Exploiting Constraints in Transformation-Based
Verification

Hari Mony1’2, Jason Baumgartnerl, and Adnan Aziz?

IBM Systems & Technology Group
2 The University of Texas at Austin

Abstract. The modeling of design environments using constraints has gained
widespread industrial application, and most verification languages include con-
structs for specifying constraints. It is therefore critical for verification tools to in-
telligently leverage constraints to enhance the overall verification process. How-
ever, little prior research has addressed the applicability of transformation algo-
rithms to designs with constraints. Even when addressed, prior work lacks opti-
mality and in cases violates constraint semantics. In this paper, we introduce the
theory and practice of transformation-based verification in the presence of con-
straints. We discuss how various existing transformations, such as redundancy
removal and retiming, may be optimally applied while preserving constraint se-
mantics, including dead-end states. We additionally introduce novel constraint
elimination, introduction, and simplification techniques that preserve property
checking. We have implemented all of the techniques proposed in this paper, and
have found their synergistic application to be critical to the automated solution of
many complex verification problems with constraints.

1 Introduction

Constraints are pervasively used across a variety of verification frameworks. For exam-
ple, the compositional verification framework advocates verifying a system by checking
properties of its components using assume-guarantee reasoning. The assumptions that
a component’s environment needs to satisfy are often modeled using constraints. The
modeling of verification environments using constraints has gained widespread indus-
trial acceptance [I]], and most industrial verification languages include constructs to
specify constraints — for example, PSL [2]], CBV [3]], and e [4]. Constraints are also
used to implement case-splitting strategies to enhance complex verification tasks, for
example, arithmetic and datapath correctness [516].

Given their pervasiveness, it is important for verification algorithms to leverage con-
straints to enhance the overall verification process. However, it is even more critical to
preserve constraint semantics during this process. The concept of transformation-based
verification (TBV) has been proposed to synergistically apply various automated trans-
formation algorithms to simplify and decompose complex problems into simpler prob-
lems which may be solved with exponentially lesser resources [[7U8]]. However, little
prior research has addressed the applicability of various transformation algorithms in
the presence of constraints. Additionally, in some cases prior research lacks optimality,
and does not even guarantee the preservation of constraint semantics. For example, an

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 269-284] 2005.
(© IFIP International Federation for Information Processing 2005

270 H. Mony, J. Baumgartner, and A. Aziz

it ity

a 3

(a) Original Netlist V. Gate a; is a constraint; a; = 0 (b) Netlist NV, formed by merging a; to 1.
Constraint preservation violated by merging; a; # 0

i 3}
i3 a iz O a
lo— lo—
@—)) :az C [

as

< > as
(c) Netlist N3. Gate a, is a constraint; (d) Netlist N4 formed by maximal constraint-
its fanouts have been simplified preserving merging. Gate a; is a constraint

Fig. 1. Combinational constraint example

approach for simplifying a combinational netlist in the presence of constraints is pro-
posed in [9]] as part of a Boolean-reasoning framework, which suffers these weaknesses.

Constraint-preserving testcase generation for simulation has been widely resear-
ched, e.g., in [1O/11]]. These solutions, however, do not address preservation of dead-
end constraints which entail states for which there is no legal input stimulus. Dead-end
constraints tend to reduce the efficiency of explicit-state analysis, as well as semi-formal
search; when a dead-end state is reached, the only recourse is to backtrack to an ear-
lier state. Though dead-end constraints are considered user errors in certain method-
ologies [[10], they are specifiable in a variety of languages, and in cases are powerful
constructs for modeling verification tasks and case-splitting strategies [3]].

Constraint Challenges to TBV. Constraints specify conditions that must hold in any
state explored by a verification algorithm. To illustrate the impact of constraints, con-
sider the combinational netlist illustrated in Figure [1l In the original netlist N1, gate
ag could evaluate to 1 (e.g., if 47 =1 and i3 = i3 =0) or O (e.g., if i1 =12 =13 =0).
However, labeling gate a; as a constraint would force at least two of i1, 72, i3 to evalu-
ate to 1, in turn forcing gate as to evaluate to 1 and ay to evaluate to 0. For optimality,
it is desirable to leverage the constraint to simplify the netlist accordingly. In [9], a
structural conjunctive decomposition of the constraint is proposed, traversing each con-
straint gate fanin-wise through AND gates and stopping at inversion points and other
gate types, merging each of these terminal gates to constant ONE. Applying this algo-
rithm to netlist N1, gate a; will be merged to constant ONE. However, this merging
fails to preserve constraint semantics as gate as in the resulting netlist Ny could eval-
uate to 1 (if 41 =42 =143 =0). This demonstrates that redundancy removal applications
must take precautions when leveraging constraints to increase their reduction potential.

Exploiting Constraints in Transformation-Based Verification 271

i-stage pipeline

IOn 1 n ..on Mn /f\ t
1)

1 n n, [In /\ c
f

| Ve

j-stage pipeline

Fig. 2. Sequential constraint example

In a sequential netlist, constraints pose additional challenges as illustrated by the
example depicted in Figure 2l Constraint ¢ disallows precisely the input sequences that
can evaluate 7 to 1. If j > i, then ¢ can evaluate to 1 as the constraint precludes such
paths only at a later time-step. If on the other hand j < i, constraint ¢ prevents 7 from
ever evaluating to 1. This demonstrates that temporal abstractions like retiming [7]],
which may effectively alter the values of 7 and j, must take precautions to ensure that
constraint semantics are preserved through their transformations.

