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Abstract. Techniques for prediction in spatial maps can be based on associative 
neural network models. Unfortunately, the performance of standard associative 
memories depends on the number of training patterns stored in the memory; 
moreover it is very sensitive to mutual correlations of the stored patterns. In or-
der to overcome limitations imposed by processing of a large number of mutu-
ally correlated spatial patterns, we have designed the Hierarchical Associative 
Memory model which consists of arbitrary number of associative memories hi-
erarchically grouped into several layers. In order to further improve its recall 
abilities, we have proposed new modification of our model. In this paper, we 
also present experimental results focused on recall ability of designed model 
and their analysis by means of mathematical statistics. 

1   Introduction 

The strategies for prediction in spatial maps can be based on ideas of Fukushima [2]. 
Let us e.g. imagine a situation when we walk through a real place known to us. In 
such a case, we usually see only a scenery close around us. However, we are often 
able to recall the scenery that we do not see yet but shall appear soon in the direction 
of our next movement. Triggered by the newly recalled image, we can also recall 
another scenery further ahead of us. Thus, we can in principle imagine the scenery of 
a wide area by a chain of recall processes. This ability helps us to ensure a quick and 
safe movement through a known environment. This process can be used e.g. in auto-
monous driving.  

Within the framework of our previous research, we studied the approach to the 
problem of prediction in spatial maps introduced by Fukushima [2]. The performance 
of associative memories is limited by number of patterns which can be stored in the 
model. During our cooperation with Iveta Mrázová, we have proposed the model of 
the so-called Hierarchical Associative Memories (HAM) which was developed with a 
stressed necessity to work with huge amounts of data. We expect that the HAM-
model will allow a reliable and quick storage and recall of larger amounts of spatial 
patterns with respect to the problem of prediction in spatial maps.  
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2   The Associative Memories 

The associative memory is a neural network, for which all its neurons are input and 
output neurons simultaneously and oriented interconnections are among all neurons. 
(Basic notions and characteristics of this memory can be found e.g. in [4]). All its 
weights are symmetric and each neuron is connected to all other neurons except itself. 
An output of the associative memory is the vector of the outputs of all the neurons in 
the associative memory. A weight matrix W of the associative memory with n (n>0) 
neurons is a n×n matrix W=(wij) where wij denotes the weight between the neuron i 
and the neuron j.  

For training an associative memory, the Hebbian rule can be applied. According to 
this rule, the training pattern xk = (x1

k,..., xk
n ) can be stored in the associative memory 

with the weights wij (i,j=1,...,n) by adjusting the respective weight values wij: wij ← wij + 
xi

k xj
k for  i, j = 1, ... , n and i ≠ j. We assume that the weight values wij  (i, j = 1,..., n) are 

initialized to zero. Hence, the weight matrix W=(wij) corresponds to the auto-correlation 
matrix. For unlearning the pattern xk, we adjust back the respective weight values wij: wij 
← wij - xi

k xj
k for  i, j = 1, ... , n and i ≠ j. During the iterative recall, individual neurons 

preserve their output until they are selected for a new update. It can be shown that the 
associative memory with an asynchronous dynamics - each neuron is selected to update 
(according to the sign of its potential value ξ to +1 or -1) randomly and independently  - 
converges to a local minimum of the energy function. 

Associative memories represent a basic model applicable to image processing and 
pattern recognition. They can recall reliably even “damaged” patterns but their stor-
age capacity is relatively small (approximately 0.15n where n is the dimension of the 
stored patterns [4]). Moreover, the stored patterns should be orthogonal or close to 
orthogonal one to each other. Storing correlated patterns can cause serious problems 
and previously stored training patterns can even become lost because the cross-talk 
does not average to zero [1].  

3   Prediction Inspired by the Fukushima Model 

In the Fukushima model [2], the chain process of predicting (recalling) the scenery of 
a given place far ahead is simulated using the correlation matrix memory similar to 
the associative memory. A “geographic map” is divided into spatial patterns overlap-
ping each other. These fragmentary patterns are memorized in the correlation matrix 
memory. The actual scenery is represented in the form of a spatial pattern with an 
egocentric coordinate system. When we “move”, the actual area “becomes shifted” 
relatively to our previous position in the direction of the “move” (in order to keep our 
body always in the center of the “scenery” pattern to be recalled). If the “scenery 
image” shifts following the movement of the body, a vacant region appears in the 
“still not seen scenery” pattern. This area is filled partially by already known pattern 
from previous position and partially by a vacant region from the “will not seen” part 
of scenery. We are trying to recall the rest of the pattern. During the recall, a pattern 
with a vacant “not yet seen” region (the so-called “incomplete future” pattern) is pre-
sented to the correlation matrix and the recalled pattern should fill its missing part 
(see Fig. 1). 
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Fig. 1. Prediction inspired by the Fukushima model 

