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Abstract. Parameterized wavelet filters and wavelet packet subband
structures are discussed to be used as key dependent wavelet transforms
in order to enhance the security of wavelet based hashing schemes. Ex-
periments show that key dependency and keyspace of the hashing scheme
considered have been significantly improved. The attack resistance could
only be slightly enhanced by using parametrized wavelet filters.

1 Introduction

The use of robust hash functions for image authentication has become a popular
field of research. A key problem in the construction of secure hash values is
the selection of image features that are resistant to common transformations.
To ensure the algorithm’s security [7], these features are required to be key
dependent and not computable without knowledge of the key used for hash
construction. For example, the Visual Hash Function (VHF) [3] projects image
blocks onto key dependent patterns to achieve this goal.

In recent work [5] we have shown a simple attack against a wavelet-based ro-
bust hashing scheme introduced by Venkatesan et al. [9]. In this context we have
pointed out that a key-dependent parameterized wavelet transform could serve
as a generic way to improve the security of such algorithms. A similar approach
has been proven to enhance the security of various watermarking schemes, us-
ing both key-dependent filter parameterization [2] and key-dependent wavelet
packet subband structures [1].

In this paper two different methods of adding key dependency to the wavelet
transformation are proposed. In the experiments, these wavelet transformations
are evaluated with respect to their sensibility to changes in the key material
and the available keyspace when used in the context of the hahsing scheme of
Venkatesan et al. [9]. Finally we test the usefulness of those schemes to counter
the attack [5] against this algorithm.

2 Key-Dependency Schemes

Pseudo Random Partitioning. A common approach to generate secret image
features is to first create a pseudo-random partitioning of the image and compute
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features independently for every partition. The exact values of the features can
not be computed without knowledge of the key used to seed the PRNG, because
the regions on which the features are computed are not known.

Random paritioning is used as original key-dependency scheme in the hash
algorithm of Venkatesan et al. [9]. Its use is orthogonal to the following two
schemes and can be easily combined with either of them to further increase
security (which will be done in our experiments).

Random Wavelet Packet Decomposition. In the classical wavelet transformation
only the low-low-sub-band can be further decomposed, resulting in the typical
pyramidal structure. Wavelet packet decomposition [1] removes this constraint
and allows to further decompose any sub-band. The decision which sub-bands
are decomposed is either determined by a given structure or based on some
measure of optimality.

By using a pseudo random number generator to decide, if a sub-band should
be further decomposed, we can make the decomposition structure key dependent.
This approach has been shown to be effective in selective image encryption [6]
and in securing watermarking schemes [1].

Parameterized Filters. Wavelet decomposition typically uses fixed, well known
filters, such as the Daubechies filters. There are also methods to generate families
of wavelet filters from a number of parameters, that can be freely chosen (we
employ a familiy of parameterized orthogonal Daubechies wavelet filters [8]). If
these parameters are kept secret, they can be used as a key for the decomposition.
Similar to the wavelet packet case, this type of key-dependency has been used
before in selective image encryption [4] and watermarking [2].

3 Experiments and Results

We have tested both proposed schemes by including them into a authentica-
tion hash algorithm introduced by Venkatesan et al. [9]. The original algorithm
achieves key dependency through random partitioning. We use this algorithm as
a base case:

– The image is transformed, using a 3-level pyramidal wavelet transformation
– For each of the resulting subbands a feature vector Fi is calculated. This

is done by randomly partitioning the subband and calculating a statistical
measure for each region.
For the approximation the statistical measure used is the arithmetic average,
for all other subbands the variance is computed.

– The real number elements of each Fi are projected to {0 . . . 7} using random-
ized rounding. The resulting values are concatenated to form a preliminary
hash string Hp.

– The hash string Hp is shortened by feeding it into the decode stage of a Reed-
Muller error correcting code. This does not only shorten the hash string, but
also improves robustness.
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Table 1. Hamming distances among a set of images

baboon barb boat jet lena peppers truck zelda
baboon 0.00 0.43 0.46 0.32 0.35 0.32 0.37 0.38
barb 0.43 0.00 0.35 0.39 0.37 0.44 0.47 0.40
jet 0.32 0.39 0.39 0.00 0.31 0.40 0.48 0.34
lena 0.35 0.37 0.40 0.31 0.00 0.36 0.45 0.30

– In the final step a Linear Code algorithm is applied to the hash, again both
shortening it and increasing robustness.

To obtain an initial estimate and upper bound of the Hamming distance
threshold for considering an image untampered, a set of different images is com-
pared.

The Hamming distance between two independent images is consistently below
the optimal distance of 1

2 . This is mainly a result of the fixed values used in the
randomized rounding procedure, which favor the lower and upper bounds, and a
non uniform distribution of features values. For more detailed results and some
improvements of the alorithm see [5].