Contributions. In this paper we make several fundamental contributions to improving
the efficiency of constraint-based verification frameworks [[I].

1. We are the first to discuss how various existing automated transformation algo-
rithms may be optimally applied in a property-preserving manner to designs with
constraints. Table [Il enumerates these transformations, along with an overview of
the corresponding challenges and solutions. Overapproximation refers to the risk of
the transformation yielding spurious counterexamples. Underapproximation refers
to the risk of the transformation yielding an incorrect proof of correctness.

2. We introduce fully-automated techniques for eliminating, introducing, and simpli-
fying constraints in a property-preserving manner, enumerated in Table 2l

We have implemented all of these techniques in a verification toolset. We have found
each of these techniques to be useful in the verification of designs with constraints. Fur-

Table 1. Contributions to enable transformations in the presence of constraints

Section Technique Challenge Solution
Redundancy Merging w}thig constraint cones may lead to Disallow merging within a constraint cone, if
Removal overapproximation. redundancy proof requires that constraint.
Retiming Varying lags of targets and constraints may lead Force identical lags across all target and con-
2 to overapproximation as well as underapproxima- straint gates in retiming graph. Re-apply un-
tion. folded constraints to recurrence structure.
Target Transition-function based methods may lose cor- Force application of constraints to each func-
Enlargement relation between constraint and target cones, lead- tional preimage prior to input quantification.
ing to overapproximation.
Reparameter- Dead-end states may be lost through the transfor- Re-apply dead-end states as a simplified con-
" ization mation, leading to overapproximation. straint.
[Phase State folding may cause underapproximation if Methodologically require all targets and con-
Abstraction targets and constraints are of different phase. straints to be of the same phase.
C-Slow State folding may cause underapproximation if Methodologically require all targets and con-
° Abstraction targets and constraints are of different colors. straints to be of the same color.
@ C-Slow Abstraction loses correlation across differing Methodologically disallow constraints that
© Abstraction mod-c time-frames, causing overapproximation. are not amenable to mod-c reasoning.

272 H. Mony, J. Baumgartner, and A. Aziz
Table 2. Constraint transformation contributions

Section Technique Description

i0) Constraint Elimination ~ Replace the constraint with an accumulator circuit to remember whether the
constraint signal has been previously violated; conjunct to the target.

in1 Constraint Introduction Attempt to derive conditions after which targets are never hittable; add as
constraints.

Constraint Simplification Attempt to replace a constraint with its preimage, to reduce the size of its
cone and enable its elimination through reparameterization.

thermore, we have found that the synergistic application of these techniques is capable
of yielding dramatic improvements to the verification of such designs, enabling conclu-
sive results to problems that we have otherwise found unsolvable. Though we focus on
the application of these techniques to formal verification, their structural nature enables
their benefits to arbitrary frameworks, including testcase generation and synthesis.

2 Formalisms

In this section, we provide formalisms used throughout the paper. A reader well-versed
in hardware verification may wish to skip this section, using it as a reference.

Definition 1. A netlistisatuple N = ((V, E), G, T, C, Z) comprising a finite directed
graph with vertices V' and edges E C V x V, a semantic mapping from vertices to
gate types G : V +— types, a set of targets T C V correlating to a set of properties
AG(—t),Vt € T, and a set of constraints C C V. The function Z : V — V is the
symbolic initial value mapping.

Our verification problem is represented entirely as a netlist, comprising the design
under verification, its environment, and its property automata. Our gate types define a
set of primary inputs, registers (our only sequential gate type), and combinational gates
with various functions, including constants. The type of a gate may place constraints
upon its incoming edge count — e.g., each register has an indegree of one (whose source
gate is referred to as its next-state function); primary inputs and constants have an inde-
gree of zero. We denote the set of inputs as I C V, and the set of registers as R C V.
The initial values of a netlist represent the values that registers can take at time 0. We
disallow registers from appearing in any initial value functions. Furthermore, we do not
allow combinational cycles in a legal netlist.

Definition 2. The semantics of a netlist N are defined in terms of semantic traces. We
denote the set of all legal traces associated with a netlist by P C [V x N — {0,1}],
defining P as the subset of functions from V' x N to {0, 1} which are consistent with
the following rule. The value of gate v at time 4 in trace p is denoted by p(v, 7). Term

u; denotes the source vertex of the j-th incoming edge to v, implying that (u;,v) € E.
sfjp

Go(p(u1,1),...,p(un,1)) :wvisacombinational gate with function G,

: v is a primary input with sampled value sﬁ)p

v, 1) =) . . .
p(v,0) plug,i—1) :vis aregister and ¢ > 0

p(Z(v),0) : v is aregister and i = 0

Exploiting Constraints in Transformation-Based Verification 273

1. Guess the redundancy candidates — i.e., suspected-equivalent gate sets.

2. Attempt to prove that each pair of candidates is truly equivalent.

3. If any of the candidate pairs cannot be proven equivalent, refine them and goto Step 2.
4. The redundancy candidates are accurate; the corresponding gates may be merged.

Fig. 3. Generic redundancy removal algorithm

The length of a trace p is defined as length(p) = min{i : 3¢ € C. p(c,7) = 0}. A
target ¢ is said to be hit in a trace ¢ at time i iff (p(t,i) = 1) A (i < length(p)). We
define hit(p,t) as the minimum ¢ at which ¢ is hit in trace p, or —1 if no such ¢ exists.

