Symbolic Partial Order Reduction for Rule
Based Transition Systems

Ritwik Bhattacharya', Steven German?, and Ganesh Gopalakrishnan®*
1 School of Computing, University of Utah
{ritwik, ganesh}@cs.utah.edu
2 IBM T.J. Watson Research Center
german@watson.ibm.com

Abstract. Partial order (PO) reduction methods are widely employed
to combat state explosion during model-checking. We develop a partial
order reduction algorithm for rule-based languages such as Murphi [4]
based on the observation that for finite-state systems, independence con-
ditions used for PO reduction can be encoded as boolean propositions
and checked using SAT methods. Comparisons against static-analysis
based PO reduction algorithms have yielded encouraging results.

1 Introduction

Partial order (PO) reduction helps combat state explosion by avoiding redundant
interleavings [3] among independent transitions [T2J6l10], generating a represen-
tative subset of all interleavings. Traditional PO reduction algorithms rely on
syntactic methods (e.g. based on occurences of shared variables) to compute the
independence relation. Unfortunately, in the presence of complex data structures
like records and arrays, such as is common with cache coherence protocols en-
coded in languages such as Murphi [4] and TLC [9], these algorithms do not
work well — even if concurrent accesses to these aggregate structures occur at
disjoint sites. By conducting a deeper semantic analysis based on Boolean SAT
methods, one can overlook such ‘false sharings’ and achieve PO reduction. This
short paper sketches our explicit enumeration model checking algorithms for PO
reduction that benefit from a SAT-based analysis for independence.

There has been extensive research on partial order reduction methods [3]. Few
previous works address reduction for formalisms without processes. Partial order
reduction algorithms have also been proposed for symbolic state exploration
methods [I]. The algorithm there is based on a modified breadth first search,
since symbolic state exploration is essentially breadth first. The in-stack check of
the traditional partial order algorithm is replaced by a check against the set of
visited states. An alternative to the traditional runtime ample set computation
algorithm is discussed in [g].

* Supported in part by NSF Award ITR-0219805 and SRC Contract 1031.001.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 332-[335] 2005.
© IFIP International Federation for Information Processing 2005

Symbolic Partial Order Reduction for Rule Based Transition Systems 333

2 Partial Order Reduction

Two transitions are independent if, whenever they are enabled together at a
state, (i) firing either one does not disable the other (enabledness), and (ii) firing
them in either order leads to the same state (commutativity). A transition is
invisible with respect to a property if it does not change the truth values of
any of the atomic propositions occurring in the property. The ample-set method
proceeds by performing a modified depth-first search where, at each state, a
subset of all the enabled transitions is chosen, called the ample set. Transitions
from the ample set are then the only ones pursued from that state. This leads
to a subset of the entire state space being explored. It is important to ensure
that for each path in the full graph, there is a representative path in the reduced
graph. The following conditions, adapted from [3], guarantee the existence of
such representative paths: CO : An ample set is empty if and only if there are no
enabled transitions. C1: Along every path in the full state graph that starts at
a state s, the following must hold - if there is an enabled transition that depends
on a transition in the ample set, it is not taken before some transition from the
ample set is taken. C2 : If a state is not fully expanded, then every transition in
the ample set is invisible. C3I: There is at least one transition in every ample
set that leads to a state not on the current dfs stack, which ensures that at least
one transition in the ample set does not create a cycle.

3 Implementing PO Reductions for Murphi

We compute the independence relation by encoding the enabledness and com-
mutativity relations as boolean propositions, and using a SAT solver to con-
servatively check them. First, we take the code fragments defining the guards
and actions, and transform them into equivalent Lisp S-expressions. These are
then combined to form S-expressions representing the enabledness and commutes
relations for each pair of transitions, which are symbolically evaluated to pro-
duce formulas over finite data types. We do this over the entire syntax of Mur-
phi, handling loops (by unrolling), procedures, and functions in the process. To
check commutativity, for example, the SAT solver is given a formula of the form
g1(S) A ga(S) = t1(t2(9)) # t2(t1(S)) for an arbitrary S (perhaps unreachable
— this being the source of conservativeness). If satisfiable, t; and t2 are poten-
tially non-commuting; otherwise, they are commuting. The invisibility checks
can similarly be encoded as boolean formulas and symbolically evaluated.

Constructing the Ample Set: Our algorithm for constructing the ample set
is shown in Figure[ll Line 2 picks an enabled, invisible transition (called the seed
transition) at each state, and tries to form an ample set using this transition.
Once a seed transition has been chosen, lines 5-7 compute the transitive closure
of the ample set with respect to the dependence relation. Lines 11-15 check for a
violation of the C1 condition. If there is no violation, lines 16-19 check whether
at least one of the transitions in the ample set leads to a state not on the current

! For a proof of the sufficiency of this form of the condition see [7].