Unfortunately, it is necessary to “place” the pattern presented to the correlation ma-
trix exactly at the same location as one of the memorized patterns. The pattern to be 
recalled is shifted in such a way that the non-vacant region coincides with one of the 
memorized patterns. In order to speed-up the evaluation of the region-matching crite-
ria, the Fukushima model incorporates the concept of the piled pattern. The point 
yielding the maximum correlation between the “seen scenery” and the corresponding 
part of the piled pattern should become the center of the next region. 

The vacant part of the shifted pattern is filled, i.e. recalled by the auto-associative 
matrix memory. Although the recall process sometimes fails, it usually does not harm 
too much because the model contains the so-called monitoring circuit that detects the 
failure. If a failure is detected, the recalled pattern is simply discarded and recall is 
repeated after some time when the “body” was moved to another location. 

4   The Hierarchical Associative Memory  

Standard associative memories are able to recall reliably “damaged” or “incomplete” 
images if the number of stored patterns is relatively small and the patterns are almost 
orthogonal. But real patterns (and spatial maps in particular) tend to be correlated. 
This greatly reduces the possibility to apply standard associative memories in prac-
tice. To avoid (at least to a certain extent) these limitations, we designed (with co-
operation with Iveta Mrázová) the so-called Hierarchical Associative Memory model 
(HAM-model). This model is based on the ideas of a Cascade Associative Memory 
(CASM) of Hirahara et al. [3] which allows to deal with a special type of correlated 
patterns. But our goal is to use the basic CASM-model more efficiently by allowing 
an arbitrary number of layers with more networks grouped in each layer. 

 

Fig. 2. Structure of the Hierarchical Associative Memory 
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A Hierarchical associative memory H with L layers (L>0) is an ordered L-tuple 
H=(M1,...,ML) where M1,...,ML are finite non-empty sets of associative memories; 
each of the memories having the same number of neurons n (n>0). A set Mk 
(k=1,...,L) is called layer of the memory H. ⎟Mk⎟ denotes the number of local associa-
tive memories in the layer Mk (k=1,...,L). A training tuple T of H is an ordered L-
tuple T =(T1,..., TL) where Tk (k=1,...,L) is a finite non-empty set of training patterns  
for the layer Mk.  The structure of the HAM-model is shown in Fig.2. 

Training of the HAM-model H lies in training each of its layer Mk (k=1,...,L) 
separately (the so-called layer-training) and it can be done for all layers in parallel. In 
this way, the training patterns from the set Tk will be stored in local associative 
memories of the corresponding layer Mk.  

During the training of the layer Mk, training patterns from the set Tk are presented 
to the layer Mk sequentially. For each training pattern, “the most suitable” local asso-
ciative memory in the layer Mk is found and the training pattern is stored in it. If there 
is no “suitable” local associative memory, the new local associative memory is cre-
ated and added to the layer. The pattern is stored in the newly created local memory. 
Now, we describe the so-called DLT-algorithm (dynamical layer training algorithm) 
for layer-training in formal way.  

The DLT-algorithm (for the layer Mk) 
1. The weight matrices of all local associative memories in Mk are set to zero. 
2. A training pattern x from Tk is presented to the layer Mk. 
3. The pattern x is stored in all local associative memories in the layer Mk (ac-

cording to the Hebbian training rule). 
4. The pattern x is recalled by all local associative memories from Mk. Let us 

denote yi  the output of the i-th local associative memory in the layer Mk. 
5. The Hamming distance di of the pattern x and the output yi is computed for 

each recalled output yi (i=1,.. ,⎥Mk⎥). 
6. The minimum Hamming distance dmin is found (dmin = min {di}, i=1,...,⎥Mk⎥). 

min is set to the index of the local associative memory with satisfying dmin. If 
there exist more local associative memories in Mk with the same minimum 
Hamming distance dmin, min will be set to the lowest index of the local 
memory satisfying dmin. 

7. The pattern x is unlearnt from local associative memories i in the layer Mk 
where (di ≠ 0 or i ≠ min).  

8. If the pattern x is unlearnt from all local associative memories in Mk, a new 
local associative memory is created and added to the layer Mk. The pattern x 
is stored in the newly created local memory. 

