ2) = valA(tξ1,ξ2) of A over the outcome of the strategies
ξ1 and ξ2. The game-value of G with respect to a deterministic automaton A,
denoted valmaxmin

A (G), is defined as supξ1∈Ξ1
infξ2∈Ξ2 valA(ξ1, ξ2). This is the

supremal value of A that player-1 can achieve against all player-2 strategies.
The symmetric definition is omitted for brevity.

Given a system K and an automaton A, the quantitative model-checking
problem (model checking, for short) is to determine valmax

A (K) and valmin
A (K).

Given a game G and a deterministic automaton A, the quantitative game-solving
problem (game solving, for short) is to determine valmaxmin

A (G). Since registers
can contain arbitrary natural numbers, we can encode 2-counter machines as
monotonic automata, and hence the model-checking and game-solving problems
are undecidable.

3.2 Bound Functions for Automata

Quantitative-Bound Automata. In order to solve model-checking prob-
lems and games, we equip quantitative automata with bound functions. A
quantitative-bound automaton (QBA) (A, f) consists of a quantitative automa-
ton A and a recursive function f : G → N, where G is the set of quantitative
structures (systems and games). To compute a property on a structure G, a
QBA works with a bound f(G) that depends on G. The motivation is that for
many properties, the designer can provide a bound on the maximal value of the
automaton registers, or on the number of automaton transitions that need to be
executed in order to compute the value of the property if the value is finite. We
thus have two interpretations of the bound function f : the value-bound inter-
pretation, where f(G) is a bound on the register values, and the iteration-bound
interpretation, where f(G) is a bound on the automaton transitions.

We define the value of a QBA over a trace generated by a structure for
the two possible interpretations. Given a QBA (A, f), a structure G, and a
trace w generated by G, let r be a run of the automaton A over w. The
value of r = c0c1c2 . . . over w for the value-bound interpretation, denoted
valvbound(A,f)(r), is defined as follows: if there are an index j ∈ N and a register
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R[i], for 0 ≤ i < k, such that R[i](cj) > f(G), then valvbound(A,f)(r) = ∞; oth-
erwise valvbound(A,f)(r) = valA(r). Intuitively, the value-bound interpretation
maps every trace that causes some register to exceed the value bound at some
point, to ∞. The value of the run r over w for the iteration-bound interpreta-
tion, denoted val ibound(A,f)(r), is defined as follows: if for all 0 ≤ i < k, we have
max{R[i](cj) | f(G) ≤ j ≤ 2 · f(G)} = max{R[i](cj) | 2 · f(G) ≤ j ≤ 3 · f(G)},
then val ibound(A,f)(r) = max{R[0](cj) | f(G) ≤ j ≤ 2 · f(G)}; otherwise
val ibound(A,f)(r) = ∞. Intuitively, the iteration-bound interpretation checks if
the maximal values of all registers stabilize within the iteration bound, and
maps a trace to ∞ if some maximal register value does not stabilize.

Given a QBA (A, f), a system K, a game G, a trace generated by K
or G, and two interpretations bound ∈ {vbound, ibound}, we define the val-
ues valnondet

bound(A,f)(w), valmax
bound(A,f)(K), valmin

bound(A,f)(K), and valmaxmin
bound(A,f)(G)

analogous to the corresponding definitions in Section 3.1 using valbound(A,f)(r)
instead of valA(r). The QBA (A, f) specifies (or computes) the property π on a
structure G if for all traces w generated by G, we have valnondet

bound(A,f)(w) = π(w).
The following examples illustrate the idea.2

Example 5 (Fair maximum). The following QBA (A, f) specifies the prop-
erty fm from Example 2 on all structures G. There are two registers. The register
R[1] keeps track of the maximal value of proposition p seen so far. Whenever
proposition q has a nonzero value, the value of R[1] is copied to R[0]; otherwise
R[0] is set to zero. If q has a nonzero value infinitely often, then the maximal
value of p occurs infinitely often in R[0]; otherwise from some point on, R[0]
contains the value 0. The bound function f is defined as follows: if G contains
the maximal value ∆ for p, then f(G) = ∆ is a suitable value-bound function;
if G has N states, then f(G) = N is a suitable iteration-bound function.

