Efficient Hardware Architecture for EBCOT in JPEG
2000 Using a Feedback Loop from the Rate Controller to
the Bit-Plane Coder

Grzegorz Pastuszak

Warsaw University of Technology, Institute of Radioelectronics,
Nowowiejska 15/19, 00-665 Warsaw, Poland
G.Pastuszak@ire.pw.edu.pl

Abstract. At the low compression ratio, the EBCOT engine of the JPEG 2000
encoder does not have to process all input data to achieve an optimal
codestream in the sense of the rate-distortion criteria. This property is exploited
in the architecture presented in this paper to allow higher throughputs of the
JPEG 2000 encoder. An impact of the code block size and the internal FIFO
size on the resultant speed is considered. The architecture is described in VHDL
and synthesized for commercial FPGA technology. Simulation results show that
at low compression ratios and for FPGA Stratix II devices, the single engine
can support HDTV standards.

1 Introduction

The newest compression standards allow ever-higher compression ratio and support
new functionality, although their computational complexity is still increasing. In im-
age compression, JPEG 2000 [1], [2] incorporates some sophisticated algorithms,
which require efficient implementation methods to shorten execution time. Embedded
Block Coding with Optimized Truncation (EBCOT) is central to the standard and is a
bottleneck of the codec. Usage of hardware acceleration makes it possible to obtain
high throughputs.

There are some architectures and optimization methods for EBCOT presented in
literature [3]-[7]. Also, some commercial solutions are available one the market, how-
ever, details are not published. Most implementation works for EBCOT have focused
on the Bit-plane coder (BPC) and assumed that the Context Adaptive Binary Arithme-
tic Coder (CABAC) can process at most one binary symbol per clock cycle. We
proved that it is possible to build efficient EBCOT architectures able to code two or
three symbols per clock cycle [8]. Lossy compression gives an opportunity to shorten
execution time since a number of input data do not contribute to the final JPEG 2000
codestream. There are a variety of design strategies exploiting this property. Some of
them were proposed in [9], [10]. The main concept behind them is to skip less signifi-
cant bit-planes of input coefficients based on rate-distortion criteria. This paper ap-
plies these approaches to the architecture able to code two symbols per clock cycle.
Moreover, an impact of the code block size and the internal FIFO size on the resultant
speed is considered.

F. Roli and S. Vitulano (Eds.): ICIAP 2005, LNCS 3617, pp. 604 —@], 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Hardware Architecture for EBCOT in JPEG 2000 605

The rest of the paper is organized as follows: Section 2 reviews the EBCOT algo-
rithm. Hardware acceleration methods and proposed design strategies for skipping of
bit-planes are presented in Section 3. The architecture design is illustrated in Section
4. Section 5 gives evaluation results. Finally, Section 6 concludes the work.

2 EBCOT Algorithm

In the JPEG 2000 compression schema, input images undergo in turn: color transfor-
mation, wavelet transformation, and quantization. Each of these stages can be skipped
depending on desired coding options. Quantized indices are grouped into rectangular
structures (so-called code-blocks) and entropy-coded using the EBCOT algorithm.

2.1 Embedded Block Coding

The embedded block coder is known also as Tier-1 coder. The bit-plane coder is the
first stage of the EBCOT algorithm. The BPC generates context-symbol pairs on the
basis of quantization indices grouped in code-blocks. Input data are read in the sign-
magnitude format and analyzed bit-plane wise starting from the most significant bit-
plane (MSB) with a non-zero element to the least significant bit-plane (LSB). Each
bit-plane is scanned in three coding passes called significance propagation, magnitude
refinement, and cleanup.

Each pass provides a variable quality contribution to the reconstructed image. For
the sake of the rate control algorithm, such an improvement should be calculated as a
reduction in distortion, which may be obtained by summing reductions associated
with each processed coefficient. For a single coefficient, the reduction in distortion
can be calculated from bits located under the currently scanned bit-plane.