9. If there is any other training pattern in Tk, Step 2. 

During recall, an input pattern x is presented to the HAM-model. The input pattern 
x represents an input for the first layer M1. At every time step k (1 ≤ k ≤ L), the corre-
sponding layer Mk produces its output ky which is used as the input for the “next” 
layer Mk+1 (i.e. k+1x = ky, 1 ≤ k< L). The output y of the HAM H is the output Ly of the 
“last” layer ML. The recall process of the HAM-model is illustrated in Fig. 3. 

Now, we focus on the recall process in one layer more precisely. During recall  
in  the  layer  Mk,  input pattern kx is presented to the layer Mk. Afterwards, each local  
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Fig. 3. Recall process in the HAM-model 

associative memory in the layer Mk produces the corresponding recalled output kyi 
(i=1,...,⎥Mk⎥). The output ky of the layer Mk is a recalled output which is “the most 
similar” to the input pattern kx. Now, we describe the so-called LR-algorithm (layer 
recall algorithm) for recall in one layer in formal way. 

The LR-algorithm (for the layer Mk): 
1. The input pattern kx is presented to the layer Mk.  
2. The pattern kx is recalled by all local associative memories in the layer Mk. 

Let us denote kyi the output of the i-the local associative memory in the layer 
Mk. 

3. The Hamming distance kdi of the input kx and the output kyi is computed for 
each i=1,...,⎥Mk⎥. 

4. The minimum Hamming distance kdmin is found (kdmin = min {kdi}, 
i=1,...,⎥Mk⎥). min is set to the index of the local associative memory satisfy-
ing kdmin. If there exist more local associative memories with the same mini-
mum Hamming distance kdmin, min will be set to the lowest index of the local 
associative memory in the Mk satisfying kdmin. 

5. The output ky of the layer Mk is the output kymin (i.e. ky = kymin). 

The training process starts with one local associative memory in each layer. Other 
local associative memories are added to the HAM-model during training according to 
the incoming patterns. Hence, the number of local associative memories in the HAM 
model depends only on the structure of training data. 

Nevertheless, we should keep in mind that the above-sketched heuristic for storing 
patterns in the dynamically trained HAM-model is quick, simple and easy to imple-
ment but it is not optimal. Considering the DLT-algorithm, a pattern remains stored in 
such a local associative memory where the pattern is correctly recalled (Step 7 of the 
DLT-algorithm). If there is no such a local associative memory, a new local associa-
tive memory is created for storing the pattern. However, using this method for choos-
ing the “most suitable” local associative memory, we cannot predict anything about 
recalling previously stored patterns. Some previously stored patterns can be recalled 
incorrectly (after storing some other patterns) or can even become lost. 

5   Experimental Simulations and Analysis 

In the previous paper [5], we presented preliminary experiments for the HAM-model 
and we compared the performance of the designed HAM-model with Fukushima 
model [2]. At this paper, we focus on robust ability of the HAM-model. In application 
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of the HAM-model for spatial maps prediction, the problem requires a robust recall of 
presented patterns, often unknown in some parts of their surface. Due to such re-
quirements, we have proposed the following two restrictions to the HAM-model in 
our simulations. 

1. The number of patterns which can be stored in each local associative memory 
of the HAM-model is limited to 0.05n, where n is the dimension of stored patterns. It 
corresponds approximately to 30% of the capacity for standard associative memory. 

2. A pattern remains stored in that local associative memory where even its 
“noisy” pattern (i.e. pattern where certain number of randomly selected elements 
change their value to the opposite one) is recalled correctly. If there is no such local 
memory, a new one is created to store this pattern. Hence, it is a modification of Step 
7 of the DLT-algorithm.  

Anyway, the above two modifications lead in general to an increased number of 
local associative memories. On the other hand, the experimental results show that the 
second restriction does not cause rapid increase of the number of the local associative 
memories in the HAM-model.  

The experimental simulations are restricted to a two-level hierarchy of the HAM-
model. Therefore, we can call the first- and second-level patterns to be ancestors and 
descendants, respectively. For experiments and their further statistical analysis, we 
have generated 100 sets of 100 randomly generated bipolar patterns (each of size 
15x15). In a bipolar pattern, every elements take the value +1 or -1. For each set of 
patterns, 1/4 of the patterns with the smallest cumulative correlation between the 
respective pattern were chosen to be the ancestors and the remaining patterns were 
used to form the descendants. During our experiments, we have tested “relatively 
small” patterns as we needed to do huge number of experiments to use statistical 
methods. We have performed also experiments with “bigger” data (approx. 100x100) 
and the results were very similar (or even a bit better). 

