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Abstract. This paper describes how facial shape can be modelled using
a statistical model that captures variations in surface normal direction.
We fit the model to intensity data using constraints on the surface normal
direction provided by Lambert’s law. We demonstrate that this process
yields improved facial shape recovery and can be used for the purposes
of illumination insensitive face recognition.

1 Introduction

Although alluring, the use of shape-from-shading for 3D reconstruction and
recognition has proved to be an elusive task. This can mainly be attributed
to the local convexity-concavity instability due to the bas-relief ambiguity. One
way of overcoming this problem with single view shape-from-shading is to use do-
main specific constraints. Several authors [1,2] have shown that, at the expense of
generality, the accuracy of recovered shape information can be greatly enhanced
by restricting a shape-from-shading algorithm to a particular class of objects.
Zhao and Chellappa [2] introduced a geometric constraint which exploited the
approximate bilateral symmetry of faces. Atick et al. [1] proposed a statistical
shape-from-shading framework based on a low dimensional parameterisation of
facial surfaces.

However, it is surface orientation and not depth which is conveyed by image
intensity. It is for this reason that in this paper we investigate whether surface
orientation rather than depth can be used to construct a statistical model of face
shape. Unfortunately, the construction of a statistical model for the distribution
of facial needle-maps is not a straightforward task. The reason for this is that the
statistical representation of directional data has proved to be considerably more
difficult than that for Cartesian data. For instance, if we consider a short walk
across one of the poles of the unit sphere, then although the distance traversed
is small, the change in azimuth angle is large.

To overcome the problem, in this paper we draw on ideas from cartography.
Our starting point is the azimuthal equidistant projection [3]. This projection
has the important property that it preserves the distances between between
the centre of projection and all other locations on the sphere. Another useful
property of this projection is that straight lines on the projected plane through
the centre of projection correspond to great circles on the sphere. We exploit
these properties to generate a local representation of the field of surface normals.
We commence with a set of needle-maps, i.e. fields of surface normals which
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in practice are obtained either from range images or shape-from-shading. We
begin by computing the mean field of surface normals. The surface normals are
represented using elevation and azimuth angles on a unit sphere. At each image
location the mean-surface normal defines a reference direction which we use
to construct an azimuthal equidistant projection for the distribution of surface
normals at this point. The distribution of points on the projection plane preserves
the distances of the surfaces normals on the unit sphere with respect to the mean
surface normal, or reference direction. We then construct a deformable model
over the set of surface normals by applying the Cootes and Taylor [4] point
distribution model to the co-ordinates that result from transforming the surface
normals from the unit sphere to the tangent plane under azimuthal equidistant
projection.

The model provides a global statistical constraint which we exploit to help
resolve the ambiguity in the shape-from-shading process. In addition, the model
parameters describing a recovered needle-map are invariant to changes in illu-
mination. We therefore use these parameters to perform illumination insensitive
face recognition.

2 A Statistical Surface Normal Model

A “needle map” describes a surface z(x, y) as a set of local surface normals
n(x, y) projected onto the view plane. Let nk(i, j) = (nx

k(i, j), ny
k(i, j), nz

k(i, j))T

be the unit surface normal at the pixel indexed (i, j) in the kth training image. If
there are T images in the training set, then at the location (i, j) the mean-surface
normal direction is n̂(i, j) = n̄(i,j)

||n̄(i,j)|| where n̄(i, j) = 1
T

∑T
k=1 nk(i, j).

On the unit sphere, the surface normal nk(i, j) has elevation angle θk(i, j) =
π
2 −arcsinnz

k(i, j) and azimuth angle φk(i, j) = arctan ny
k(i,j)

nx
k(i,j) , while the mean sur-

face normal at the location (i, j) has elevation angles θ̂(i, j) = π
2 − arcsin n̂z(i, j)

and azimuth angle φ̂(i, j) = arctan n̂y(i,j)
n̂x(i,j) .