The context adaptive binary arithmetic coder (CABAC) is the second stage of the
EBCOT algorithm. The CABAC module reads context-symbol pairs from the bit-
plane coder and codes them into separate bit streams for each code-block. The
CABAC contains the finite state machine that keep probability model for each con-
text. The model identifies a binary value of the most probable symbol (MPS) and
keeps an index pointing probability estimate of the least probable symbol (LPS).

found
truncation
point

distortion
distortion

slope "¢
threshold\\\

rate rate

Fig. 1. Convex hull analysis and finding truncation point for a code-block

606 G. Pastuszak

The main coding routine of the CABAC is based on the interval subdivision
method of Shannon and Elias. The interval is described by its length and base. Suc-
cessive renormalizations release bytes from MSB position of the base, incrementing
the byte counter. Discrete truncation rates for each coding pass may be estimated on
the basis of this counter increased by a small number (from 1 to 5) calculated from the
internal variables. When the last pass is completed, the truncation length is equal to
the number of released bytes.

2.2 Rate Control

The JPEG 2000 coder can employ Discrete Lagrange Optimization to achieve the
target rate with a high accuracy. Inputs to the Discrete Lagrange Optimization are
allowable truncation points described by reductions in distortion and rates, which are
obtained from the BPC and the CABAC. The method finds the best truncation points
for each code block to minimize the distortion of the reconstructed image subject to
the target rate.

For each code block, the submitted points should form a convex hull to provide
monotonic dependency of their slopes AD/AR. In order to meet this condition, some
points have to be removed, as depicted in Fig. 1. The optimization procedure deter-
mines a global threshold with reference to the slopes. Next, a codestream for each
code-block is truncated at the rate corresponding to the point having the smallest
slope but greater than the global threshold. The final codestream including such trun-
cated codestreams from each code block is optimal in the sense of the rate-distortion
criteria. The JPEG 2000 encoder has to find the threshold that provides matching
between the target and achieved rates.

3 Hardware Acceleration Methods

3.1 Embedded Block Coding

As each code-block is entropy-coded independently, the opportunity for parallel proc-
essing arises by using several block-coding engines. Speedup techniques for the BPC
employ simultaneous scanning of one or more columns in a stripe and skipping no-
operation samples. It reduces significantly local discontinuities of the output stream
produced by the BPC unit. Another technique uses a FIFO buffer between the BPC
and the CABAC. The reduction of time intervals, when input data for the CABAC are
not available, depends on the FIFO size and the difference in speed between both
main modules of the entropy coder. Most notably, the faster generation mitigates
requirements for the capacity of the FIFO.

The main limitation on the throughput of EBCOT arises from the casual dependen-
cies existing in the CABAC algorithm. Using a pipeline arrangement and parallel
symbol encoding can increase the throughput.

3.2 Feedback Loop from the Rate Controller to the Bit-Plane Coder

Lossy compression gives an opportunity to shorten execution time since not all passes
from a given code block contribute to the final JPEG 2000 codestream. To benefit

Efficient Hardware Architecture for EBCOT in JPEG 2000 607

from this feature, the BPC should terminate processing of the code-block at the last
pass included in the final codestream. In practice, this condition is difficult to evaluate
since the optimal selection of last passes depends on the rate-distortion relations be-
tween all code-blocks in the image, as described in subsection 2.2. Hence, optimal
truncation points can be found after all the code-blocks have been processed.

Final truncation points have rate-distortion slopes (AD/AR) greater than the thresh-
old found in the Discrete Lagrange Optimization. An estimation of the threshold in
parallel with processing of code-blocks allows the BPC to skip passes violating this
condition. In [9], the estimation is accomplished by assigning the target rate to code-
blocks processed so far. Thus, the value of the threshold increases during coding until
the final value is found. Underestimation of the threshold adversely affects the effi-
ciency of the early termination, e.g. the speedup is not as great as it would be. Owing
to the temporal correlation in Motion JPEG 2000, the threshold can be taken from the
preceding frame and modified with accordance to an adaptation rule [10].

An additional problem in embedding the feedback loop from the rate controller
arises from the locally non-monotonic dependence between slopes corresponding to
successive passes. This makes the correct detection of the termination condition diffi-
cult. For example, it may happen that the slope for a pass can fall below the temporal
threshold validating the termination condition, but the slope of the next pass is greater
and even merging these passes in the convex-hull analyzer makes the condition false.
In this case, the termination would be performed too early.