Example 6 (Lifetime). The property lta from Example 3 can be computed
on all structures G by the following QBA (A, f). Let A = 〈{q0, qhalt}, 2, q0, γ〉,
where for all inputs o ∈ O, we have γ(q0) = {(o(c) 	= 0 ∧ R′[0] = R[0] + 1 ∧
R′[1] = R[1] − o(p), q0), (o(c) = 0 ∧R[1] + o(p) ≤ a ∧R′[0] = R[0] + 1 ∧R′[1] =
R[1] + o(p), q0), (o(c) = 0∧R[1] + o(p) > a∧R′[0] = R[0]∧R′[1] = R[1], qhalt)}.
In register R[0] the automaton stores the number of transitions already taken,
and in R[1] it tracks the amount of the resource used so far; it continues to make
transitions as long as it has a sufficient amount of the resource. If G contains
N states and the maximal value ∆ for p, then f(G) = a + (N + 1) · ∆ is a
suitable value-bound function, and f(G) = N · a+N · (N + 1) ·∆ is a suitable
iteration-bound function.

3.3 Quantitative-Bound Model Checking and Game Solving

Given a system K and a QBA (A, f), the quantitative-bound model-checking
problem is to determine valmbound(A,f)(K), where bound ∈ {vbound, ibound} and
2 In the examples, we write update functions as relations u(x, o, x′), where unprimed

variables denote the values of variables before the update, and primed variables
denote the values after the update.
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m ∈ {max,min}. Similarly, given a game G and a deterministic QBA (A, f), the
problem of solving quantitative-bound games is to determine valmaxmin

bound(A,f)(G),
for bound ∈ {vbound, ibound}. Quantitative-bound model checking and game
solving are decidable. In the case of value bounds, the state space is bounded
by O(|G| · |Q| · (f(G) + 2)k), where |Q| is the size of the automaton with k
registers, |G| is the size of the structure, and f is the value-bound function. Let
G be a structure such that for all propositions p ∈ P and states s ∈ S, we have
〈s〉(p) ≤ ∆. Let C0 be the maximal constant that appears syntactically in the
description of the automaton A, and let C1 = f(G). Call B = max{∆,C0, C1}
the oblivion bound for the QBA (A, f) and structure G. Let g(G) = |G| · |Q| ·
(B + 2)k, where A has k registers. Then valmvbound(A,f)(G) = valmibound(A,g)(G),
for m ∈ {max,min,maxmin}. Thus, we can derive an iteration bound from a
value bound.

Formally, the decision problem QBA-VMC (resp., QBA-VGS) takes as input
a systemK (resp., gameG), a QBA (A, f), the oblivion bound B, and a value a ∈
N∪{∞}, and returns “Yes” if valmax

vbound(A,f)(K) ≥ a (resp., valmaxmin
vbound(A,f)(G) ≥

a). The decision problems QBA-IMC and QBA-IGS are defined analogously
using valmax

ibound(A,f)(K) and valmaxmin
ibound(A,f)(G). We give the oblivion bound as an

input to the problems, because the value of f(G) can be unboundedly larger
than the descriptions of f and G. We assume that updates take unit time.

Theorem 1. (1) QBA-VMC is PSPACE-complete and QBA-IMC is
EXPTIME-complete. (2) QBA-VGS and QBA-IGS are EXPTIME-complete.
(3) Let |G| be the size of the structure and |Q| the automaton size for (A, f)
and G. Let S = |Q| · |G| · (f(G)+ 2)k). QBA-VMC and QBA-VGS can be solved
in time O(S) and O(S2) respectively. QBA-IMC and QBA-IGS can be solved in
time O(|Q| · |G| · f(G)).

