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Abstract. An efficient approach to shape matching in digital images
is presented. The method, called Weighted Edge Potential Function, is
a significant improvement of the EPF similarity measure, which mod-
els the image edges as charged elements in order to generate a field of
attraction over similarly shaped objects. Experimental results and com-
parisons demonstrate that WEPF enhances the properties of EPF and
outperforms traditional similarity metrics in shape matching applica-
tions, in particular in the presence of noise and clutter.

1 Introduction

The task of automatically matching shapes in digital images is a fundamental
problem in pattern recognition. Applications of shape matching include indus-
trial processes, robotics, video surveillance, and many others. Several approaches
have been proposed in the literature to solve this problem in different application
domains. For a thorough survey on the matter, please refer to [7]. The above
mentioned applications are concerned with two different problems: (i) how to
match objects, and (ii) how to measure the similarity among them. The first
focuses on the matching procedure between an object and a model, while the
latter concentrates on the problem of defining when a target is feasonablySimilar
to a query object. Although the two aspects are often strongly connected, the
definition of effective similarity measures is gaining increasing attention, also due
to emerging applications such as content-based image indexing and retrieval.
As far as the evaluation of the similarity is concerned, several metrics have
been developed. Traditional metrics include Minskowski, Euclidean, and Maha-
lanobis. More recently, similarity measures based on fuzzy logic have also been
proposed. For a thorough survey on the matter, please refer to [8]. An important
class of methods is the one based on distance transforms. Chamfer Matching [2]
and Hausdorff Distance [5] are the current reference approaches in the field, and
ensure very good performance even in the presence of complex images, distor-
tion (e.g., affine transforms), occlusion, noise, and clutter. In [3], an alternative
approach was proposed called Edge Potential Function (EPF). This method
mimics the attraction field generated by charged particles [6], and differs from
traditional point-to-set distances in the fact that it exploits the all edge instead
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of just nearest neighbors. This allows reinforcing the effect of coherent contours
as compared to noise.

This paper reports a significant improvement of EPF, the Weighted Edge Po-
tential Function (WEPF), which shows interesting properties for efficient shape
matching. The paper is organized as follow: in Sect. 2 the concepts of EP and
WEP are outlined and motivated. In Sect. 3 the use of WEP to shape matching
under distortion conditions is presented. In Sect. 4, a set of selected test results
is proposed, showing the performance of the proposed approach in different ap-
plication conditions, and comparing it to other established approaches.

2 Weighted Edge Potential Functions

The concept of EPF can be summarized as follows (see [3] for details):

Definition 1: Given a test point q and a set of edge points A = {a1,...,am},
the edge potential EP generated in q by A is:

1 «—m 1 .
€ 21':1 llg—as || Va; a; #q

EP (¢, A) =
(q ) {’y,ﬂak:ak—q

(1)

where v is a peak value replacing the singularity point of the potential, and is a
permittivity constant that controls the slope of the potential.

Definition 2: Given two finite point sets A = {a1, ..., a,,} and B = {b1,...,b,}
the EP Function (EPF) of set B with respect to set A is defined as:

EPF (B, A) = |;| > EP (b, A) (2)
b;eB

Given v = 1, EPF(B,A) is in the range [0:1] where 0 reflects complete similarity
between B and A, while 1 indicates a perfect match, thus providing a normalized
similarity measure. It is important noting that EPF is asymmetric. This means
that if for instance B is a subset of A, we find a perfect matching of B over
A (EPF=1), but not of A over B. This allows matching correctly fragments or
subparts of shapes.

Although EPF was demonstrated to be a very efficient similarity measure, it
can be improved in two respects:

— EP depends on the values v and €, which are heuristically chosen.
— Though the high slope helps the convergence to be faster and isolates noise
spots, it makes the EPF fall suddenly when the set A misses some points

due to occlusion, clutter or deformation.

The second problem can be particularly critical in the presence of inaccurate
preprocessing and edge-extraction, where several contour pixels may get lost. In



Efficient Shape Matching Using Weighted Edge Potential Functions 631

order to overcome these problems, a weighted version of the EP is proposed, by
introducing an adaptation (weighting) parameter:

Definition 3: Given a test point q and a set of edge points A = {a1,...,am},
the weighted edge potential WEP generated in q by A is:

WEP (q,A) = wgEP (¢, 4) = w, (1 Z lq _1 al||> ®)

where wy = eming,eca ||¢ — ;]| is the weighting factor. It is easy to verify that
WEP is independent of e. To this purpose, let’s define rgn = ||¢ —aml| =
ming,ca lg - o

After a few simple passages we obtain:

WEP (q,A) =1+ 74m Z IIq ol (4)

If WEP is computed at every image point, a surface is generated with zero height
in correspondence of each edge point. It is to be observed that when q is far from
its nearest neighbor, the weighting factor becomes negligible. In order to better
compare WEP with EP, WEP is normalized and remapped, according to Eq. 5

NWEP (q,A) = f (WEP (g, A) - 1) (5)

Theorem: Given a finite point set A = {a1,...,a,} and a point g, if we add to
A a finite point set B made up of k points to create a finite point set C = AU B,
then WEP(q,C) > WEP(q, A).