3.1 Key Dependency

A key dependency scheme can only improve security if the choice of the key has
a significant impact on the resulting hash value. All following figures show the
normalized Hamming distance of a hash created with some fixed key value to
other hashes, produced with varying other key values. Key values are displayed
along the ordinate, resulting Hamming distances along the abscissa.

The random partitioning approach, though vulnerable by a simple attack
(see [5] and subsection 3.3), is very effective in adding key dependency, with
average Hamming distance 0.336 and very few keys reaching values below 0.2
(see Fig. 1(a)). The figure shows the results 10000 different partitions, compared
to a fixed key at position 5000. A similar phenonemon (i.e. security weaknesses
in spite of a key-dependent hash) was pointed out by Radhakrishnan et al. [7]
for the block-based VHF. This contradictory behaviour was improved by adding
block inter-dependencies to VHF.

Random wavelet packet decompositions with a constant decomposition prob-
ability for all subbands makes shallow trees far more likely than deep trees. This
increases the chance of collisions, especially for shallow trees. Following a previ-
ous suggestion [6], we use a higher initial decomposition probability for the first
decomposition level and decrease it subsequently for every subsequent decom-
position recursion (we use a base value of 0.9 (p = 0.55) and a change factor
of −0.1 [6]). The obtained average Hamming distance (Fig. 1(b)) is 0.3570 and
about 0.73% of all distances are below 0.1. However, we result in 20 “almost”
correct keys (distance < 0.05) which makes the approach less reliable.

Even with random decomposition in place, the key of the standard algo-
rithm required to create partitions for extracting localized feature vectors may
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(b) Random decomposition
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(c) Random decomposition
& partitioning

Fig. 1. Key dependency test: Hamming distances between hashes generated with dif-
ferent keys

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2000  4000  6000  8000  10000  12000  14000

H
am

m
in

g 
D

is
ta

nc
e

lena

(a) Random filters
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(b) Random filters & partitioning

Fig. 2. Key dependency test: Hamming distances between hashes generated with dif-
ferent keys

be varied as well, thus increasing the key space and possibly overall security. Fig.
1(c) shows key dependency results for varying both keys. The average distance
for this setup increases to 0.3884 with no incorrect keys reaching distances be-
low 0.1. Combining both strategies obviously significantly increases the keyspace
while maintaining the high sensitivity to key variations of the original standalone
random partitioning scheme.

Experiments concerning filter parametrization are based on a parameterized
filter with 4 parameters (1.0, 1.5, −2.0, −1.0), all parameters were modified in a
range of ±1.0 in steps of 0.2, resulting in 114 = 14641 combinations. The correct
key for this test is 7320. The results for parameterized filters are almost as good
as the random partition scheme, with an average of 0.265 and only 0.53% of the
keys below 0.1 (see Fig. 2(a)).

Similar to the random decomposition, using parameterized filters adds key
dependency to the decomposition stage. Thus, the parameterization key can
also be combined with the standard partitioning key used during a later stage
of the scheme. When both keys are used, the average hamming distance in-
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creases slightly to 0.2795, additionally there are no more incorrect keys reaching
values below 0.1 (see Fig. 2(b)). Again, combining the two schemes maintaines
sensitivity towards key alterations while increasing the keyspace.

3.2 Key Space

A major concern of any key dependent algorithm is the number of distinct keys
that can be used. If the number of keys is too small, the scheme is vulnerable to
brute force attacks. The discrete key space of both random partitioning and ran-
dom decomposition grows exponentially with a free algorithm parameter (e.g.,
following the formula given in [6], a decomposition depth of 5 leads to ≈ 21043

different keys in random decomposition). Thus the size of the key space can
be easily adjusted and it seems that a suitable number of keys is available for
any level of security desired. However, a bigger number of keys may have some
undesired side effect on the overall algorithm.

In random partitioning, the areas get smaller with an increasing number of
keys. This makes the hash more sensitive to minor image modifications and many
keys will produce fairly similar results. Random decompositions suffers from the
fact, that high decomposition depth leads to a big number of very similar tree
structures, which lead to identical hash values. Therefore, the keyspace needs to
be set to some sensible compromise in this two cases (e.g. decomposition depth
5 is a good choice for random decomposition).

Contrasting to the previous cases, the key values are n Keys
1 125 ≈ 27

2 15625 ≈ 214

3 1953125 ≈ 221

4 ≈ 228

5 ≈ 235

6 ≈ 242

7 ≈ 249

8 ≈ 256

9 ≈ 263

Table 2. Parame-
terized Filters Key
Space

continuous rather than discrete for filter parametrization.
Therefore, a quantization must be defined to determine the
number of possible keys. This can be done by defining a
range of valid parameters (dmin . . . dmax) and quantization
function Q(d) =

⌊
d
q

⌋
. Now the the number of keys f(n)

for a filter with n parameters can be calculated: f(n) =⌊
dmax−dmin

q

⌋n

. The filter parametrization used is based on
trigonometric functions (sin, cos). Thus, the parameters
have a range of (−π . . . π).