Note that these complexity results reflect the sizes of the state space in which the
solution lies. In practice, however, the reachable state space can be much smaller.
Hence, on-the-fly state space exploration can be used instead of constructing
the entire state space a priori. The following examples show that our approach,
while being generic and capturing several interesting quantitative verification
problems [6] as special cases, still remains amenable to efficient analysis.

Example 7 (Fair maximum). Consider the deterministic QBA (A, f) with
value-bound function f from Example 5, which computes the property fm from
Example 2. This property is exactly the winning condition for the “threshold
Büchi games” described in [6]. For a game G, the state space with the value
bound has size O(|G| · |Q| · ∆), where ∆ is the maximal value of proposition p
in G. This is exponential in |G|. However, the iteration bound for this problem
is |G|, and this gives an O(|G|2) algorithm, which is the same complexity as the
algorithm of [6].3

3 However, computing an iteration-bound function automatically using the optimal
value-bound function would lead to a suboptimal iteration-bound function g(G) =
|G| · |Q| · ∆.
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Example 8 (Peak running total). The property prt from Example 4 is ex-
actly the winning condition for the “energy games” of [6]. This property can be
computed by a deterministic QBA with two registers and value-bound function
f(G) = |G|·∆, where∆ is the maximal value of p in G. A game-solving algorithm
based on value bounds would require time O(|G|6 · ∆4), whereas an algorithm
designed specifically to solve this game [6] runs in time O(|G|3 · ∆). However,
even for this problem, our generic approach, using the optimal iteration-bound
function h(G) = |G|2 ·∆ achieves the best known complexity of O(|G|3 ·∆).

In the special case of monotonic automata, efficient iteration bounds can be
automatically derived from value bounds. Consider a structure G with N states
and a monotonic QBA (A, f) with value-bound function f , location set Q, and
k registers. Since the value of each register only increases, within |Q| · k · N ·
f(G) steps of every run of A over a trace generated by G, either an automaton
configuration repeats, or there is a register such that the value of the register has
crossed the threshold f(G). Thus valmax

vbound(A,f)(G) is achieved by a run within
|Q| · k ·N · f(G) steps. Since we only require the monotonicity of the registers in
the limit, this observation can be generalized to reversal-bounded automata [18],
where a bounded number of switches between increasing and decreasing modes
of the registers are allowed.

Proposition 1. Let A be a monotonic automaton with location set Q and k
registers, let f : G → N be a recursive function, and let g(G) = |Q| · k ·N · f(G)
for all structures G with N states. Then valmvbound(A,f)(G) = valmibound(A,g)(G)
for all structures G and m ∈ {max,min,maxmin}.

As with the other components of a quantitative automaton, the designer
has to provide the bound function f . Unfortunately, the task of providing a
good value or iteration bound function f , that is, an f that satisfies valmA (G) =
valmbound(A,f)(G) for all structures G, cannot be automated.

Proposition 2. There is a class of update functions involving only increment
operations and equality testing on registers, such that the following two problems
are undecidable: (1) given an automaton A, determine if there is a recursive
function f such that valmax

A (K) = valmax
vbound(A,f)(K) for all systems K; (2) given

a QBA (A, f), determine if valmax
A (K) = valmax

vbound(A,f)(K) for all systems K.

4 The Quantitative-Bound µ-Calculus

We now provide an alternative formalism for defining quantitative properties: a
fixpoint calculus. Our integer-based µ-calculus generalizes the classical µ-calculus
[15], and provides an alternative set of iterative algorithms for model checking
and game solving.

Unbounded Formulas. Let P be a set of propositions, let X be a set of
variables, and let F be a set of recursive functions from N×N to N. We require
that max,min ∈ F . The formulas of the quantitative µ-calculus4 are defined as
4 This is different from the µ-calculi over probabilistic systems defined by [13,10,16].
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ϕ ::= k | p | X | upd(ϕ, ϕ) | pre(ϕ) | µ[(X,ϕ), . . . , (X,ϕ)] | ν[(X,ϕ), . . . , (X,ϕ)],

where k ranges over the constants in N ∪ {∞}, p over the propositions in P ,
X over the variables in X , and upd over the functions in F . If pre ranges over
the set {Epre,Apre} of existential and universal next-time operators, we obtain
the system calculus; if pre ranges over the set {Cpre1,Cpre2} of player-1 and
player-2 controllable next-time operators, we obtain the game calculus. Each
least-fixpoint subformula µ[(X1, ϕ1), . . . , (Xm, ϕm)] and each greatest-fixpoint
subformula ν[(X1, ϕ1), . . . , (Xm, ϕm)] binds a set {X1, . . . , Xm} of variables. A
formula ϕ is closed if all occurrences of variables in ϕ are bound.