Proof: Let’s consider rgm = [|¢ — am|| = mingea llq¢ — a;il| < minp,ep ||lg — bil|
if rgm = 0 then the theorem is evidenced. If 7¢;, # 0 , then we have:

m+k—1 m—+k—1

. 1
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WEP (q,C) = WEP (¢, A) + WEP (¢,B') , B = B {a}

Thus, the theorem is evidenced. In the case ming ca ||q¢ — a:|| > mine, e ||g—0bil,
A and B are permuted, and the theorem is evidenced as well.

This theorem introduces an important advantage of the weighted function,
consisting in a higher robustness to noise and clutter. As a matter of facts, in
the presence of dot noise the weighting factor produces an automatic increase of
the slope of WEP surface, which tends to isolate noise spots. On the contrary,
in the presence of clutter or scattered contours, WEP automatically decreases
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the slope, thus producing a reasonably continuous potential function even along
discontinuities in the contour.

Definition 4: Given two finite point sets A={a1,...,a,,} and B = {b1,...,b,},
the Weighted EPF (WEPF) and the Normalized WEPF (NWEP) of B over A
are defined as:

WEPF (B, A) = ; i: WEP (b;, A) (6)
i=1

or NWEPF (B,A) = ! ¥" | NWEP (b;, A). Also in this case, NW EPF (B,A)
# NWEPF (A, B), and the larger the NWEPF value the higher the similarity
of set B with respect to set A.

3 WEPF and Shape Matching

Several interesting pattern recognition problems can be addressed by using the
proposed methodology. Here, we will consider the problem in its more general
form, while specific applications have been already proposed in previous works
with application to image retrieval[3] and video indexing[4]. The objective is to
determine if the target image contains an object whose shape is similar to a
model after an affine transform. The affine transform produces an instance of
the model by taking into account an operator ¢ = (t;,ty,6,tw,tn) where 6 is
rotation; t;, and ¢, are the translation along x-axis and y-axis, respectively; and
tw, and t are the scaling along x-axis and y-axis, respectively. The matching
process consists in determining the operator ¢ that maximizes the similarity of
the relevant instance of the model and the target. As far as the definition of
a suitable metric is concerned, the matching function defined in Eq. 6 can be
rewritten as:

nfek)

WEPF (ci) = n(lck) Y wEP (bECk),A) (7)
i=1

or NWEPF (¢) = n(ik) Z:L:f) NWEP (bl(.ck)’A), where n(¢) is the number
of pixels of the ci-th instance of the sketch contour, bgck) is the i*" pixel of the
ci, instance.

Eq. 7 can be considered a highly nonlinear multivariate fitness function to
be globally maximized. This process can be solved in different ways by taking
into account convergence and speed criteria. Multi-resolution and hierarchical
approaches should be used to this purpose, as well as statistical methods (e.g.,
simulated annealing, genetic algorithms). In the present work, a Genetic Algo-
rithm (GA) was implemented and customized to this purpose, providing a very
efficient optimization tool in terms of speed and reliability.
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4 Experimental Results and Conclusions

In this section, the results achieved by WEPF are analyzed and compared with
other established methods. First, a comparison is proposed in terms of perfor-
mance of the similarity measure (i.e., capability to correctly catch the similar-
ity /differences among two shapes in complex/noisy scenarios). Then, a possible
application of WEPF to sketch-based image matching is assessed.

As far as the comparative analysis is concerned, two well known approaches
are used as a reference: Chamfer Matching and Hausdorff distance. To this pur-
pose, the following schemes are taken into consideration:

(DT, CM): Chamfer Matching using Distance transform [1]
(DT, HD): Hausdorff using Distance transform.

— (EPF): Edge Potential Function.
(NWEPF): Normalized Weighted Edge Potential function.

Two test cases are investigated to show the beneficial attributes of EPF: in both
cases a complex scenario is considered, with various shapes mixed to different
color textures. In the first test case, images are processed under severe noise
conditions. In the second one, edges are artificially damaged.