Definition 3. Netlists N and N’ are said to be property-preserving trace equivalent
with respect to target sets T' and T’ respectively, iff there exists a bijective mapping
v : T — T’ such that:

- Vp € P3p’ € P'Vt e T.(hit(p,t) = hit(p',¢(t)))
- Vp' € P'.3p € PNt € T.(hit(p,t) = hit(p', ¢ (1)))

3 Redundancy Removal

Redundancy removal (e.g., [9/12]) is the process of demonstrating that two gates in a
netlist always evaluate to the same value. Once a pair of redundant gates are identi-
fied, the netlist may be simplified by merging one of the gates onto the other; i.e., by
replacing each fanout reference to one gate by a reference to the other. For property
checking, it is sufficient to reason about the prefix length of a trace as per Definition 21
Constraints therefore generally cause more gates to appear redundant (within this pre-
fix) than otherwise. For optimality, redundancy removal algorithms should thus leverage
the constraints to increase their reduction potential. For example, when using the frame-
work of Figure 3l the algorithms which identify redundancy candidates in Step 1 and
the algorithms which prove each of the candidates redundant in Step 2 must leverage
the constraints to avoid a loss of reduction potential. However, as per Figure [Ib, once
redundant gates have been identified, proper care must be taken while merging them to
avoid violating constraint semantics.

Theorem 1. Consider gate v which is not in the cone of constraint set U C C. Gate u
may be merged onto any other gate v while preserving property checking provided that
the proof of u = v does not require the trace-prefixing effect of constraints C'\U.

Proof. (Sketch) Since u = v within all valid trace prefixes, the only risk of violating
property checking due to this merge is that the constraining power of a constraint gate
is diminished as per Figures l1a-1b. By Definition 2, the merge of u onto v only alters
the evaluation of gates in the fanout of u. However, since the trace-prefixing effect of
no constraint in the fanout of u was leveraged to enable the merge, this merge cannot
diminish the constraining power of the resulting netlist. O

Theorem[Iillustrates that gates outside of the cone of the constraints may be merged
without violating constraint semantics, though care must be taken when merging gates

274 H. Mony, J. Baumgartner, and A. Aziz

within the cones of the constraints to ensure that their constraining power is not di-
minished. Netlist N, of Figure [Id illustrates the result of optimal property-preserving
redundancy removal of netlist V1. In Section[f] we will address the property-preserving
elimination of gates within the cones of constraints whose trace-prefixing may be used
to enable that elimination via the technique of structural reparameterization.

4 Retiming

Retiming is a synthesis optimization technique capable of reducing the number of reg-
isters of a netlist by relocating them across combinational gates [13]].

Definition 4. A refiming of netlist N is a gate labeling r : V +— Z, where r(v) is the
lag of gate v, denoting the number of registers that are moved backward through v. A
normalized retiming ' may be obtained from an arbitrary retiming r, and is defined as
r =1 —maxyecy r(v).

In [7], normalized retiming is proposed for enhanced invariant checking. The re-
timed netlist N has two components: (1) a sequential recurrence structure N’ which
has a unique representative for each combinational gate in the original netlist NV, and
whose registers are placed according to Definition @] and (2) a combinational retiming
stump N’ obtained through unfolding, representing retimed initial values as well as the
functions of combinational gates for prefix time-steps that were effectively discarded
from the recurrence structure. It is demonstrated in [7] that each gate @' within N’ is
trace-equivalent to the corresponding « within N, modulo a temporal skew of —r(u)
time-steps. Furthermore, there will be —r(u) correspondents to this v within N/, each
being trace-equivalent to u for one time-step during this temporal skew. Property check-
ing of target ¢ is thus performed in two stages: a bounded check of the time-frames of
t occurring within the unfolded retiming stump, and a fixed-point check of #’ in the re-
currence structure. If a trace is obtained over N, it may be mapped to a corresponding
trace in N by reversing the (gate, time) relation inherent in the retiming.

Theorem 2. Consider a normalized retiming where every target and constraint gate is
lagged by the same value —i. Property checking will be preserved provided that:

1. the i-step bounded analysis of the retiming stump enforces all constraints across all
time-frames, and

2. every retimed constraint gate, as well as every unfolded time-frame of a constraint
referenced in a retimed initial value in N, is treated as a constraint when verifying
the recurrence structure.

Proof. (Sketch) Correctness of (1) follows by construction of the bounded analysis.
Correctness of (2) follows from the observation that: (a) every gate lagged by —¢ time-
steps (including all targets and constraints) is trace-equivalent to the corresponding orig-
inal gate modulo a skew of ¢ time-steps, and (b) the trace pruning caused by constraint
violations within the retiming stump is propagated into the recurrence structure by re-
application of the unfolded constraint gates referenced in the retimed initial values. O

Exploiting Constraints in Transformation-Based Verification 275

Compute f(t) as the function of the target ¢ to be enlarged;

Compute f(c;) as the function of each constraint ¢;;

Bo =3L.(f(t) A\, cc f(e))s

for (k = 1; —~done; k++) { // Enlarge up to arbitrary termination criteria done
If ¢ may be hit at time k— 1 while adhering to constraints, return the corresponding trace;
By, = 3I.(preimage(Bj-1) A A cco f(ci))s
Simplify By, by applying Bo, .. ., By,_1 as don’t cares;

}

Synthesize By, using a standard multiplexor-based synthesis as the enlarged target t';

If ¢’ is proven unreachable, report ¢ as unreachable;

If trace p’ is obtained hitting ¢’ at time j {
Cast a k-step constraint-satisfying unfolding from the state in p’ at time j to hit ¢;
Concatenate the resulting trace p” onto p’ to form trace p hitting ¢ at time k + j; return p; }

Fig. 4. Target enlargement algorithm

The min-area retiming problem may be cast as a minimum-cost flow problem [13]]. One
may efficiently model the restriction of Theorem[2lby renaming the target and constraint
gates to a single vertex in the retiming graph, which inherits all fanin and fanout edges
of the original gates. This modeling forces the retiming algorithm to yield an optimal
solution under the equivalent-lag restriction. While this restriction may clearly impact
the optimality of the solution, it is generally necessary for property preservation.