The formulas of the quantitative µ-calculus are interpreted over quantitative
structures (systems or games). Consider a game G = (S, S1, S2, δ, s0, 〈·〉). A
quantitative valuation (valuation, for short) is a function θ: S → N ∪ {∞} that
maps each state s to a natural number or infinity. We write Θ for the set of
valuations. The semantics [[ϕ]] of a closed formula ϕ over the structure G is a
valuation in Θ, which is defined as follows. An environment E: X → Θ maps
each variable to a valuation. Given an environment E, we write E[X := θ] for
the environment that maps X to θ, and maps each Y ∈ X \ {X} to E(Y ). Each
update function upd ∈ F defines a transformer [upd ]: Θ × Θ → Θ that maps
a pair of valuations to the valuation obtained by the point-wise application of
upd . Each next-time operator pre defines a transformer [pre]: Θ → Θ that maps
valuations to valuations. Specifically, [Epre](θ)(s) = max{θ(s′) | (s, s′) ∈ δ};
[Apre](θ)(s) = min{θ(s′) | (s, s′) ∈ δ}; [Cpre1](θ)(s) = [Epre](θ)(s) if s ∈ S1,
and [Cpre1](θ)(s) = [Apre](θ)(s) if s ∈ S2; [Cpre2](θ)(s) = [Apre](θ)(s) if s ∈ S1,
and [Cpre2](θ)(s) = [Epre](θ)(s) if s ∈ S2. For an environment E, the semantics
[[ϕ]]E of a (not necessarily closed) formula ϕ over G is defined inductively:

[[k]]E(s) = k; [[p]]E(s) = 〈s〉(p); [[X ]]E(s) = E(X)(s);
[[upd(ϕ1, ϕ2)]]E(s) = [upd ]([[ϕ1]]E, [[ϕ2]]E)(s);
[[pre(ϕ)]]E(s) = [pre]([[ϕ]]E)(s);
[[µ[(X1, ϕ1), . . . , (Xm, ϕm)]]]E(s) = lim sup{E

µ
j (X1)(s) | j ≥ 0};

[[ν[(X1, ϕ1), . . . , (Xm, ϕm)]]]E(s) = lim sup{E
ν
j (X1)(s) | j ≥ 0}.

The environment E
µ
j is defined inductively by E

µ
0 (Xi) = (λs. 0) and E

µ
j+1(Xi) =

[[ϕi]]Eµ
j

for all 1 ≤ i ≤ m; and E
µ
j (Y ) = E(Y ) for all Y ∈ X \ {X1, . . . , Xm} and

j ≥ 0. The environment E
ν
j is defined like E

µ
j except that E

ν
0(Xi) = (λs.∞) for

all 1 ≤ i ≤ m. For monotone boolean formulas, the limsup semantics coincides
with the usual fixpoint semantics of the µ-calculus [15]. For a closed formula ϕ,
we define [[ϕ]] as [[ϕ]]E, for an arbitrary environment E. Given a structure G, the
closed formula ϕ specifies the valuation [[ϕ]](G) = [[ϕ]](s0), where s0 is the initial
state of G.