334 R. Bhattacharya, S. German, and G. Gopalakrishnan

1 proc ample(s) {

2 ample := { pick_new_invisible(enabled(s)) 1;

3 if (empty(ample))

4 return enabled(s);

5 while (exists_dependent(enabled(s),ample)) {

6 ample := ample + all_dependent(enabled(s),ample);
7 %}

8

9

non_ample := all_transitions \ ample;

if ((ample = enabled(s)) or exists_visible(ample))
10 return enabled(s);
11 for (t_d in disabled(s))
12 if (dependent(t_d, ample))

13 for (t_o in non_ample)
14 if (t_o != t_d and !'leavesdisabled(t_o,t_d))
15 return enabled(s);

16 for (t_a in ample) {
17 if ('(t_a(s) in omnstack(s)))

18 return ample;

19 %

20 return enabled(s);
21 }

Fig. 1. Ample set construction algorithm for Murphi

stack. If this is the case, we return this ample set. Otherwise, we return the set
of all enabled transitions.

4 Results and Conclusions

Our algorithms have been implemented in the POeM tool [2], which extends
Murphi. We have run POeM on examples of varying sizes, and the results are
shown in Table[Il Significant reduction is achieved in a number of the examples,
the most dramatic being the dining philosophers benchmark labeled DP in the
table, where, for 10 philosophers, there is over 99% reduction. The symbolic
PO algorithm always does better than the static algorithm in our examples, in
terms of the number of states generated. GermanN refers to German’s cache
protocol for N nodes. It currently yields insignificant reductions because of the
existence of transitions dependent only in unreachable states. We are working
on strengthening the guards with local invariants, to restrict the independence
checks to reachable states.

Instead of SAT, better results might be obtained through higher level deci-
sion procedures for quantifier free formulas with equality, finite arithmetic and
arrays [I1U5], especially given the possibility of initially representing Murphi pro-
cedures and functions using uninterpreted functions.

Symbolic Partial Order Reduction for Rule Based Transition Systems 335

Table 1. Performance of partial order reduction algorithm

Example Unreduced Static PO Symbolic PO
States Time States Time States Time
Bakery 33 0.14 33 0.14 21 0.14
Burns 82010 2.65 82010 5.02 81542 8.76
Dekker 100 0.17 100 0.17 90 0.17
Dijkstrad 864 0.29 864 0.29 628 0.31
Dijkstra6 11664 0.62 11664 0.88 6369 0.98
Dijkstra8 139968 6.65 139968 13.15 57939 35.32
DP4 112 0.22 112 0.22 26 0.22
DP6 1152 0.27 1152 0.27 83 0.25
DP10 125952 13.85 125952 17.27 812 0.34
DP14 >20000 >60 >20000 >60 7380 1.4
Peterson2 26 0.15 26 0.15 24 0.15
Peterson4 22281 0.3 22281 0.53 14721 0.58
German3 28593 0.43 28593 0.78 28332 1.31
German4 566649 31.15 566649 39.9 562542 72.43
References

1.

10.

11.

12.

Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer, and Sri-
ram K. Rajamani. Partial-order reduction in symbolic state space exploration. In
Computer Aided Verification, pages 340-351, 1997.

. R. Bhattacharya. http://www.cs.utah.edu/formal_verification/poem-0.4.tar.gz.
. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT

Press, December 1999.

. David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verifi-

cation as a hardware design aid. In International Conference on Computer Design,
pages 522-525, 1992.

. C. Flanagan, R. Joshi, X. Ou, and J.B. Saxe. Theorem Proving Using Lazy Proof

Explication. In Computer Aided Verification, pages 355367, 2003.

. Patrice Godefroid. Using partial orders to improve automatic verification methods.

In Computer Aided Verification, pages 176—185, 1990.

. G.J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction

strategies for reachability analysis. In Proc. 12th Int. Conf on Protocol Specifica-
tion, Testing, and Verification, INWG/IFIP, Orlando, Fl., June 1992.

. R. Kurshan, V.Levin, M.Minea, D.Peled, and H. Yenigiin. Static partial order

reduction. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’98), pages 345-357, 1998.

. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Pearson Education, Inc., 2002.

Doron Peled. All from one, one for all: On model checking using representatives.
In Computer Aided Verification, pages 409-423, 1993.

Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating Validity
Checker. In Computer Aided Verification, pages 500-504, 2002.

Antti Valmari. A stubborn attack on state explosion. In Computer Aided Verifi-
cation, pages 156-165, 1990.

	Introduction
	Partial Order Reduction
	Implementing PO Reductions for Murphi
	Results and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

