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Abstract. We describe an automatic procedure for building risk maps
of unexploded ordnances (UXO) based on historic air photographs. The
system is based on a cost-sensitive version of AdaBoost regularized by
hard point shaving techniques, and integrated by spatial smoothing. The
result is a map of the spatial density of craters, an indicator of UXO risk.

1 Introduction

More than 1 million bombs were air-dropped by the Allied Forces during WWII
in Italy, and at least 10% did not explode. At least 25,000 unexploded ordnances
are thus likely to remain buried, in the optimistic estimate that 3 out of 4 were
found and correctly disposed of. Only in Trentino, we have knowledge of 32,019
high explosive bombs (801 of which with Long Delay fuses) aimed at 271 attack
targets, accounting for 800 — 1,280 UXO still to be found. After more than
50 years, the ordnances are still operative: unexploded bombs constitute a risk
for population in case of accidental discovery, and a high inconvenience for any
intervention (e.g., construction of infrastructures, remediation of areas), often
delaying works, obliging also to evacuations of thousands inhabitants and to
communication blockades.

During the war, over 30 millions aerial photographs were taken for target
identification, damage assessment, mapping, and other purposes and still survive
in the archives of Keele (UK) and NARA (US). On the basis of available mission
data, reconnaissance imagery may be acquired from archives, digitalized and
geocoded. Images are selected in order to cover all locations in the study area,
and at different dates in the case of repeated attacks to targets.

In this paper we present a learning methodology for the detection of the ar-
eas potentially including unexploded ordnances. The classification problem is in
many aspects similar to that of identifying volcanoes on Venus [I]. Our task is
characterized by two main characteristics: the requirement of high specificity (to
reduce the number of false alarms) and the high number of test points (making
unfeasible the use of several computationally intensive algorithms). Moreover,
it is worthwhile noting that there is no need to precisely identify all the single
craters: the detection of their clusters is the more informative target. The pro-
posed solution, SSTBoostReg, extends the classical AdaBoost [2] algorithm and
it accounts for the above described issues by means of a regularized cost-sensitive
variant coupled to a spatial smoother.
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2 Data Description and Preprocessing

A set of 1,464 images, taken at different dates throughout the whole WWII
period, and rather heterogeneous, in terms of both general quality and ground
resolution, was selected for the described detection task. The general quality of
the images is affected by sky conditions (presence of clouds or smoke), exposure
hour (light conditions, brightness and contrast), exposure season (snow may
cover the craters, foliages may change) and preservation status. The pixel ground
resolution - approximately between 0.25 x 0.25 and 1 x 1 m? - depends on the
flight altitude which ranges from 9,000 to 25,000 feet because of the enemy
artillery opposition.

The images were scanned at 600dpi resolution and geolocated within the
Geographic Information System GRASS (http://grass.itc.it). The ground
resolution of all the images was reduced to 1.5 x 1.5 m? for noise reduction and
uniformity purposes. Fifty images chosen from different reconnaissance flights
and of different quality were retained for training set extraction, learning and
evaluation of classification models, whereas all the remaining photographs were
used for building the risk map.

The training set consists of a set {(vi,y;)}i=1,...~n of k x k pixel windows
around examples of the patterns one is trying to recognize. Each pixel window
v; is seen as a vector of R* whose label y; belongs to {—1,1}. Taking into
account the pattern variability, we selected 1,639 positive examples (a total of
about 30,000 craters is expected to be found in all the study area) and 2,367
negative ones from 30 out of 50 training images (the remaining 20 images being
only used for model evaluation), for a total of N = 4,006 examples. The window
size was set to 19.5x 19.5 m?, corresponding to k = 13 pixels. We tried to include
all the possible observable patterns into the training set. Examples from the two
classes are shown in Fig. [Ih and[Ib. In particular, it should be observed that the
examples of trees appear very similar to those of craters.

It is worthwhile mentioning that the extraction of training data was not triv-
ial, both for the positive and the negative examples, because of the heterogeneity
of the involved patterns. All the training examples were normalized with respect
to the local brightness to make it independent from the light conditions of the
particular reconnaissance flight according to the transformation v; = (v;—pu;)/o;
for ¢ = 1,..., N, where p; and o; represent the mean value and the standard
deviation of the training example v; respectively.