5 Structural Target Enlargement

Target enlargement [[14] is a technique to render a target ¢’ which may be hit at a shal-
lower depth from the initial states of a netlist, and with a higher probability, than the
original target ¢. Target enlargement uses preimage computation to calculate the set of
states which may hit target ¢ within k time-steps. A transition-function vs. a transition-
relation based preimage approach may be used for greater scalability. Inductive sim-
plification may be performed upon the k-th preimage to eliminate states which hit ¢ in
fewer than £ time-steps. The resulting set of states may be synthesized as the enlarged
target ¢'. If ¢/ is unreachable, then ¢ must also be unreachable. If ¢’ is hit in trace p’,
a corresponding trace p hitting ¢ may be obtained by casting a k-step bounded search
from the state hitting ¢’ in p’ which is satisfiable by construction, and concatenating the
result onto p’ to form p. The modification of traditional target enlargement necessary in
the presence of constraints is depicted in Figure [

Theorem 3. The target enlargement algorithm of Figuredl preserves property checking.

Proof. (Sketch) The constraint-preserving bounded analysis used during the target en-
largement process will generate a valid trace, or guarantee that the target cannot be hit
at times 0, ...,k — 1, by construction. To ensure that the set of enlarged target states
may reach the original target along a trace which does not violate constraints, the con-
straint functions are conjuncted onto each preimage prior to input quantification. The
correctness of target unreachable results, as well as the trace lifting process, relies upon

276 H. Mony, J. Baumgartner, and A. Aziz

the fact that there exists an k-step extension of any trace hitting ¢’ which hits ¢ as estab-
lished in [[14]], here extended to support constraints. a

There is a noteworthy relation between retiming a target t by —k and performing
a k-step target enlargement of ¢; namely, both approaches yield an abstracted target
which may be hit £ time-steps shallower than the corresponding original target. Recall
that with retiming, we retimed the constraints in lock-step with the targets. With target
enlargement, however, we retain the constraints intact. There is one fundamental rea-
son for this distinction: target enlargement yields sets of states which only preserve the
hittability of targets, whereas retiming more tightly preserves trace equivalence modulo
a time skew. This relative weakness of property preservation with target enlargement is
due to its input quantification and preimage accumulation via the don’t cares. If preim-
ages were performed to enlarge the constraints, there is a general risk that a trace hitting
the enlarged target while preserving the enlarged constraints may not be extendable to
a trace hitting the original target, due to possible conflicts among the input valuations
between the constraint and target cones in the original netlist. For example, a constraint
could evaluate to O whenever an input ¢; evaluates to 1, and a target could be hittable
only several time-steps after ¢; evaluates to 1. If we enlarged the constraint and target
by one time-step, we would lose the unreachability of the target under the constraint
because we would quantify away the effect of 7; upon the constraint.

6 Structural Reparameterization

Definition 5. A cut of a netlist is a partition of V into two sets: C and C = V' \ C. A cut
induces a set of cut gates Ve = {u C C : Jv € C.(((u,v) € E)V(v € RAu = Z(v)))}.

Reparameterization techniques, e.g., [15]], operate by identifying a cut of a netlist
graph V¢, enumerating the valuations sensitizable to that cut (its range), then synthesiz-
ing the range relation and replacing the fanin-side of the cut by this new logic. In order
to guarantee soundness and completeness for property checking, one must generally
guarantee that target and constraint gates lie on the cut or its fanout. Given parametric
variables p' for each cut gate VZ, the range is computable as 31. A%/ (p' = f(V7)).
If any cut gate is a constraint, its parametric variable may be forced to evaluate to 1 in
the range to ensure that the synthesized replacement logic inherently reflects the con-
strained input behavior. This cut gate will then become a constant ONE in the abstracted
netlist, effectively being discarded.

While adequate for combinationally-driven constraints and a subset of sequentially-
driven constraints, this straight-forward approach does not address the preservation
of dead-end states. A postprocessing approach is thus necessary to identify those ab-
stracted constraints which have dead-end states, and to re-apply the dead-end states as
constraints in the abstracted netlist. This check consists of computing 31. f (¢;) for every
constraint gate c; used to constrain the range. If not a tautology, the result represents
dead-end states for which no input valuations are possible, hence a straight-forward
multiplexor-based synthesis of the result may be used to create a logic cone to be tagged
as a constraint in the abstracted netlist.

Exploiting Constraints in Transformation-Based Verification 277

Theorem 4. Structural reparameterization preserves property checking, provided that
any constraints used to restrict the computed range are re-applied as simplified dead-end
constraints in the abstracted netlist.

