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Abstract. Graphs have been successfully used in many disciplines of
science and engineering. In the field of pattern recognition and image
analysis, graph matching has proven to be a powerful tool. In this paper
we generalize various matching tasks from graphs to the case of hyper-
graphs. We also discuss related algorithms for hypergraph matching.

1 Introduction

Graphs have been successfully used in many disciplines of science and engineer-
ing. Recent work in structural pattern recognition has resulted in a number of
new graph matching algorithms that can be used to compute the similarity or,
equivalently, the distance of a given pair of graphs. This led to many interesting
applications of graph matching, including document analysis [I], shape recogni-
tion [2], biometric identification [3], and other tasks. For a recent survey that
covers both methodology and applications of graph matching see [4].

Although many successful applications of graph matching have been reported
in the literature, graphs are restricted in the sense that only binary relations
between nodes can be represented, through graph edges. An extension is pro-
vided by hypergraphs, where each edge is a subset of the set of nodes [5]. Hence
higher-order relations between nodes can be directly modeled in a hypergraph,
by means of hyperedges. A large body of theoretical work on hypergraphs has
been published. However, not many applications in the field of image process-
ing and pattern recognition involving hypergraphs have been reported. Ref. [0]
lists a number of hypergraph applications in low level image processing, and [7]
describes a 3-D object recognition system using hypergraphs. We notice in par-
ticular that there is a lack of hypergraph matching algorithms. It seems that
only the problems of maximum common sub-hypergraph [§] and hypergraph
monomorphism [7] have been considered in the literature until now.

In this paper, in Section 2, we formally introduce hypergraphs as an extension
of ordinary graphs. Then, in Section 3, we generalize a number of matching con-
cepts from ordinary graphs to the case of hypergraphs. Algorithmic procedures
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for actually performing hypergraph matching are discussed in Section 4. Finally,
Section 5 concludes this paper and provides suggestions for future research.

2 Preliminaries

Let Ly and Lg be finite sets of labels for the nodes and edges of a graph, or the
nodes and hyperedges of a hypergraph, respectively.

Def. 2.1: A graph is a 4-tuple g = (V, E,«, 3), where V is the finite set of
nodes (also called vertices), E C V' x V is the set of edges, a: V — Ly is a
function assigning labels to nodes, and 3 : F — Lg is a function assigning
labels to edges.

The edges of a graph can be interpreted as unary or binary relations. Unary
relations correspond to loops, i.e. edges (z,z) € E, while binary relations cor-
respond to directed edges of the form (x,y) € E, x # y. Hypergraphs are a
generalization of ordinary graphs in the sense that higher-order relations be-
tween nodes can be modeled.

Def. 2.2: Let N > 1 be an integer. A hypergraph of order N is a 4-tuple
h=(V,&,a,B), where V is the finite set of nodes (also called vertices), & =
UN | E; with E; C V' is the set of hyperedges (i = 1,...,N), a: V — Ly
is a function assigning labels to nodes, and B = {(,...,8n} is the set of
hyperedge labeling functions with 3; : E; — Lg.

Each F; is a subset of the set of hyperedges. It consists of i-tuples (21, ...,x;) €
V', where each i-tuple is a hyperedge of hypergraph h. We call i the order of
hyperedge e = (21, ...,2;). The elements of E; are the loops of the hypergraph
and the elements of Ey correspond to the edges of a (normal) graph. A hyperedge
of degree higher than two can be used to model higher-order relations among
the nodes. Note that graphs according to Def. 2.1 are a special case of Def. 2.2
if N =2.

There are several possibilities to graphically represent a hypergraph. In [5]
it was proposed to draw a node as a point, an edge from subset F; as a loop,
an edge from subset F5 as a line segment connecting the pair of nodes involved,
and edges of higher degree as simple closed curves that enclose the corresponding
nodes. In this paper we adopt a different graphical notation, where circles are
used to graphically represent nodes, and ellipses are used to represent hyperedges
of degree three and higher. If e = (z1,...,x;) € E;, i > 3, then we draw ¢ line
segments connecting the hyperedge symbol and x1,...,x;, respectively. Labels
are written next to nodes or next to hyperedge symbols.