In the following, we determine the quantization func-
tion by a simple experiment. Fig. 3(a) shows the results,
if only one parameter of a 6 dimensional parameteriza-
tion is modified in the range of ±1.0 with a step size of
0.01. There is a curve for every one of the six single parameters. The graph’s
values change in multiple steps, suggesting that key values within about 0.05
produce the same hash. Thus, when generating parameters from the key the
granularity should be 0.05 − 0.10 (the parameters used to create the graph were
(1.0, 1.5, −2.0, −1.0, 0.0, 0.5)). To be on the safe side, we limit the the distance
in a single parameter between two keys to be no smaller than 0.1. Using these
values, the number of available keys can be calculated as: f(n) =

⌊
π−(−π)

0.1

⌋n

= �20.0 · π�n ≈ 62.8n. The number of resulting keys dependent on n is shown in
Table 2.
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(a) Varying one out of six parameters
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(b) Average distances for varying the
first parameter

Fig. 3. Hamming distances

The granularity q is very important for the security of the scheme and might
be dependent also on the number of parameters n. It seems intuitive, that the
influence of a single parameter on the overall result will decrease for a higher
numer of parameters. This, however, is not the case as shown in Fig. 3(b).
For every filter dimension shown on the x-axis, the average Hamming distance
between the hash for a fixed parameter vector and all hashes resulting from the
first parameter of this vector being changed in the range of ±1.0 is shown on the
y-axis. This average distance indicates how much influence a single parameter
has on the resulting hash value – it varies significantly from 0.12 to almost 0.2
without any clear trend up or downwards for an increasing number of dimensions.
Thus, d does not have to be selected dependent on n.

3.3 Attack Resistance

The reason for the idea of enhancing the origi-

Fig. 4. Forged & attacked Lena
image

nal partitioning scheme with a key dependent
wavelet transformation is its vulnerability to
the simple attack shown in [5]. The major
problem of the use of variance and average
as basis of the hash value is that both are
publicly available and very easy to modify
[3]. Both average and variance mostly change
gradually within an image, so that if the mea-
sures of two images match within a certain
partition, they will at least be similar within
any other partition covering approximately
the same area as well. This is exploited by
the referenced attack.

Fig. 4 shows a forged and attacked version of the Lena image with a Hamming
distance of 0.01 to the original. The image modification without attack mounted
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exhibits Hamming distance 0.12 to the original which would have been detected
as forgery of course. Since this value is significantly below the Hamming distance
of that between the original and a JPEG compressed version with high quality,
the picture would be rated identical to the original by the hashing algorithm.
This example shows the severness of this attack drastically. See [5] for more
details on the attack and corresponding results.

The goal of the proposed new schemes is to eliminate feature correlations
between transformations computed with different key values. Though some pa-
rameters apparently result in the exact same hash value, overall hash values
strongly depend on the selected parameters as we have seen in the previous sub-
sections. Attempting an attack gets very hard without knowledge of the trans-
form domain used for creating the original hash. The underlying assumption of
the attack is, that it is operating on a transformed image identical to the one
used to calculate the hash value. Only if this is the case, adjusting the forgery’s
features to match those of the original has the desired effect on the hash value.
By using a tranform domain with an incorrect set of parameters, this assump-
tion is weakened. The adjusted forgery’s features will only match those of the
original for the filter chosen for the attack. This does not necessarily make them
more alike for any other filter. Fig. 5 shows the results of the attack using both
techniques and various decomposition keys.
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(b) Parameterized Filters

Fig. 5. Attack resistance of the key dependency schemes

The Hamming distance for the correct key in the random decomposition
case after the attack has been mounted is 0.0166. The average distance after the
attack for all random decompositions considered is inceased to 0.0728, however,
the large number of “correct” keys (i.e. leading to the same result as the key
used to compute the original hash) makes the scheme unreliable (Fig. 5(a)).
This corresponds well to the results with respect to key dependency displayed
in Fig. 1(b).

Given the key dependency tests (Fig. 2(a)), filter parameterization seemes
more promising than random decomposition. Though only a small number of
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filters renders the attack completely useless, its effects are attenuated consider-
ably, thus improving the scheme’s overall security. The average distance of 0.0666
after the attack, compared to 0.0083 for the correct key, is a definite improve-
ment (see Fig. 5(b)). The number of successful attacks (i.e. equally successful
as without filter parametrization) is negligible. However, considering the high
number of key values with still rather low Hamming distances, the effects of the
attack can only said to be weakened to some extent.

4 Conclusion

We have discussed the use of key dependent wavelet transforms as a means to
enhance the security of wavelet based hashing schemes. Whereas key dependency
and keyspace of the hashing scheme considered in experiments have been signifi-
cantly improved, the attack resistance has been improved by using parametrized
wavelet filters to a small extent only.
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