The underestimation of the threshold cancels the negative impact of the too-early
termination on the quality. The strength of these two factors should be balanced in
order to prevent losses in quality and to minimize over-coding. This can involve addi-
tional conditions for the termination regarding the growth of the codestream length,
the inclusion of zero-in-length cleanup passes, and the number of passes included in
the collocated code-block in the preceding frame.

In hardware framework, the termination decision can be taken for a pass when both
the reduction in distortion and the growth in the codestream length are known. The
latter is determined with a delay caused by buffering (FIFO) and pipelining between
the BPC and the rate estimator following the CABAC. As a consequence of the fact
that the BPC continues processing until the termination, the delay has a similar effect
on the coding time as the underestimation of the threshold. Varying the size of the
FIFO changes the strength of this effect.

4 Architecture

4.1 Block-Coding Path

The BPC applies a pipeline arrangement and employs six memory modules to buffer
quantized indices (2x1024x13 bits and 4x512x13 bits) and two memories to keep
state variables (2x512 bits). There is a FIFO buffer as the last stage of the BPC. The
bit-plane analysing method produces data at an average rate that outperforms by far
the throughput of the CABAC able to code two context-symbol pairs per clock cycle.
In particular, four columns in a stripe (16 bits) are scanned in one clock cycle. When
there are more symbols to encode, additional clock cycles are inserted. To calculate

608 G. Pastuszak

the reduction in distortion for each pass, bits from three bit-planes located just under
the currently scanned bit-plane are read in parallel. If a coefficient is or becomes sig-
nificant, its bits from all these bit-planes are mapped onto a value in the square error
domain, and the result is added to a mean-square error (MSE) accumulator. At the end
of each pass, the accumulator is flushed out.

The CABAC applies five pipeline stages. It is designed to process two context-
symbol pairs per clock cycle [8]. The rate estimator, following the CABAC, calcu-
lates truncation rates on the basis of states of internal registers of the CABAC and
generated code-bytes. The applied estimation of truncation rates is close to optimal
because it discards code-bytes that are not necessary to decode correctly the last pass
of a code-block.

4.2 Feedback Loop from the Rate Controller

The truncation rates along with the quality reduction, expressed as MSE, are for-
warded from the block-coding path to the rate control one. The latter consists of a
convex-hull analyzer, a feedback-threshold estimator, and the main rate controller.

The convex-hull analyzer embeds two small FIFO buffers to collect and adjust
truncation rates and corresponding MSE reductions. A finite state machine (FSM)
controls calculations of slopes and removes truncation points violating conditions on
the convex hull. The convex-hull block incorporates a subcircuit converting inputs to
their logarithmic representation. This removes the need to use the multiplication and
division units and keeps the high dynamic range of slopes at 16 bits.

Positively classified truncation points are stored in a double-port memory interfac-
ing the convex-hull analyzer with the feedback-threshold estimator. Both blocks ac-
cess to two separate address spaces through their own ports. Exchange of address
spaces allows communication. Hence, the blocks can operate simultaneously on suc-
cessive code-blocks.

The feedback-threshold estimator provides the temporal threshold to the convex-
hull analyzer, which in turn compares it with slopes calculated for successive trunca-
tion points of the currently-processed code-block. If a slope is less than the threshold,
a termination signal is activated driving the BPC to finish coding at the end of the
current pass. The feedback-threshold estimator handles a slope table accumulating
rates. Each truncation point adds its rate to an accumulator addressed by the slope of
this point. In the designed architecture, the threshold and slopes occupy 16 bits. To
save hardware resources, eight most significant bits address the table. After updating
the table by truncation points from a code-block, the temporal threshold is deter-
mined. The accumulators are read starting from the highest address. Their rates are
accumulated in a global accumulator until its value is less than the total rate. The
threshold is equal to the address of the table accumulator causing the violation of this
condition. The architecture incorporates two slope tables accessed alternately on the
image basis between the feedback threshold estimator and the Tier-2 coder.