Several hypergraph formalisms have been proposed in the literature. For a
more detailed discussion of how these formalisms are related to the current paper
we refer the reader to [9].

We conclude this section with a few examples that illustrate how hypergraphs
can be used in pattern recognition and image analysis. These examples are also
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Fig. 1. a) image after segmentation; b) region adjacency graph; ¢) hypergraph with
hyperedges representing region adjacency of order two and three

intended to show that hypergraphs have a higher representational power than
normal graphs.

Example 2.1: In pattern recognition and computer vision, region adjacency
graph (rag) is a popular datastructure to formally represent the contents of an
image after it has been segmented into homogeneous regions. In a rag nodes
represent image regions and edges between nodes indicate whether two regions
are adjacent to each other or not. Fig. 1a shows an image that has been seg-
mented into homogeneous regions, and Fig. 1b shows the corresponding rag. For
certain applications it may be interesting to know all the regions that meet at a
common corner in the image. Such a relation among three or more regions can’t
be directly represented in a normal graph. But in a hypergraph it is straightfor-
ward to model relations of this kind by means of hyperedges. Fig. 1c shows a
hypergraph that corresponds to Fig. 1a and includes region adjacency of degree
three (]

Example 2.2: Wireframe models are a common representation in 3-D object
modeling and computer vision. Fig. 2a shows a polyhedral object and Fig. 2b the
corresponding wireframe model, given in terms of a graph. In this representation
graph nodes represent the vertices of the polyhedron, and graph edges correspond
to the edges of the polyhedron. Note that the graph in Fig. 2b only captures the
topology of the object, and doesn’t include any quantitative, metric information.
In a graph, such as the one depicted in Fig. 2b, only binary relations between the
vertices of an object can be represented. In a hypergraph it is easy to directly
model relations of higher order, such as collinearity and coplanarity, by means
of hyperedges. Fig. 2c shows an extended version of Fig. 2b, where the relation
of collinearity has been added. O

3 Hypergraph Matching

Graph matching is the task of establishing a correspondence between the nodes
and edges of two given graphs such that some constraints are satisfied [4]. Well-

! Actually there are two instances of each relation of degree 3 in the image. However,
this observation is not modeled in Fig. 1c, i.e. only one instance is included.
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Fig.2. a) a polyhedral object; b) graph representation; c¢) hypergraph showing
collinear vertices

known instances of the graph matching problem include graph and subgraph
isomorphism [10], maximum common subgraph computation [I1] and graph edit
distance [12]. In this section we’ll extend these matching problems from graphs
to the case of hypergraphs.

Def. 3.1: Let h = (V,a,&,B) and b = (V', o/, &', B’) be two hypergraphs of
order N and N’, respectively. We call h a sub-hypergraph of b/ if V C V/;
E, CElfori=1,...,N; a(z) = ¢(x) for all z € V; B;(e) = Bi(e) for all
ecFk;andi=1,...,N.

According to Def. 3.1 the inclusion of a hyperedge in a sub-hypergraph
requires all its nodes being present as well. Otherwise the hyperedge will be
dropped from the sub-hypergraph.

Def. 3.2: Let h and h' be two hypergraphs with N = N’. A hypergraph iso-
morphism between h and I’ is a bijective mapping f : V — V' such that
alz) = o (f(x)) for all x € V; for i = 1,...,N and any hyperedge e =
(x1,...,x;) € E; there exists a hyperedge ¢ = (f(x1),..., f(x;)) € E} such
that 3;(e) = Bi(¢’) and for any hyperedge ¢ = (f(z1),..., f(z;)) € E} there
exists a hyperedge e = (f~!(x1),..., f'(z;)) € E; such that B.(e’) = Bi(e).
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If f: V — V'is a hypergraph isomorphism between two hypergraphs, h
and h', and h' is a sub-hypergraph of another hypergraph, h”, then f is called
a sub-hypergraph isomorphism from h to h”.