Bound Functions. A quantitative-bound µ-formula (QBF) (ϕ, f) consists of
a quantitative µ-formula ϕ and a recursive function f : G → N that provides
a bound f(G) on the number of iterations necessary for evaluating µ and
ν subformulas on any given structure G. The semantics [[(ϕ, f)]]E of a QBF
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(ϕ, f) over a structure G is defined like the semantics of the unbounded for-
mula ϕ except that each fixpoint subformula is computed by unrolling the fix-
point only O(f(G)) times. Formally, a variable X is f(G)-stable at a state s
with respect to a sequence {Ej | j ≥ 0} of environments if max{Ej(X)(s) |
f(G) ≤ j ≤ 2 · f(G)} = max{Ej(X)(s) | 2 · f(G) ≤ j ≤ 3 · f(G)}. We
define [[µ[(X1, ϕ1), . . . , (Xm, ϕm)], f ]](s) to be max{E

µ
j (X1)(s) | f(G) ≤ j ≤

2 · f(G)} if all variables Xi, for 1 ≤ i ≤ m, are f(G)-stable with respect to
{E

µ
j | j ≥ 0}; otherwise [[µ[(X1, ϕ1), . . . , (Xm, ϕm)], f ]](s) = ∞. The semantics

[[ν[(X1, ϕ1), . . . , (Xm, ϕm)], f ]] of greatest-fixpoint subformulas is defined analo-
gously, using the sequence {E

ν
j | j ≥ 0} of environments instead. A QBF formula

(ϕ, f) defines an iterative algorithm for computing the valuation [[(ϕ, f)]](G)
for any given structure G. Assuming updates take unit time, we can compute
[[(ϕ, f)]](G) in O(f(G)�) time, where � is the alternation depth of ϕ (i.e., the
maximal number of alternations between occurrences of µ and ν operators; for
a precise definition see [11]).

We now give examples for which a QBF (ϕ, f) can be found to specify
the same property as the unbounded formula ϕ over all structures; that is,
[[(ϕ, f)]](G) = [[ϕ]](G) for all structures G. We use addition, subtraction, and
comparison as update functions in F , and we use the natural numbers 0 and 1
to encode booleans. For instance, we write ϕ1 = ϕ2 for min(ϕ1 ≤ ϕ2, ϕ2 ≤ ϕ1),
and ¬ϕ1 for 1 − ϕ. The case formula case{(ψ1, ϕ1), . . . , (ψn, ϕn)} stands for
max(min(ψ1, ϕ1), . . . ,min(ψn, ϕn)), where the n-ary max operator is obtained by
repeated application of the binary max operator. In order to relate the branching-
time framework of the quantitative µ-calculus to the linear-time framework of
quantitative properties (and quantitative automata), we say that the closed QBF
(ϕ, f) computes the property π if for all structures G, [[(ϕ, f)]](G) = sup{π(w) |
w is a trace generated by G}. In this way, linear and branching time are related
existentially (through sup rather than inf); hence we use only the Epre operator
to compute properties. Alternately, we could define a universal semantics where
[[(ϕ′, f)]](G) = inf{π(w) | w is a trace generated by G}, and the Apre operator
is used.

Example 9 (Fair maximum). Recall the property fm from Example 2. The
property fm is computed over all structures G by the QBF (ϕ, f)
with ϕ = µ[(X,min{max{p,X,min{Epre(X), Z}}, Z})], where Z =
ν[(X,µ[(Y,Epre(max{min{q,X}, Y })])], and f(G) = N , where N is the number
of states of G. Since the longest simple path in G has length at most N − 1,
every fixpoint is found in N iterations or less.

Example 10 (Lifetime). Over all structures G with N states, the property
lta from Example 3 is computed by the QBF (ϕ, f) with ϕ = µ[(X, case{((c =
0) ∧ (p + Epre(Y ) ≤ a), X + 1), (c 	= 0, X + 1), (1, X)}), (Y, case{(((c = 0) ∧
(p + Epre(Y ) ≤ a)), p + Epre(Y )), (c 	= 0,Epre(Y ) − a), (1, Y )})] and f(G) =
N · a+N · (N + 1) ·∆, where ∆ is the maximal value of the proposition p in G.
If a fixpoint is not reached in N · a + N · (N + 1) · ∆ iterations, then there is
a reachable cycle Γ in G with nonpositive resource consumption, and repeated
traversal of Γ ensures an infinite lifetime.
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Example 11 (Peak running total). Over all structures G with N states and
maximal value ∆ for the proposition p, the property prt from Example 4 is com-
puted by the QBF (ϕ, f) with ϕ = (µ[(X, case{(c = 0, p+max{0,Epre(X)}), (c 	=
0,max{0,Epre(X)} − p)})], f) and f(G) = N · ∆. If a fixpoint is not reached
in N · ∆ iterations, then there is no reachable cycle with nonpositive resource
consumption, and it is not possible to traverse G forever starting with a finite
amount of resources.