Proof. (Sketch) The correctness of reparameterization without dead-end constraints fol-
lows from prior work, e.g., [13]. Note that reparameterization may replace any con-
straints by constant ONE in the abstracted netlist. Without the re-application of the
dead-end states as a constraint, the abstracted netlist will thus be prone to allowing
target hits beyond the dead-end states. The re-application of the dead-end states as a
constraint closes this semantic gap, preserving falsification as well as proofs. O

To illustrate the importance of re-applying dead-end constraints during reparame-
terization, consider a constraint of the form i; A r; for input 7; and register r;. If this
constraint is used to restrict the range of a cut, its replacement gate will become a con-
stant ONE hence the constraint will be effectively discarded in the abstracted netlist.
The desired byproduct of this restriction is that ¢; will be forced to evaluate to 1 in the
function of all cut gates. However, the undesired byproduct is that the abstracted netlist
will no longer disallow r; from evaluating to 0 without the reapplication of the dead-end
constraint 3iq.(i1 A 1) or simply r;. Because this re-application will ensure accurate
trace-prefixing in the abstracted netlist, the range may be simplified by applying the
dead-end state set as don’t cares prior to its synthesis as noted in [[11]].

7 Phase Abstraction

Phase abstraction [[16] is a technique for transforming a latch-based netlist to a register-
based one. A latch is a gate with two inputs (data and clock), which acts as a buffer
when its clock is active and holds its last-sampled data value (or initial value) other-
wise. Topologically, a k-phase netlist may be k-colored such that latches of color ¢ may
only combinationally fan out to latches of color ((i 4+ 1) mod k); a combinational gate
acquires the color of the latches in its combinational fanin. A modulo-k counter is used
to clock the latches of color (j mod k) at time j. As such, the initial values of only
the (k—1) colored latches propagate into other latches. Phase abstraction converts one
color of latches into registers, and the others into buffers, thereby reducing state element
count and temporally folding traces modulo-k, which otherwise stutter.

Phase abstraction may not preserve property checking for netlists with constraints
as illustrated by the following example. Assume that we have a 2-phase netlist with a
target gate of color 1, and a constraint gate of color O which is unconditionally violated
one time-step after the target evaluates to 1. Without phase abstraction, the target may
be hittable since the constraint prefixes the trace only on the time-step after the target
evaluates to 1. However, if we eliminate the color-0 latches via phase abstraction, the
constraint becomes violated concurrently with the target’s evaluation to 1, hence the
target becomes unhittable. Nonetheless, there are certain conditions under which phase
abstraction preserves property checking as per the following theorem.

Theorem 5. If each constraint and target gate is of the same color, phase abstraction
preserves property checking.

278 H. Mony, J. Baumgartner, and A. Aziz

Proof. (Sketch) The correctness of phase abstraction without constraints has been es-
tablished in prior work, e.g., [16]. Because every constraint and target gate are of the
same color 7, they update concurrently at times j for which ((jmod k) = z) Phase
abstraction will merely eliminate the stuttering at intermediate time-steps, but not tem-
porally skew the updating of the constraints relative to the targets. Therefore, the trace
prefixing of the constraints remains property-preserving under phase abstraction. O

Automatic approaches of attempting to establish the criteria of Theorem[3 e.g.,
via padding pipelined latch stages to the constraints to align them with the color of
the targets, are not guaranteed to preserve property checking. The problem is that such
approaches unconditionally delay the trace prefixing of the constraints, hence even a
contradictory constraint which can never be satisfied at time zero — which thus renders
all targets unhittable — may become contradictory only at some future time-step in the
range 1,. .., (k—2). After phase abstraction, this delay will be either zero or one time-
step; in the latter case, we have opened a hole during which phase abstracted targets
may be hit, even if they are truly unhittable in the original netlist. Nonetheless, in most
practical cases, one may methodologically specify their desired verification problem in
a way that adheres to the criteria of Theorem[3

8 C-Slow Abstraction

C-slow abstraction is a state folding technique which is related to phase abstrac-
tion, though is directly applicable to register-based netlists. A c-slow netlist has
registers which may be c-colored such that registers of color ¢ may only combination-
ally fan out to registers of color ((z + 1) mod c); a combinational gate acquires the
color of the registers in its combinational fanin. Unlike k-phase netlists, the registers
in a c-slow netlist update every time-step hence generally never stutter. Additionally,
the initial value of every register may propagate to other registers. C-slow abstraction
operates by transforming all but a single color of registers into buffers, thereby reducing
register count and temporally folding traces modulo-c. To account for the initial values
which would otherwise be lost by this transformation, an unfolding approach is used to
inject the retained registers into all states reachable in time-frames 0, . .., (¢c—1).

As with phase abstraction, if the target and constraint gates are of differing colors,
this abstraction risks converting some hittable targets to unhittable due to its temporal
collapsing of register stages. Additionally, even the criteria of requiring all target and
constraint gates to be of the same color as with Theorem 3] is not guaranteed to pre-
serve property checking with c-slow abstraction. The problem is due to the fact that
c-slow netlists do not stutter mod c. Instead, each time-step of the abstracted netlist
correlates to ¢ time-steps of the original netlist, with time-steps ¢,c + ¢,2-¢ + ¢, ...
being evaluated for each ¢ < c in parallel due to the initial value accumulation. Rea-
soning across mod ¢ time-frames is intrinsically impossible with c-slow abstraction;
thus, in the abstracted netlist, there is generally no way to detect if a constraint was
effectively violated at time a-c + ¢ in the original netlist when evaluating a target at
time (a 4+ 1)-c + j for i # j. Even with an equivalent-color restriction, c-slow abstrac-
tion thus risks becoming overapproximate in the presence of constraints. Nonetheless,
methodologically, constraints which are not amenable to this state-folding process are

Exploiting Constraints in Transformation-Based Verification 279

of little practical utility in c-slow netlists. Therefore, in most cases one may readily map
an abstracted counterexample trace to one consistent with the original netlist, e.g., using
satisfiability analysis to ensure constraint preservation during intermediate timesteps.