Def. 3.3: Let h and A’ be two hypergraphs. A common sub-hypergraph of h
and A’ is a hypergraph h” such that there exist sub-hypergraph isomor-
phisms from h” to h and from h” to h’. We call h” a mazimum common
sub-hypergraph of h and I/, if there exists no other common sub-hypergraph
of h and K’ that has more nodes and, for a fixed number of nodes, more
hyperedges than h”. a

Next we like to mention that it is straightforward to extend edit distance
from the case of normal graphs to hypergraphs. Because of limited space we give
only an informal description here. For a complete and formal treatment see [9].
Given two hypergraphs, h and ', and a set of edit operations with associated
costs, one can transform h into A’ by application of a suitable sequence of edit
operations. The edit distance of hypergraphs h and k'’ is defined as the cost of
the cheapest sequence of edit operations that transform & into ', i.e. d(h,h') =
ming{c(S)|S is a sequence of edit operations transforming h into h'}.

The edit distance, d(h, h’), measures the difference, or distance, of a pair of
hypergraphs, h and h'. Clearly, if h and A’ are isomorphic then d(h,h’) = 0.
In general, the greater the dissimilarity between h and h' is, the more edit
operations are needed to transform h into h’' and the larger the edit distance
becomes.

In ordinary graph matching, a few other distance measures have been pro-
posed. They are based on the maximum common subgraph of a pair of graphs.
One of those measures [13] is defined as

dlg:9) =1 = asianio (3:1)
In this definition, |g| denotes the size of graph g, for example, the number
of nodes, and mcs(g,¢’) is the maximum common subgraph of graphs g and
g'. Clearly this definition can be applied to hypergraphs as well if we replace
maximum common subgraph by maximum common sub-hypergraph.

There are applications where one needs to represent a set of graphs by a
single prototype. In [I4] the median graph has been introduced to accomplish
this task. Formally, the median of a set of graphs, G = {g1,...,9x}, is a graph,
g, that satisfies

S d(g. gi) = min{>"; | d(g,g:)|g € U} (3.2)

In this definition, U is the set of all graphs with node and edge labels from
Ly and L, respectively. Hence the median is a graph that has, among all graphs
with labels from Ly and Lg, the smallest possible average edit distance to the
members of the given set, G.

Median graph computation has a very high computational complexity. How-
ever, if we restrict set U to be identical to G, we just need to compute all pairwise



468 H. Bunke, P. Dickinson, and M. Kraetzl

distances d(g;, g;), where 4,7 =1,...,k and i # j, and select that graph g; from
set G that has the smallest sum of distances. Obviously, this procedure can be
directly generalized from graphs to hypergraphs. We only need to replace graph
distance by hypergraph distance.

4 Algorithms for Hypergraph Matching

In the previous section, a number of theoretical concepts have been introduced.
However, no algorithmic procedures were considered. In the current section we’ll
discuss possible algorithms for hypergraph matching. For the matching of normal
graphs, many algorithms have been proposed in the literature. They are based
on various computational paradigms, including combinatorial search, neural net-
works, genetic algorithms, graph eigenvalue decomposition, and others. For a
recent survey we refer to [4].

We start with the problem of extending graph and subgraph isomorphism
computation to the case of hypergraphs. One of the best known graph match-
ing algorithms, which can be used for both graph and subgraph isomorphism
detection, is the one by Ullman [I0]. It is a combinatorial search procedure that
explores all possible mappings between the nodes of the two graphs under con-
sideration. In order to avoid the exploration of partial mappings that can’t lead
to a correct solution, a look-ahead strategy is used. In this section, we’ll discuss
a generalization to of this algorithm to hypergraph matching. We refer again
to [9] for more details.