To construct the azimuthal equidistant projection we commence by con-
structing the tangent plane to the unit-sphere at the location corresponding
to the mean-surface normal. We establish a local co-ordinate system on this
tangent plane. The origin is at the point of contact between the tangent plane
and the unit sphere. The x-axis is aligned parallel to the local circle of latitude
on the unit-sphere. Under the azimuthal equidistant projection at the location
(i, j), the surface normal nk(i, j) maps to the point with co-ordinate vector
vk(i, j) = (xk(i, j), yk(i, j))T . The transformation equations between the unit-
sphere and the tangent-plane co-ordinate systems are

xk(i, j) =k′ cos θk(i, j) sin[φk(i, j) − φ̂(i, j)]

yk(i, j) =k′
{

cos θ̂(i, j) sin φk(i, j) − sin θ̂(i, j) cos θk(i, j) cos[φk(i, j) − φ̂(i, j)]
}

where cos c = sin θ̂(i, j) sin θk(i, j) + cos θ̂(i, j) cos θk(i, j) cos[φk(i, j) − φ̂(i, j)]
and k′ = c

sin c .
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The equations for the inverse transformation from the tangent plane to the
unit-sphere are

θk(i, j) = sin−1
{

cos c sin θ̂(i, j) − 1
c
yk(i, j) sin c cos θ̂(i, j)

}

φk(i, j) =φ̂(i, j) + tan−1 ψ(i, j)

where

ψ(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

xk(i,j) sin c

c cos θ̂(i,j) cos c−yk(i,j) sin θ̂(i,j) sin c
if θ̂(i, j) �= ±π

2

−xk(i,j)
yk(i,j) if θ̂(i, j) = π

2
xk(i,j)
yk(i,j) if θ̂(i, j) = −π

2

and c =
√

xk(i, j)2 + yk(i, j)2.

For each image location the transformed surface normals from the T different
training images are concatenated and stacked to form two long-vectors of length
T . For the pixel location indexed (i, j), the first of these is the long vector with
the transformed x-co-ordinates from the T training images as components, i.e.
Vx(i, j) = (x1(i, j), x2(i, j), ..., xT (i, j))T and the second long-vector has the y
coordinate as its components, i.e. Vy(i, j) = (y1(i, j), y2(i, j), ..., yT (i, j))T . Since
the equidistant azimuthal projection involves centering the local co-ordinate sys-
tem, the mean long-vectors over the training images are zero. If the data is of
dimensions M rows and N columns, then there are M × N pairs of such long-
vectors. The long vectors are ordered according to the raster scan (left-to-right
and top-to-bottom) and are used as the columns of the T × (2MN) data-matrix
D = (Vx(1, 1)|Vy(1, 1)| Vx(1, 2)|Vy(1, 2)| . . . |Vx(M, N)|Vy(M, N)). The co-
variance matrix for the long-vectors is the (2MN)×(2MN) matrix L = 1

T DT D.
We follow Atick et al. [1] and use the numerically efficient method of Sirovich [5]
to compute the eigenvectors ei of L. We deform the equidistant azimuthal point
projections in the directions defined by the 2MN×K matrix P = (e1|e2| . . . |eK)
formed from the leading K principal eigenvectors. This deformation displaces
the transformed surface normals on the local tangent planes in the directions
defined by the eigenvectors P. If b = (b1, b2, ...., bK)T is a vector of param-
eters of length K, then since the mean-vector of co-ordinates resulting from
the equidistant azimuthal projection is zero, the deformed vector of projected
co-ordinates is vb = Pb. Suppose that vo is the vector of co-ordinates ob-
tained by performing the azimuthal equidistant projection on an observed field
of surface normals. We seek the parameter vector b that minimises the squared
error E(b) = (vo − PT b)T (vo − PT b). The solution to this least-squares esti-
mation problem is b∗ = PT vo. The best fit field of surface normals allowed
by the model is v∗

o = PPT vo. The deformed vector of azimuthal equidis-
tant projection co-ordinates can be transformed back into a surface normal on
the unit sphere using the inverse azimuthal equidistant projection equations
given above.
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3 Fitting the Model to Intensity Images

We may exploit the statistical constraint provided by the model in the process
of fitting the model to an intensity image and thus help resolve the ambiguity in
the shape-from-shading process. We do this using an iterative approach which
can be posed as that of recovering the best-fit field of surface normals from
the statistical model, subject to constraints provided by the image irradiance
equation.