All truncation points and code-bytes are forwarded to the external memory. When
all code-blocks are coded, the Tier-2 of the JPEG 2000 encoder is activated. In par-
ticular, accurate truncation rates are determined, packet headers are coded, and final
codestream is produced. Truncation rates are found on the basis of the accurate
threshold by comparing it with the slope of each truncation point within each code-

Efficient Hardware Architecture for EBCOT in JPEG 2000 609

block. Truncation rates are taken from the least significant points having slope greater
than the threshold. The accurate threshold is determined in two steps. High order bits
are obtained by reusing the slope table built by the feedback threshold estimator.
Next, the table is reinitialized by truncation points (stored in the external memory)
whose slopes have high-order bits equal to those of the threshold. Less significant bits
are retrieved in the similar manner as higher ones.

SRAM
CABAC [{RATES VF EXTERNAL
Mux | L
SRAM
TIER-2
CODER
truncation
FIFO .
CONVEX <_’RAM points ["EEEDBACK TWO FIND
HULL | | THRESHOLD|— SLOPE ACCURATE
terninate TABLES THRESHOLD

temporal threshold

Fig. 2. Block diagram of the EBCOT engine

S Implementation Results

The designed architecture of the EBCOT engine has been described in VHDL and
verified against software reference model (JJ2000 version 5.1). Synthesis for the
FPGA technology has been performed. The Tier-1 engine consumes 10 K Logic Ele-
ments and can operate at 120 MHz working frequency for FPGA Stratix-II devices. It
enables the encoder to process about 40 million samples in the lossless mode (RCT,
5x3 wavelet filter core, no quantization). In the lossy mode, the throughput is higher
and depends on applied quantization steps and the efficiency of the feedback loop
from the rate controller.

Evaluations have been conducted for a set of images. Tables 1 and 2 show the
number of clock cycles utilized to code the Baboon image by the block-coding engine
enhanced or not by the feedback loop. The results for the Baboon image are presented
in this paper since it involves the greatest deal of computations compared to other
images. Evaluation conditions have been as follows: 512x512 grayscale image, ICT,
9x7 wavelet transform, two decomposition levels, quantization adjusted to the L2
norm of the wavelet filter. The tables show that the compression ratio, the size of the
FIFO between the BPC and the CABAC, and the code-block size have an impact on
the processing speed. In particular, lower compression ratio allows higher through-
puts. Without the feedback loop, the number of clock cycles decreases with increasing
the FIFO size. As discussed in subsection 3.2, this rule does not hold when exploiting
the feedback loop. In this case, the number of clock cycles attains a minimum at some
sizes of the FIFO, and it depends on the compression ratio, the code-block size, and
the content of an image.

610 G. Pastuszak

The tables compare two strategies of the threshold estimation. The first one ap-
proximates the temporal threshold by assignment of the total rate to code-blocks proc-
essed so far (increasing threshold). The second one applies the final threshold to all
code-blocks), as this threshold would be taken from a preceding frame in a sequence
(threshold from preceding frame). In this case, the reduction of clock cycles is the
largest. When the threshold is underestimated, the savings in processing time are less.
In some cases, the too-early termination can occur slightly deteriorating the quality of
the reconstructed image. Nevertheless, these quality losses, if present, are very small
(changes in PSNR are less than 0.05 dB) and can be neglected.

Table 1. Number of clock cycles necessary to code the Baboon image in the Tier-1 part for
Code-block size 16x16

FIFO size x 32 bits 4 8 16 32 64
No feedback loop | 807024 773855 738469 707850 707818
2bpp | 768179 739773 710901 698120 707124
1 bpp | 650985 633424 616659 615391 672120

0.5 bpp| 548867 536285 526335 529853 604490
Threshold | 2 bpp | 580200 568267 556982 560655 664117

from preced-| 1 bpp | 445103 434030 430286 434136 530044

ing frame |0.5 bpp| 386522 378511 378001 386473 474921

Increasing
threshold

Table 2. Number of clock cycles necessary to code the Baboon image in the Tier-1 part for
Code-block size 64x64