From Automata Bounds to µ-Calculus Bounds. We establish the connec-
tion between properties specified by quantitative automata (a linear-time for-
malism) and those computed by the quantitative µ-calculus (a branching-time
formalism). We show that every deterministic QBA can be converted to a QBF
that computes the same property over all systems. This provides an alternative
algorithm for quantitative model checking. We then show that the construction
is robust [9], and hence, the resulting QBF can also be used for game solv-
ing. To formalize this, we define a quantitative µ-calculus over traces, extending
the boolean linear-time µ-calculus [17]. The quantitative-bound trace formulas
(QBTs) are identical to the quantitative-bound µ-formulas, except that they
contain the single next-time operator Pre. A QBT is interpreted over the traces
w generated by a given structure G. To define [[(ϕ, f)]](w) formally, we view the
trace w = o0o1o2 . . . as an infinite-state system without branching, analogous
to the boolean definition in [9]. However, even though w is infinite-state, the
evaluation of every fixpoint subformula in ϕ is bounded by f(G), which is finite.

Consider a structure K, a game G, and a QBT (ϕ, f). The sys-
tem value valmax

(ϕ,f)(K) (resp., valmin
(ϕ,f)(K)) is the supremal (resp., infimal)

value of the formula (ϕ, f) over all traces generated by K. Formally,
valmax

(ϕ,f)(K) = sup{[[(ϕ, f)]](w) | w is a trace generated by K}, and valmin
(ϕ,f)(K)

is the inf of the same set. For strategies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, de-
fine val (ϕ,f)(ξ1, ξ2) = [[(ϕ, f)]](〈tξ1 ,ξ2〉). The game value valmaxmin

(ϕ,f) (G) =
supξ1∈Ξ1

infξ2∈Ξ2 val (ϕ,f)(ξ1, ξ2) is the supremal value that player 1 can achieve
against all player-2 strategies. The following two theorems generalize the re-
sults of [9] from boolean to quantitative verification: Theorem 2 establishes the
connection between deterministic QBAs and QBTs; Theorem 3 presents a nec-
essary and sufficient criterion, called robustness, when a QBT can be used for
game solving. Moreover, the QBT constructed in Theorem 2 is robust. Given
a QBT (ϕ, f), let (ϕ[Epre], f) (resp., (ϕ[Apre], f)) be the QBF that results by
replacing all occurrences of the next-time operator Pre with Epre (resp., Apre).

Theorem 2. Every deterministic QBA (A, f) can be translated into a QBT
(ϕ, g) such that for all systems K, both valmax

(A,f)(K) = valmax
(ϕ,g)(K) =

[[(ϕ[Epre], g)]](K) and valmin
(A,f)(K) = valmin

(ϕ,g)(K) = [[(ϕ[Apre], g)]](K).

Theorem 3. Given a QBT (ϕ, f), the following two conditions, called robust-
ness, are equivalent. (1) For all systems K, both valmax

(ϕ,f)(K) = [[(ϕ[Epre], f)]](K)
and valmin

(ϕ,f)(K) = [[(ϕ[Apre], f)]](K). (2) For all games G, valmax min
(ϕ,f) (G) =

[[(ϕ[Cpre1], f)]](G).



64 A. Chakrabarti et al.

Theorem 2 is proved using a standard (boolean) construction of a fixpoint for-
mula from an automaton [8]. Theorem 3 follows from the existence of finite-
memory optimal strategies for QBTs.
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