For feature reduction, a principal component analysis was performed on the
positive samples of training set. A graphical representation of the Eigencraters
(i.e., the eigenvectors corresponding to the positive samples) in order of non
increasing eigenvalues is shown in Fig. [k. We took into account only the first
n = 11 principal components, accounting for more than 95% of the total variance,
for the development of the classification models. The projection of the original
data into the subspace spanned by the first n Eigencraters is obtained as x; =
vilei,...,ey], where [e1, ..., e,] is the matrix of the Eigencraters in order of non
increasing eigenvalues. Therefore, the training set becomes now the ensemble

{(Xiayi)}izl,m,N-
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Fig. 1. Examples of positive (left panel) and negative (middle panel) samples (including
examples of trees, one of the most confounding patterns, buildings and roads) and
Eigencraters reported in order of non increasing eigenvalue (right panel)

3 The SSTBoostReg Model

Standard classification techniques like Nearest Neighbor (NN), Maximum Like-
lihood Gaussian Classifier (MLGC) and Tree Based Classifiers (TBC) [3] were
firstly applied. Bagging [4] and AdaBoost of maximal trees were also considered
(100 aggregated models). Performances of these classifiers are reported in Table
[[ and they are estimated by 10-fold crossvalidation on the N = 4,006 training
examples extracted from the 30 out of the 50 training images. AdaBoost achieved
the best results in terms of global accuracy (0.92) and performed slightly better
than Bagging. However, simpler single classifiers like NN and MLGC achieved
higher specificity (0.96) and higher sensitivity (0.89), respectively. Nevertheless,
both these last classifiers suffer from not trivial drawbacks. NN classifiers are
too slow during the test phase while the computation time is a key factor in our
application (1,464 test images, corresponding to about 6.10° test points); for
instance, Bagging and AdaBoost, the fastest models, require an execution time
of about 350 hours on a Pentium IV, 3GHz. MLGC is characterized by too low
specificity (0.86) and it is very likely to cause many false alarms.

Table 1. Accuracy, sensitivity and specificity (by 10-fold crossvalidation), with the
standard deviation, are shown for different standard models and combining methods

Classifier Acc. + SD Sens.+ SD Spec. £ SD

INN 0.88 4 0.02 0.83 + 0.03 0.93 = 0.02
3NN 0.90  0.01 0.84 £ 0.02 0.95 £ 0.01
5NN 0.91 4 0.01 0.84 £ 0.02 0.96 & 0.01
7NN 0.91 +0.01 0.84 £ 0.02 0.96 & 0.01
MLGC  0.87 £0.03 0.89 +0.01 0.86 %+ 0.02
TBC 0.83 4 0.02 0.79 + 0.03 0.85 = 0.03
Bagging 0.90 £ 0.01 0.85 4 0.02 0.94 + 0.01
AdaBoost 0.92 + 0.01 0.88 4 0.02 0.95 + 0.01
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Despite the relatively high specificity of the model, the application of Ad-
aBoost to the test images was not satisfactory because of the plethora of false
alarms inserted in the test images. On the other side, the percentage of correct
recognition of craters resulted to be highly satisfactory. In summary, a specificity
of 0.95 is not sufficient to avoid a too high number of false alarms, meanwhile a
sensitivity of about 0.75 should be sufficient to identify all the clusters of craters.
To achieve higher specificity (at least 0.975), we developed a cost-sensitive vari-
ant of AdaBoost, further refined by introducing a regularization factor. A spatial
smoothing bivariate function was finally applied.