FIFO size x 32 bits 32 64 128 256 512 1024
No feedback loop | 848462 | 824180 | 796203 | 762422 | 736206 |736157
2bpp | 791621 | 770341 | 753618 | 731745 | 717189 |736154
1 bpp | 661254 | 644060 | 637568 | 617714 | 626650 | 686898

0.5 bpp| 540362 | 525738 | 516151 | 510806 | 520815 |592612

Threshold | 2 bpp | 549247 | 541842 | 540840 | 530591 | 550585 |664009
from preced-| 1 bpp | 386454 | 377120 | 367823 | 361692 | 368788 |[468429
ing frame |0.5 bpp| 326829 | 316069 | 306247 | 296730 | 314427 399750

Increasing
threshold

6 Conclusions

The architecture of the EBCOT with the feedback loop from the rate controller has
been designed. It has been described in VHDL, verified, and synthesized for FPGA
Stratix-II devices. The engine can operate at 120 MHz working frequency and can
support HDTV standards at the low compression ratio.

Exploiting the feedback threshold from the rate controller improves the throughput
of the EBCOT engine. The optimal selection of the FIFO size depends on the code-
block size, the compression ratio. The temporal prediction of the threshold from the
preceding frame gives the best speedup.

Efficient Hardware Architecture for EBCOT in JPEG 2000 611

Acknowledgement

The work presented was developed within activities of VISNET, the European Net-
work of Excellence, (http://www.visnet-noe.org), founded under the European Com-
mission IST 6FP programme.

References

10.

ISO/IEC 15444-1, Information technology - JPEG 2000 image coding system - Part I:
Core Coding System, 2000

Taubman, D. S., Marcellin, M. W., JPEG2000: Image Compression Fundamentals, Stan-
dard and Practice. Norwell, MA: Kluwer, (2002)

Hsiao, Y.-T., Lin, H.-D., Lee, K.-B., Jen, C.-W.: High Speed Memory Saving Architec-
ture for the Embedded Block Coding in JPEG 2000. (2002).

Andra, K., Chakrabarti, C., Acharya, T.: A high performance JPEG2000 architecture,
IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 3, pp. 209-218,
(2003).

Lian, C.-J., Chen, K.-F., Chen, H.-H., Chen, L.-G.: Analysis and architecture design of
block-coding engine for EBCOT in JPEG 2000, IEEE Trans. Circuits and Systems for
Video Technology, vol. 13, no. 3, pp. 219-230, (2003).

Li, Y., Aly, R.E., Wilson, B., Bayoumi, M.A., Analysis and Enhancement for EBCOT in
high speed JPEG 2000 Architectures, The 45th Midwest Symposium on Circuits and Sys-
tems, 2002. MWSCAS-2002., Volume: 2. (2002)

Fang, H.-C., Wang, T.-C., Lian, C.-J., Chang, T.-H., Chen, L.-G.: High Speed Memory
Efficient EBCOT Architecture for JPEG2000, Proceedings of the 2003 International
Symposium on Circuits and Systems, Vol. 2, pp 736-739, May 2003.

8 Pastuszak, G.: A High-Performance architecture for arithmetic Coder in JPEG2000,
ICME’04, Taipei, Taiwan, 2004.

Chang, T.-H., Lian, C.-J., Chen, H.-H., Chang, J.-Y., Chen, L.-G.: Effective Hardware-
Oriented Technique For The Rate Control Of JPEG2000 Encoding. International Sympo-
sium on Circuits and Systems ISCAS 2003, Bangkok, Thailand. (2003)

Yu, W., Fritts, J., Fangting S.: Efficient Rate Control for Motion JPEG2000, Data Com-
pression Conference (DCC 2004), Snowbird, UT, USA (2004)

	Introduction
	EBCOT Algorithm
	Embedded Block Coding
	Rate Control

	Hardware Acceleration Methods
	Embedded Block Coding
	Feedback Loop from the Rate Controller to the Bit-Plane Coder

	Architecture
	Block-Coding Path
	Feedback Loop from the Rate Controller

	Implementation Results
	Conclusions
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