Test 1: Fig. 1 shows a sketch-based shape matching: images (a) and (b) are the
query and the target images, while (d) is a noisy version of the target image. (c)
and (e) show the edge maps extracted from (b) and (d) by a Canny-Rothwell
detector.

To demonstrate the effectiveness of the proposed similarity measure, an ex-
haustive search was performed by making the transformation operator to vary
in a large range. The goal was to verify if the peak of the similarity function
corresponds to the optimum matching, and if there are suboptimal or wrong
solutions achieving near fitness.

Fig. 2 shows the histogram of the similarity values achieved for each examined
position: it should be noticed that distance-transform-based approaches generate
a spike in the histogram near the maximum similarity values, thus meaning
that numerous solutions assume values near to the maximum. This makes the
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Fig. 1. Testbed 1
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Fig. 2. Exhaustive search results - noisy environment (a) f(x)=(DT,CM) (b) f(x) =
(DT, HD) (c) f(x) = (EPF) (d) f(x) = NWEPF. Frequency = Number of trial solutions
for which f(x) = fo
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Fig. 3. Exhaustive search results - clutter environment (a) f(x)=(DT,CM) (b) f(x) =
(DT, HD) (c) f(x) = (EPF) (d) f(x) = NWEPF. Frequency = Number of trial solutions
for which f(x) = fo

convergence more difficult, as confirmed by the first part of Fig. 4, where the
number of false positives (wrong positions showing a computed fitness higher
than the correct solution) is analysed. In the example only NWEPF is able to
detect the best match with no false positives.

Test 2: Let us consider again the case of Fig. 1. This time, we would like
to compare NWEPF with competing algorithms in the case of imperfect edge
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Test Method The largest | Frequency | Position status
Example value of
similarity
measure
Ex 1 (DT, CIWy 0.998500 3 1 right, 2 wrong
Noisy (DT, HD) 0.098588 3 | right, 2 wrong
environment | (EP, EPF) 0.980825 2 1 right, | wrong
(MNWEP, 0.916514 1 1 right
NWEFF)
Ex 2 (DT, CWy 0.097416 4 | right, 3 wrong
Clutter (DT, HD) 0.997407 4 1 right, 3 wrong
environment | (EF, EFF) 0.033193 1 | right
(NWEP, 0.014520 1 1 right
NWEFF)

Fig. 4. Comparing the efficiency and effectiveness among (DT, CM), (DT, HD), (EPF)
and (NWEPF) methods
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Fig. 5. Testbed 2

extraction. To this purpose, we simulate the loss of contour points by randomly
erasing 50% of the contour points on the target object, i.e., the object that
matches the query (f). Also in this case an exhaustive search is performed.

The resulting histogram of similarity values (Fig. 3) demonstrates the higher
selectivity of EP-based measures, and the relevant matching results proposed in
the second part of Fig. 4 confirm once again the ability of EPF and particularly
NWEPF to achieve almost perfect detection.

Sketch-based image matching: As an additional performance test, WEPF
has been introduced as a similarity measure in a content-based image retrieval
(CBIR) scheme based on a genetic matching [3]. The comparative performance
analysis was carried out by substituting different similarity metrics in the same
matching scheme.

In particular, the following scenario is investigated: detection of the presence
of a user-given sketch within a binary image representing some object shapes with
added noise and clutter. Moreover, comparisons with state of the art approaches
are provided to show the effectiveness of the proposed approach. To demonstrate
the robustness of EPF with respect to the matching strategy adopted and to the
parameter setting, all the tests shown in this section are performed by using the
same matching procedure, based on a Genetic Algorithm optimization, and a
fixed set of parameters.

The scenario considered concerns the detection of a object shape under sev-
eral noise conditions such as additive random noise and contour losses (with loss
ratio ranging from 20% to 70%). Fig. 5 shows a typical example: Fig. 5a is the
query model, which is applied to the target image in Fig. 5b. Fig. 5¢ shows the
relevant noisy image, while Figs. 5d-e show the result of a 20% and 70% loss,
respectively.
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Fig. 6. (a) using (NWEPF) (b) using (DT,CM) (c) using (DT, HD)

Figs. 6a, b, and c illustrate the result when using NWEPF, DT-CM, and

DT-HD, respectively, to perform the matching. By analysing these figures, it
is possible to clearly state that NWEPF achieves better performance in all the
situations. In particular, the charts that show the GA performance make evident
that the probability of falling in a local minima corresponding to a wrong object
location is pretty high when using DT-HD and DT-CM, thus achieving a wrong
positioning even in the presence of a high fitness value.
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