Every experiment is run on its set of patterns independently on other sets. Experi-
ments are repeated for every data set. During the training process, ancestors and de-
scendants are stored in the HAM-model according to the training algorithm. During 
recall process, we test the HAM-model recall ability of stored patterns and their cor-
responding “incomplete future” patterns (of different level). A pattern is recalled 
correctly if it coincides with its original in “known” part. A pattern is recalled with 
error k if it varies with its original in k elements. For each set, we observe distribution 
of patterns which are correctly recalled and patterns which are recalled with error 
including error-rate. 

First, we focus the HAM-model ability to recall stored patterns. We denote random 
variable Y which corresponds to ratio of correctly recalled patterns from a set of 
patterns. Suppose that Y has binomical distribution (number of correctly recalled 
patterns does not depend on other HAM-networks). For a large number of patterns, it 
is possible to approximate binomical distribution by a normal distribution with the 
same parameters.  

Our experimental data leads to a null-hypothesis H: EY = 0.998 in favor of 
alternative hypothesis A: EY <> 0.998 at confidence level α = 0,05 (EY denotes mean 
value of variable Y). Using statistical hypothesis testing, the hypothesis is rejected if  
T ≥ tm-1,α where T = |Ŷ – y| / (ρ / √n). According measured data, we can assess the 
truth of null-hypothesis H: EY=0,998 at confidence level α = 0,05. Hence, we can say 
that the number of correctly recalled patterns is 99.8%.  
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Now, we focus on the HAM-model ability to recall “incomplete future” patterns. 
Let level k of a “incomplete future” pattern is a number of rows/columns of 
“incomplete” L-shaped area. During simulations, “incomplete future” of level 1, 2 
and 3 are tested. Hence, a “incomplete future” pattern of the level 1 contains 13% (= 
29 unknown elements / 225 total elements) “unknown” elements, the second one 25% 
(=56/225) “unknown” elements and the third type 36% (=81/225) “unknown” ele-
ments. The recall results are summarized in Table 1. 

Table 1. The table shows a number of correctly and incorrectly recalled “incomplete future” 
patterns of the level 1, 2 and 3 

 Level 1 Level 2 Level 3 
Recalled correctly  4993 4310 3884 

Recalled incorrectly  5007 5690 6116 

Moreover, the distribution of incorrectly recalled “incomplete future” patterns can 
be analyzed by means of an error function (i.e. number of incorrectly recalled ele-
ments in one pattern). The results are shown in Fig. 4.  

 

Fig. 4. Histogram of error in “incomplete future” patterns recalled incorrectly 

In the figure, the axis X corresponds to a number of error in one recalled pattern 
and the axis Y corresponds to a number of recalled patterns with given error. The 
straight line depicts recall of “incomplete future” patterns of the level 1. The dash-
and-dot line corresponds to recall of “incomplete future” patterns of the level 2. The 
dotted line denotes recall of “incomplete future” patterns of the level 3. When the 
“unknown” area is small, the model is able to recall such patterns quite well (the error 
does not exceed 10%). As the “unknown” area grows, the number of incorrectly re-
called patterns is increased. 

6   Conclusions 

Our current research in the area of associative memories is focused on applications of 
associative memories for prediction in spatial maps. Unfortunately, the performance 
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of standard associative memories depends on the number of training patterns stored in 
the memory, and is very sensitive to mutual correlations of the stored patterns. In 
order to overcome these limitations, we have designed the Hierarchical Associative 
Memory model. In this paper, we presents experimental results focused on recall 
ability of this model. 

The HAM-model improves storage ability of standard associative memories to al-
low to deal with large number of mutually correlated patterns. For practical applica-
tion with respect to prediction problem, it is necessary to further improve robustness 
of the HAM-model to recall correctly (or at least with small error) patterns with larger 
“unknown” area. The right choice of the ancestor patterns represents an important 
point of a successful application of the model. We are in the process of developing  
more sophisticated methods - based on self-organization - for choosing “the most 
suitable” ancestor patterns. This could improve the robustness of the HAM-model 
with respect to recall patterns contained in the “unknown” area. 

In the future, we plan to analyze the time- and space-complexity of the HAM-
model. 
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