3.1 The SSTBoost

Cost-sensitive variants of the AdaBoost have been already developed, but they
require the introduction of a misclassification cost into the learning procedure
[5l6]. Unfortunately, the misclassification costs concerning our task were not
available. However, the minimal requirements in terms of accuracy were given
as discussed at the beginning of Sec. [Bl we could consider satisfactory a model
characterized by a very high specificity, at least 0.975, and a sensitivity of at least
0.75. Moreover, there is no need to know the class priors (unknown in our case):
the only point is to drive the system into the sensitivity — specificity constraints.
To this purpose we have developed SSTBoost (Sensitivity Specificity Tuning
Boosting) [7], a variant of AdaBoost where (1) the model error is weighted with
separate costs for errors (false negative and false positives) in the two classes,
and (2) the weights are updated differently for negatives and positives at each
boosting step. Finally, (3) SSTBoost includes a practical search procedure which
allows reaching the sensitivity — specificity constraints by automatically selecting
the optimal costs. Given a parameter w € [0, 2], the SSTBoost algorithm allows
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Fig. 2. a) The results of the tuning procedure in terms of sensitivity and specificity,
estimated by 10-fold crossvalidation: the parameter w is initialized to 1. The gray
square region on top left indicates the constrain target region A. The final value of the
parameter is w* = 0.875. b) The corresponding margin distribution for the two classes.
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the development of a variant H,, of the AdaBoost characterized by higher sen-
sitivity with respect to the AdaBoost itself when w > 1, by higher specificity
when w < 1. For w = 1, we obtain AdaBoost. In [7], a procedure is also proposed
for the automatic selection of an optimal cost parameter w* in order to satisfy
or to get as close as possible to admissible sensitivity — specificity constraints.
The problem can be addressed as a minimization problem of the real function
A :[0,2] — RT defined as A(w) = dist(¢py(w), A) = mingea ||du(w) — all,
describing the distance of a suitable target region A in the ROC space and the
ROC curve ¢ (w). The problem admits a solution, not necessarily unique: the
possible optimal cost parameters are selected by w* = argmin,, A(w).

We applied the SSTBoost to our training set by using maximal classification
trees as base learners (100 models). As discussed in Sec.[3] the target region A was
defined by the constraints Se > 0.75, Sp > 0.975. To obtain predictive estimates
of both sensitivity and specificity we used 10-fold crossvalidation. The steps of
the automatic procedure for the selection of the parameter w are sketched in Fig.
Bh, showing that the procedure falls into the region A in only 4 optimization
steps. Fig. Bb can explain how SSTBoost works in terms of the margin. For
w* = 0.875 (and in general for w # 1), the margin of the two classes is differently
maximized; the margin of the negative examples results higher than the margin
of the positives one. The SSTBoost concentrates more resources to learn the
negative examples.

3.2 Regularization

Regularization techniques for AdaBoost have been already discussed in litera-
ture, e.g. as in [§]. The alternative method introduced in [J] consists in a bias-
variance control procedure based on removal of training data points according
to a suitable threshold of an hardness measure, to be interpreted as the clas-
sification task difficulty for the predictors. Such hardness measure is linked to
the dynamics of the AdaBoost weights, while the threshold can be evaluated
by minimizing the generalized error of a loss function. In details, the degree of
hardness for each training point p; € D can be derived by the misclassification
ratio of a point p(p;) in the aggregation of K AdaBoost models My, yielding a
family of telescopic training subsets {D; },c0,1] = {p: € Dl|p(pi) < r}, shaved
of the r-hardest points. After the optimal parameter is detected, the training
set can be pruned by shaving the hardest points and the classifier retrained. We
denote this regularized cost-sensitive version of AdaBoost by SSTBoostReg. In
the present task, a portion of the training data is put aside as validation set for
the threshold estimation: results are discussed in Sec. [

3.3 Spatial Analysis

Given a test image, the classification is based on a moving window procedure.
The SSTBoostReg is applied and the corresponding output Hy«(x) € [—1,1] is
assigned to the central pixel of the window. For a rejection threshold Ty = 0, a
crude application of the SSTBoost leads to classify as craters all the pixels such
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Fig. 3. a) Class densities of the 10-fold SSTBoostReg outputs. The vertical line indi-
cates the threshold T, for the identification of “high margin craters”. b) Class labels
are assigned according to the pair model output - density of “high margin craters”.