9 Approximating Transformations

Overapproximating Transformations. Various techniques have been developed for
attempting to reduce the size of a netlist by overapproximating its behavior. Any tar-
get proven unreachable after overapproximation is guaranteed to be unreachable be-
fore overapproximation. However, if a target is hit in the overapproximated netlist, this
may not imply that the corresponding target is hittable in the original netlist. Localiza-
tion is a common overapproximation technique which replaces a set of cut gates
of the netlist by primary inputs. The abstracted cut can obviously simulate the behavior
of the original cut, though the converse may not be possible.

Overapproximating transformations are directly applicable in the presence of con-
straints. Overapproximating a constraint cone only weakens its constraining power. For
example, while the cone of target ¢ and constraint ¢ may overlap, after localizing the
constraint cone it may only comprise localized inputs which do not appear within the
target cone, thereby losing all of its constraining power on the target. Such constraint
weakening is merely a form of overapproximation, which must already be addressed by
the overall overapproximate framework. Both counterexample-based and proof-
based [[19] localization schemes are applicable to netlists with constraints, as they will
both attempt to yield a minimally-sized localized netlist such that the retained portion
of the constraint and target cones will guarantee unreachability of the targets.

Underapproximating Transformations. Various techniques have been developed to
reduce the size of a netlist while underapproximating its behavior. For example, unfold-
ing only preserves a time-bounded slice of the netlist’s behavior; case splitting (e.g., by
merging inputs to constants) may restrict the set of traces of a netlist. Underapproxi-
mating transformations may safely be applied to a netlist with constraints, as underap-
proximating a constraint cone only strengthens its power. For example, if a constraint
is of the form ¢; V i2, underapproximating by merging i; to constant ZERO will force
i2 to constant ONE in the underapproximated netlist even though a target may be hit in
the original netlist only while assigning 2 to a 0. However, this restriction — which may
cause unreachable results for targets which were hittable without the underapproxima-
tion — must already be addressed by the overall underapproximate framework. Target
hits on the underapproximated netlist still imply valid hits on the original netlist even
in the presence of constraints. Extensions to underapproximate frameworks to enable
completeness — e.g., diameter bounding approaches for complete unfolding, and com-
plete case splitting strategies — are directly applicable in the presence of constraints.

10 Constraint Elimination

Given the challenges that they pose to various algorithms, one may wish to eliminate
constraints in a property-preserving manner. In Figure Bk, we introduce a general con-
straint elimination algorithm.

280 H. Mony, J. Baumgartner, and A. Aziz

Eliminate constraints (Netlist V)
¢ ¢ c=1ANA, ccvis
A — t r = create register;
c D Z(r)=1
d=cArm;
next state(r) = ¢’;

foreacht € T'
t=tnC,
a) Netlist N; gate cis a b) Netlist N’ with no constraints;
constraint, gate ¢ is a target gate ¢’ is a target c¢) Constraint elimination algorithm

replace each ¢t € T by corresponding ¢';
remove all constraints: C' = ();

Fig. 5. Property-preserving constraint elimination

Theorem 6. The constraint elimination algorithm of Figure[Bk is a property-preserving
transformation.

Proof. Consider any trace p that hits target ¢ in netlist N at time 4. Note that netlist N’
has the same set of gates as IV in addition to gates ¢/, r, and ¢’. Consider the trace p’ of
N’ where all common gates have the same valuations over time as in p, and gates ¢/, r
and t’ are evaluated as per Definition[2l Because ¢ is hit at time 4, Vj < i.(p(c, j) = 1),
and thus by construction of ¢, Vj < . (p’(c’7 j) = 1). Because t' = t Ac’, we also have
Vi <i.(p(t,4) = p'(t',7)). It may similarly be proven that for any trace p’ that hits
target ¢’ at time i, there exists an equivalent trace p that hits target ¢ at time . O

Performing the constraint elimination transformation in Figure [5 enables arbitrary
verification and transformation algorithms to be applied to the resulting netlist without
risking the violation of constraint semantics. However, this approach could result in
significant performance degradation for both types of algorithms:

— Transformation algorithms (particularly redundancy removal) lose their ability to
leverage the constraints for optimal simplification of the netlist.

— Falsification algorithms may waste resources analyzing uninteresting states, i.e.,
from which no target may subsequently be hit due to ¢’ evaluating to 0.

— The tactical utility of the constraints for case-splitting strategies is lost.

11 Constraint Introduction

It follows from the discussion of redundancy removal in Section[3] that reduction poten-
tial may be increased by constraints. It may therefore be desirable to derive constraints
that may be introduced into the netlist while preserving property checking, at least tem-
porarily to enhance a particular algorithm.

Theorem 7. Consider netlist N with gate g. If no target in 7" may be hit along any
trace after gate g evaluates to O, then g may be labeled as a constraint while preserving
property checking.

Exploiting Constraints in Transformation-Based Verification 281

Proof. 1f gate g is labeled as a constraint, by Definition2} we will only reason about the
prefix length of traces wherein gate g always evaluates to 1. Since no target in 7' may be
hit along any trace after gate g evaluates to 0, by Definition[3] netlist N’ formed from
N by labeling gate g as a constraint is property-preserving trace equivalentto N. O

Taking the example netlist of Figure[Bb, any of the gates c, ¢/, and r may be labeled as
a constraint provided that we may establish the corresponding condition of Theorem[7]
effectively reversing the transformation of Figure Bk. While this proof may in cases be
as difficult as property checking itself, we propose an efficient heuristic algorithm for
deriving such constraint candidate gates as follows. Similar to the approach of [20],
we may localize each of the targets, and use a preimage fixed-point computation to
underapproximate the number of time-steps needed to hit that target from a given set
of states. Any state not reached during this fixed-point may never reach that target. The
intersection of such state sets across all targets represents the conditions from which no
target may subsequently be hit. While the approach of proposes only to use this
set to steer semi-formal analysis away from useless states, we propose to synthesize the
resulting conditions as a constraint in the netlist to enhance reduction potential.