Given two graphs, g1 and g2, that need to be tested for subgraph isomor-
phism, Ullmann’s algorithm sequentially maps each node, z, of g; to a node, y,
of go and checks a number of constraints. Let x € Vi, y € Vo and f: Vi — Vs
the mapping being constructed. The partial mapping constructed up to a certain
point in time is augmented by f(z) = y if the following three constraints are
satisfied:

1. There exists no node =’ € Vi, o’ # x, with f(z’) = y, i.e. no other node of
g1 has already been assigned to y

2. Nodes = and y have the same label

3. The assignment f(z) = y is compatible with all previous node assignments
under function f, i.e. if the assignment f(u) = v has been made before and
there is an edge (z,u) or (u,x) in g1, there must be an edge (f(x), f(u)) or
(f(u), f(z)) in go with the same label

To extend Ullmann’s algorithm to the case of hypergraphs, we adopt con-
straints 1 and 2 without any changes. Only constraint 3 needs to be generalized
in the sense that not only compatibility with respect to all edges, but w.r.t. all
hyperedges is checked. Clearly such an extension is straightforward to imple-
ment.

A significant speedup in Ullmann’s algorithm is achieved through the use
of a lookahead technique. The basic idea is to maintain a future match ta-
ble where all possible future node assignments are recorded. Initially, all pairs
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(x,y) € Vi x V5 where z and y have identical node labels are possible. During
the course of the search, pairs that violate Constraint 3 are eliminated. Conse-
quently the number of assignments to be investigated in the tree search procedure
is reduced. Obviously this lookahead procedure can be integrated in our sub-
hypergraph matching schema. Assume that z1,...,z, € V7 have been mapped

to f(x1),..., f(x,) € Vo. Once a new assignment f(x) = y has been made, we
inspect all future (i.e. remaining) nodes uq, ..., uy, € V5 and vy,...,v; € Vo and
delete any pair (u;, vj) from the future match table if nodes x1, ..., zm, z,u; € V1

are part of a hyperedge in hy but f(x1),..., f(zn), f(z),v; are not part of an
hyperedge with the same label and order in h'.

The computational paradigm underlying Ullmann’s algorithm is tree search.
Also the problem of maximum common subgraph and graph edit distance com-
putation can be solved by means of the tree search [I1I]. In case of maximum
common subgraph computation an isomorphism between the first graph, g1, and
the second graph, go, is constructed that has the maximum possible size. This
procedure can be extended from graphs to hypergraphs by extending the con-
sistency checks in the common subgraph from edges to hyperedges. In case of
graph edit distance computation a mapping of the nodes of g; to the nodes of g
is constructed such that the cost of the edit operations implied by this mapping
is minimized. This procedure can be generalized to hypergraphs by extending
edit operations on the edges to hyperedges.

5 Conclusions

Graphs has become a well-established representation formalism in pattern recog-
nition. There is a large number of applications where graphs and graph matching
algorithms have been used successfully [4]. Nevertheless, graphs are restricted in
the sense that only two-dimensional relations can be modeled. In this paper we
have investigated a more general framework that is based on hypergraphs.

Hypergraphs allow us to model not only binary relations, but relations of any
finite order, and include graphs as a special case. A fundamental requirement for
any graph-based formalism in pattern recognition is the availability of related
graph matching algorithms. For the case of normal graphs, such algorithms ex-
ist. Examples are isomorphism, subgraph isomorphism, maximum common sub-
graph, and graph edit distance computation. On top of such algorithms, clas-
sification and clustering procedure can be implemented. In this paper we show
that similar matching algorithms can be designed for the domain of hypergraphs.
This makes the enhanced representational power of hypergraphs available for a
potentially large number of practical pattern recognition applications.

The main purpose of this paper was to introduce a theoretical and algorithmic
framework for hypergraph matching. Our future work will be concerned with
practical implementations of the methods proposed in this paper. Also we plan
to conduct practical experiments to study the computational behavior (time and
space complexity) of the proposed algorithms and compare them to classical
graph matching.
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