If I is the measured image brightness, then according to Lambert’s law I =
n.s, where s is the light source direction. In general, the surface normal n can not
be recovered from a single brightness measurement since it has two degrees of
freedom corresponding to the elevation and azimuth angles on the unit sphere.
In the Worthington and Hancock [6] iterative shape-from-shading framework,
data-closeness is ensured by constraining the recovered surface normal to lie on
the reflectance cone whose axis is aligned with the light-source vector s and
whose opening angle is α = arccos I. At each iteration the surface normal is free
to move to an off-cone position subject to smoothness or curvature consistency
constraints. However, the hard irradiance constraint is re-imposed by rotating
each surface normal back to its closest on-cone position. This process ensures
that the recovered field of surface normals satisfies the image irradiance equation
after every iteration.

Suppose that n′l(i, j) is an off-cone surface normal at iteration l of the al-
gorithm. The update equation is therefore nl+1(i, j) = Θn′l(i, j) where Θ is a
rotation matrix computed from the apex angle α and the angle between n′l(i, j)
and the light source direction s. To restore the surface normal to the closest
on-cone position it must be rotated by an angle θ = α−arccos

[
n′l(i, j).s

]
about

the axis (u, v, w)T = n′l(i, j) × s. Hence, the rotation matrix is

Θ =

⎛

⎝
c + u2c′ −ws + uvc′ vs + uwc′

ws + uvc′ c + v2c′ −us + vwc′

−vs + uwc′ us + vwc′ c + w2c′

⎞

⎠

where c = cos(θ), c′ = 1 − c and s = sin(θ).
The framework is initialised by placing the surface normals on their re-

flectance cones such that they are aligned in the direction opposite to that of
the local image gradient (biasing towards global convexity).

Our approach to fitting the model to intensity images uses the fields of surface
normals estimated using the geometric shape-from-shading method described
above. This is an iterative process in which we interleave the process of fitting
the statistical model to the current field of estimated surface normals, and then
re-enforcing the data-closeness constraint provided by Lambert’s law by mapping
the surface normals back onto their reflectance cones. The algorithm can be
summarised as follows:

1. Calculate an initial estimate of the field of surface normals n by aligning each
normal on its reflectance cone with the negative local intensity gradient.
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2. Each normal in the estimated field n undergoes an azimuthal equidistant
projection to give a vector of transformed coordinates vo.

3. The vector of best fit model parameters is given by b = PT vo.
4. The vector of transformed coordinates corresponding to the best-fit param-

eters is given by v′ = PPT vo.
5. Using the inverse azimuthal equidistant projection find the off-cone best fit

surface normal n′ from v′.
6. Find the on-cone surface normal n′′ by rotating the off-cone surface normal

n′ using n′′ = Θn′.
7. Test for convergence. If

∑
i,j cos−1 [n(i, j).n′′(i, j)] < ε, where ε is a predeter-

mined threshold, then stop and return b as the estimated model parameters
and n′′ as the recovered needle map.

8. Make n = n′′ and return to step 2.

Since real world face images contain albedo variations, we choose to output n′

and estimate the facial albedo map using the differences between observed and
reconstructed image brightness, i.e. we relax the data-closeness constraint at the
final iteration. Hence, the albedo ρ is given by ρ(i, j) = I(i,j)

s.n′(i,j) , where s is the
light source vector.

4 Experiments

In Figure 1 we illustrate the results of the model fitting process. We train the
statistical model using surface normals extracted from 200 range images of male
and female subjects in frontal poses and neutral expressions [7]. We fit the statis-
tical model to an image using the technique described in Section 3. As input we
use images of 10 subjects from the Yale B database [8] in frontal pose and illu-
minated by a single light source with direction [0 0 1]T . The algorithm typically
converged within 20 iterations. We show the surfaces recovered by integrating
the best fit needle maps using the technique of Frankot and Chellappa [9]. In
the first and third rows the surfaces are shown rotated 30◦ about the vertical
axis. The surfaces are rendered with Lambertian reflectance and the estimated
albedo maps. The light source remains fronto-parallel with respect to the face.
The resulting synthesised images are near photo-realistic under a large change
in viewpoint. Certainly, the results are comparable with those of Georghiades et
al. [8] in which 7 input images were required per subject. The second and fourth
rows of Figure 1 show the meshes of the recovered surfaces to allow inspection
of the recovered shape alone. In Figure 2 we demonstrate that the recovered
surface and albedo map are sufficiently stable to synthesise images in both novel
pose and novel illumination. We show the surface of the eighth subject from the
previous figure and circle the light source from left profile to right profile.