Note that these constraints are in a sense redundant because no target hits may
occur after they evaluate to O anyway. Therefore, instead of forcing all algorithms to
adhere to these constraints which may have an associated overhead, we may treat these
as verification don’t cares so that algorithms may choose to either use these constraints
to restrict evaluation of the netlist, or to ignore them. Note that certain verification
algorithms, e.g., SAT-based search, may inherently learn such conditions and direct
their resources accordingly. Ours is a more general paradigm which enables leveraging
this information for arbitrary algorithms, particularly to enhance reduction potential.

12 Constraint Simplification

In this section, we discuss a general approach to simplify constraints. We also discuss
an efficient implementation of this paradigm which attempts to replace a constraint with
its preimage, heuristically trying to reduce the size of the constraint cone and enable the
elimination of that constraint through reparameterization.

We define prop p(t, c) as the target gate resulting from applying the constraint elim-
ination algorithm of Figure[Bk specifically to target ¢ and gate c.

Theorem 8. Consider a netlist NV with constraint ¢; and gate co. If Vi€ T (prop p(t,c1)
= prop p(t, 02)) without the trace-prefixing of constraint c1, then converting NV into N’
by labeling ¢, as a constraint instead of ¢, is a property-preserving transformation.

Proof. Since Vt € T. (prop p(t,c1) = prop p(t, 02)) without the trace-prefixing en-
tailed by constraint ¢, this proof follows directly from Definition[3land Theorem[6l O

Theorem [Blillustrates that in certain cases, we may modify the constraint gates in a
netlist while preserving property checking. Practically, we wish to exploit this theorem
to shrink the size of the constraint cones and thereby effectively strengthen their reduc-
tion potential. Note that the structural reparameterization algorithm in Section [6]is able
to eliminate constraints which have no dead-end states. This is in a sense an optimal

282 H. Mony, J. Baumgartner, and A. Aziz

while (—done) // Iterate until arbitrary termination criteria done
Apply structural reparameterization to simplify constraint c;
If constraint ¢ has been eliminated by reparameterization, break;
/I Else, note that ¢ has been simplified to its dead-end states
If (prop p(t,c)=prop p(t, struct pre (c)))
¢ = struct pre(c);
else break; // constraint ¢ cannot be safely replaced by its preimage

Fig. 6. Heuristic constraint simplification algorithm

transformation, as the constraining power of the constraints are thereafter reflected in
the netlist structure itself and effectively filters the input stimulus applied to the netlist.
Given these motivations, we present a heuristic constraint simplification algorithm.

Definition 6. The structural preimage of a gate u which has no inputs in its combi-
national fanin, struct pre(u), is a logic cone obtained by replacing each register gate
v € R in the combinational fanin of gate u with its corresponding next-state function.

The algorithm of Figure[6]attempts to iteratively simplify, and ultimately eliminate,
the constraints in a property-preserving manner. At each iteration, reparameterization is
used to replace the current constraint by its dead-end states. Note that this step will elim-
inate the constraint if it entails no dead-end states. Otherwise, we attempt to simplify
the resulting sequential constraint by replacing it with its structural preimage, using
Theorem[8] to validate that this replacement preserves property checking. If this check
fails (either through refutation or excessive resource requirements), then the algorithm
terminates. Otherwise, the algorithm iterates with the resulting simplified constraint.

To illustrate how this algorithm works in practice, consider its application on con-
straint ¢ in the netlist of Figure 2l If j < ¢, constraint ¢ can be iteratively replaced
by its preimage until it becomes combinational, at which point reparameterization will
outright eliminate it. If j > 4, constraint ¢ can be simplified by shrinking j to ¢ + 1, at
which point the check based upon Theorem [§]fails causing the iterations to terminate.

Practically, the equality check of Figure [6] tends to be computationally expensive.
However, this check can be simplified as per the following theorem.

Definition 7. The structural initialization of a gate u which has no inputs in its combi-
national fanin, struct init(u), is a logic cone obtained by replacing each register gate
v € R in the combinational fanin of gate u with its corresponding initial value function.
The initial value constraint of w is defined as init cons(u) = init r V struct init(u),
where init r is a register whose initial value is ZERO and next-state function is ONE.

Theorem 9. Consider a netlist N with constraint ¢;. If Vi € T. (pmp p(t,c1) =
prop p(t, struct pre(cl))) in NV with the trace-prefixing entailed by constraint ¢y, then
converting N into N’ by labeling struct pre(ci) and init cons(ci) as constraints in-
stead of c; is a property-preserving transformation.

Proof. (1) The implication proof in /N means that within the prefix of any trace, ei-
ther the two gates evaluate to the same value, or prop p(t,ci) evaluates to 0 and
prop p(t, struct pre(c1)) to 1. The latter condition cannot happen since within any

Exploiting Constraints in Transformation-Based Verification 283

prefix, constraint ¢; must evaluate to 1, which implies that ¢ cannot evaluate to 1 and
prop p(t,c1) to 0 concurrently. The implication proof thus ensures that if ¢ is asserted
within any prefix at time 7, then struct pre(c;) must evaluate to 1 at times 0 to 4.