Fig. 4. The left image shows the classification obtained by applying SSTBoostReg,
without spatial analysis. The middle image shows the “high margin craters” and the
right image includes all the craters recognized by the local thresholding procedure.

that Hy«(x) > Ty (obviously, groups of adjacent pixels over this threshold shall
be aggregated). According to the results reported in Tab. 2l where the different
versions of AdaBoost are compared, a percentage of false alarms of about 2%
is expected. We now introduce an heuristics for reducing the percentage of false
alarms, motivated by the observation that the craters are not randomly spatially
distributed but they are clustered near the main targets. As shown in Fig. B,
nearly ever a negative example is classified as positive with a response above 1/2
(by 10—fold crossvalidation). We can thus use a threshold T;, = 1/2 for identi-
fying what we call “high margin craters”. The idea is now to exploit the spatial
density of “high margin craters” for locally modifying the rejection threshold of
the model: the higher the density of “high margin craters”, the lower the rejec-
tion threshold T'. In particular, the threshold is decreased linearly from T, to
Ty as the density of “high margin craters” increase from 1 to 5, and it remains
constant for higher densities of “high margin craters” (see Fig. Bb for details).
The “high margin craters” identified on a test image are shown in Fig. [ as can
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Table 2. Accuracy, sensitivity and specificity, including standard deviations, for Ad-
aBoost, SSTBoost and SSTBoostReg (all obtained by aggregating 100 tree models)

Classifier Acc. = SD Sens.+ SD Spec. = SD

AdaBoost 0.92 £0.01 0.88 £0.02 0.95 £ 0.01
SSTBoost 0.91 £0.01 0.81 £0.02 0.98 £0.01
SSTBoostReg 0.92 +0.01 0.83 £0.02 0.98 +0.01

be easily seen, no false alarms are introduced at this level. Fig. [ also includes
the craters identified by the local thresholding procedure.

4 Performance Evaluation

The performances of AdaBoost, SSTBoost and SSTBoostReg, computed by
10—fold crossvalidation, are compared in Tab. & as expected, SSTBoost out-
performs standard AdaBoost in terms of specificity (0.95 for AdaBoost, 0.98
for SSTBoost), meanwhile AdaBoost achieved higher global accuracy (0.92 for
AdaBoost, 0.91 for SSTBoost). By looking at the results of the classifiers re-
ported in Tab. Il only SSTBoost falls into the target region A determined by
the sensitivity — specificity constraints. The application of the regularization
procedure allowed the global accuracy to be increased, improving from 0.91 of
SSTBoost to 0.92 of SSTBoostReg, without decreasing neither specificity (0.98
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Fig. 5. Example of error detection based on the analysis of the risk map: the contour
lines indicate regions with non null density of craters (by machine learning). The figure
includes examples of missed craters clusters (MC), missed isolated craters (MI) and
false alarms (FA). For each test image the values for MC (with relative number of
craters), MI and FA are also reported.
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for both SSTBoost and SSTBoostReg) nor sensitivity (0.81 for SSTBoost, 0.83
for SSTBoostReg).

The SSTBoostReg procedure coupled with the spatial analysis allowed the
avoidance of a high number of false alarms without reducing too much the sensi-
tivity of the model. The final output of the system is a map of the spatial density
of craters. Performances were then evaluated in terms of number of false alarms
in unbombed areas (FA), number of missed isolated craters (MI) and number
of missed clusters of craters (MC), obtained by manual census. An example of
error detection is shown in Fig.

A set of 20 images was used for evaluating the model performances. The
model failed to identify big clusters of craters only once (but the quality of the
corresponding image is really very low). In 5 of the 20 images a small isolated
cluster of craters was missed and only a total of 58 isolated craters were missed.
The number of false alarms is considerably low, with an average of 1.6 false
alarms per image (see Fig. [).

5 Conclusions

The classification system was developed within the UXB-Trentino Project
(http://uxb.itc.it), funded by the Province of Trento. The new risk map
is used for public consultation in case of building planning, with semi-automatic
production of risk reports. Consultation of the risk map under indication of
the Civil Defense Department has become a standard procedure; its use as a
mandatory procedure for new construction works is being considered.
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