Provided that the shape-from-shading process is sufficiently accurate, the
parameters describing a recovered facial needle map are invariant to illumina-
tion and reflectance properties. They hence encode only appearance. For this
reason these parameters potentially provide a means of performing illumina-
tion and reflectance invariant face recognition. In our experiments we use a
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Fig. 1. Surfaces recovered from the ten subjects in the Yale B database

Fig. 2. Surface recovered from subject 8 in novel pose and under varying illumination

subset of the CMU PIE database [10]. This database contains images of 67
subjects under varying pose, illumination and expression. We fix the pose to
fronto-parallel (camera c27) and vary the illumination direction along a hor-
izontal arc approximately 55◦ in each direction. The set of flashes used was
{f03,f10,f07,f08,f09,f13,f16}. For each subject we use only one gallery image, il-
luminated from close to the viewing direction (flash f08). We fit the statistical
model to each gallery image which provides an appearance vector for each sub-
ject. For each probe image we repeat the same process to find an appearance
vector for the unknown face.

In order to effect recognition with 1 gallery image per subject, we find the
Euclidian distances between a given probe vector and all the gallery vectors and
sort them. A probe has rank k if the correct match is the kth smallest Euclidian
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Fig. 3. Recognition error versus angle of illumination
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Fig. 4. Identification rate versus (a) the number of Eigenmodes used and (b) rank

distance. A probe is correctly identified if it has rank 1, i.e. the correct match has
the lowest Euclidian distance. The rank can vary between 1 and the size of the
gallery (i.e. 67). In Figure 3 we begin by showing the rank 1 identification error
as the illumination angle is varied through approximately 110◦. We experiment
with both the model trained on ground truth normals extracted from range data
and on normals extracted using shape-from-shading.

From the plot it is clear that low error rates are achievable for variations in
illumination direction of approximately ±30◦. Beyond this point, performance
decreases rapidly. We believe this is because as the illumination direction be-
comes more extreme, increasing areas of the face are in shadow. Thus, the impo-
sition of data-closeness at each iteration in these shadow areas may result in the
fitting process ‘walking away’ from the true solution. Under these conditions,
the iterative fitting process would be best placed in a statistical setting which
attempts to match the model to the needle map in the visible areas only.

In Figure 4 (a) we investigate how the number of eigenmodes used affects
identification performance. We show the total rank 1 identification rate across
all illumination conditions against the number of eigenmodes used. Performance
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appears to level out at around 100 eigenmodes (dimensions), suggesting that
additional dimensions do not encode modes of facial shape which are useful for
recognition.

The identification rate at rank k is the fraction of probes that have rank k or
lower. Plotting identification performance against rank on a cumulative match
characteristic (CMC) allows us to asses whether the correct match is in the top
k matches rather than just the first. Most applications are based on performance
at lower ranks. From the CMC in Figure 4 (b) it can be seen that performance
rises sharply from rank 1 to 10.

5 Conclusions

We have shown how a statistical model of shape may be constructed from fields
of surface normals using the azimuthal equidistant projection. We presented an
iterative method for fitting the model to an image subject to image irradiance
constraints. The method proves rapid to converge, and delivers realistic surfaces
when the fields of surface normals are integrated. The resulting parameter vec-
tor provides a means to perform illumination insensitive face recognition. The
technique could also be use as a generative model to sample the entire pose and
illumination space from a single image. Our future plans revolve around placing
the iterative process in a statistical setting in order to improve the reliability of
the estimated parameters under varying illumination. We also plan to develop
ways of aligning the model with images which are not in a frontal pose.
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