(2) Since N and N’ have the same set of gates, they also have the same set of
traces; only the constraint sets differ. The trace prefixing of N’ is stricter than that of N
as follows. (a) All traces prefixed at time O because of constraint c; in netlist N are also
prefixed at time O because of constraint init cons(cq) in N'. (b) All traces prefixed
at time ¢ + 1 because of constraint c; in netlist /N are prefixed at time ¢ because of
constraint struct pre(cy) in N'.

(3) For property-preservation, we must only ensure that target ¢ cannot be asserted
during time-steps that were prefixed in N’ but not N. During such time-steps, ¢; evalu-
ates to 1, and struct pre(cy) to 0, hence prop p(t, struct pre(ci)) must evaluate to 0.
The proof of this implication check thus requires prop p(t,c1) to evaluate to 0 at such
time-steps, ensuring that ¢ evaluates to 0. a

Practically, we have found that the trace-prefixing of c¢; substantially reduces the
complexity of the proof obligation of Theorem[J] vs. Theorem[§] e.g., by enabling low
cost inductive proofs. This check tends to be significantly easier than the property check
itself, as it merely attempts to validate that the modified constraint does not alter the
hittability of the target along any trace, independently of whether the target is hittable
or not. Additionally note that init r can readily be eliminated using retiming.

13 Conclusion

We have discussed how various automated netlist transformations may be optimally ap-
plied while preserving constraint semantics, including dead-end states. We have addi-
tionally introduced fully-automated techniques for constraint elimination, introduction,
and simplification. We have implemented each of these techniques in the IBM internal
transformation-based verification tool SixthSense. The synergistic application of these
techniques has been critical to the automated solution of many complex industrial veri-
fication problems with constraints, which we otherwise were unable to solve.

Due to the relative lack of availability of complex sequential netlists with con-
straints, we do not provide detailed experimental results. The only relevant benchmarks
we are aware of are a subset of the IBM FV Benchmarks [21]]. These constraints are
purely sequential, thus preventing their optimal elimination through reparameteriza-
tion alone. However, we were able to leverage transformations such as retiming and
constraint simplification to enable reparameterization to optimally eliminate 2 of 2 con-
straints from IBM 03 and IBM 06; 3 of 4 from IBM 10; 5 of 8 from IBM 11; and 11
of 14 from IBM 24.

References

1. C. Pixley, “Integrating model checking into the semiconductor design flow,” in Electronic
Systems Technology & Design, 1999.

2. Accelera. PSL LRM, http://www.eda.org/vfv.

3. M. Kaufmann, A. Martin, and C. Pixley, “Design constraints in symbolic model checking,”
in Computer-Aided Verification, 1998.

284

4.

S.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

H. Mony, J. Baumgartner, and A. Aziz

Y. Hollander, M. Morley, and A. Noy, “The e language: A fresh separation of concerns,” in
Technology of Object-Oriented Languages and Systems, 2001.

P. Jain and G. Gopalakrishnan, “Efficient symbolic simulation-based verification using the
parametric form of Boolean expressions,” IEEE Transactions on CAD, April 1994.

. M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Formal verification using parametric repre-

sentations of Boolean constraints,” in Design Automation Conference, June 1999.

. A. Kuehlmann and J. Baumgartner, “Transformation-based verification using generalized

retiming,” in Computer-Aided Verification, July 2001.

. H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann, “Scalable auto-

mated verification via expert-system guided transformations,” in FMCAD, Nov. 2004.

. A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean reasoning for equiva-

lence checking and functional property verification,” I[EEE Transactions on CAD, Dec. 2002.
J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz, “Modeling design constraints and
biasing in simulation using BDDs,” in ICCAD, 1999.

J. Yuan, K. Albin, A. Aziz, and C. Pixley, “Constraint synthesis for environment modeling
in functional verification,” in Design Automation Conference, 2003.

H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting suspected redundancy
without proving it,” in Design Automation Conference, 2005.

C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorithmica, vol. 6, 1991.

J. Baumgartner, A. Kuehlmann, and J. Abraham, “Property checking via structural analysis,”
in Computer-Aided Verification, July 2002.

J. Baumgartner and H. Mony, “Maximal input reduction of sequential netlists via synergistic
reparameterization and localization strategies,” in CHARME, Oct. 2005.

J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz, “An abstraction algorithm for the veri-
fication of level-sensitive latch-based netlists,” Formal Methods in System Design, (23) 2003.
J. Baumgartner, A. Tripp, A. Aziz, V. Singhal, and F. Andersen, “An abstraction algorithm for
the verification of generalized C-slow designs,” in Computer-Aided Verification, July 2000.
E. Clarke, A. Gupta, J. Kukula, and O. Strichman, “SAT based abstraction-refinement using
ILP and machine learning techniques,” in Computer-Aided Verification, July 2002.

K. L. McMillan and N. Amla, “Automatic abstraction without counterexamples,” in Tools
and Algorithms for Construction and Analysis of Systems, April 2004.

P. Bjesse and J. Kukula, “Using counter example guided abstraction refinement to find com-
plex bugs,” in Design Automation and Test in Europe, 2004.

IBM Formal Verification Benchmark Library. http://www.haifa.il.ibm.com/projects/
verification/RB Homepage/fvbenchmarks.html.

	Introduction
	Formalisms
	Redundancy Removal
	Retiming
	Structural Target Enlargement
	Structural Reparameterization
	Phase Abstraction
	C-Slow Abstraction
	Approximating Transformations
	Constraint Elimination
	Constraint Introduction
	Constraint Simplification
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

