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Abstract. A new wavelet-domain HMTseg method is proposed, which fuses 
the segmentation results at coarse and fine scales with a new and feasible con-
text model together with one preprocessing of raw segmentations at different 
scales. Compared to the original HMTseg method, the new method not only 
lays emphasis on the performance from coarse-scale segmentation, preserves 
the main outlines of the homogeneous regions in an image, and thus achieves 
good region consistency of segmentation, but also take into account the infor-
mation from fine-scale segmentation, thus improves the accuracy of boundary 
localization of segmentation and enables the discrimination of small targets  in 
an image, which is desirable for interpretation of remotely sensed images. Ex-
periments on remotely sensed images, including aerial photos and SAR images, 
demonstrate that the proposed method can effectively take into consideration 
both the region consistency and the accuracy of boundary localization of seg-
mentation performance, and give better segmentation results. 

In most recent years, wavelet-domain statistical image models, especially hidden 
Markov tree (HMT) [1] models, have gained more and more attention from image 
processing and analysis community due to their effectiveness and flexibility in per-
forming image analysis tasks. Choi et al proposed a new framework, HMTseg [2], 
for multiscale Bayesian image segmentation based on wavelet-domain HMT models 
pioneered by Crouse et al to give the statistical characterization of signals by captur-
ing inter-scale dependencies of wavelet coefficients. In HMTseg method, the raw 
maximum likelihood (ML) segmentations at different scales are yielded before the 
inter-scale fusion of class labels from coarse scale to fine one. Another tree structure, 
the context labeling tree (CLT), was designed to exploit the dependencies of parent 
and child labels for the dyadic image squares across scales. The final classification of 
each dyadic square at different scales, except for the coarsest one of wavelet decom-
position, was implemented in manner of scale recursion. In [2], one simplified con-
text model is used to implement the inter-scale fusion in HMTseg method. This 
model is typically effective for images mostly made up of homogeneous regions, but 
fails to perform well for images consisting of complex structured information and/or 
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1   Introduction 

, 



more inhomogeneous regions, remotely sensed images involved in this paper for 
example. In addition, this segmentation method, suitable for natural or textured 
images, could not give good results for synthetic aperture radar (SAR) images due to 
a particular kind of noise, speckle, inherent in them.  

In this paper, we propose a modified HMTseg method to consider the region con-
sistency (robust classification) of ML raw segmentation for dyadic squares at coarse 
scale and the accuracy of boundary localization (poor classification) at fine scale, 
based on a new and feasible context model taking into account the information from 
coarser scales and fine ones simultaneously. Meanwhile, a preprocessing stage is also 
introduced to further amend the raw ML segmentations at different scales to favor 
better multiscale fusion eventually. 

This paper is organized as follows. The HMT method [2] is briefly reviewed in 
section 2. In section 3, the image segmentation using the modified HMTseg method 
is detailed. Simulation results and analysis are given in section 4. Finally, one con-
clusion is drawn and future work directed in section 5. 

The HMTseg method relies on three separate tree structures: the wavelet transform 
quad-tree, the HMT, and a labeling tree [2]. As a complete procedure, it includes 
three essential ingredients, i.e. HMT model training, multiscale likelihood computa-
tion, and fusion of multiscale maximum likelihood (ML) raw segmentations. 

( ), 1i jTρ −

,i jT,i jw

( ) , 1i jwρ −

 

Fig. 1. Correspondence of quad-tree structure of wavelet coefficients with multiscale repre-
sentation of an image 

HMT model training is used to fitting a certain set of model parameters to a given 
set of training data extracted from a certain homogeneous region in an image. To 
this end, an iterative procedure, 2-D extension of EM algorithm for 1-D HMT model 
[1], is exploited to find one locally optimal set cΘ  of model parameters for a given 
set of training data. The likelihood that training data come from a certain model is 
maximized via a few iterations of E and M steps of the EM algorithm, as a conse-
quence the set cΘ of model parameters that locally maximizes the likelihood can be 
obtained. To train a pixel brightness probability density function (PDF), Gaussian 
mixture model (GMM) is used to train each texture and thus to obtain pixel-level 
segmentations. 
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2   HMTseg Method for Multiscale Image Segmentation 



As for multiscale likelihood computation, a single upward sweep [a fast ( )O n al-
gorithm] through the HMT can deal with it [2]. Each subtree of wavelet coefficients 
residing in one of the subbands corresponds to one specific dyadic image square at 
each different scale. For example, the subtree Ti;j  rooted at ,i jw  can be brought into 

correspondence with the dyadic square dj
i , as illustrated in Fig. 1. Thus, the calcula-

tion of likelihood that the dyadic square dj
i  is produced by the parametric set cΘ  

can be then transformed into the computation of the likelihood that the coefficient 
subtree Ti;j  is generated by cΘ . In this way, the likelihoods of all dyadic squares of 
an image can be obtained in a single upward sweep through the tree of wavelet coef-
ficients since the wavelet transform and HMT possess the similar multiscale struc-
ture, as detailed in [2]. In fact, the wavelet coefficients corresponding to the dyadic 
square di  are composed of one triple{ }LH H L HH, ,i i iT T T , each a subtree of one of the 

three wavelet subband quadtrees. Under the independent subband assumption, the 
likelihood that the dyadic square di  is gained by the model cΘ  can be expressed as 

LH LH HL H L HH H H( ) ( ) ( ) ( )i c i c i c i cf f f f=Θ Θ Θ Θd T T T . (1) 

Finally, the ML classification can be obtained by 

{ }

ML

1,2,...,
ˆ : arg max ( )

c
i c

c N
f

∈
= Θc id , (2) 

where Nc is the number of texture classes in an image. For different scale representa-
tion of an image in a pyramidal structure, a set of ML segmentations can be obtained 
in the same way. Hence, this step yields the ML raw segmentations at different scales, 
which is the basis of the following fusion procedure. 

The third step in HMTseg method is to intelligently combine the raw multiscale 
ML segmentations given at the second step using a Bayesian inter-scale fusion tech-
nique. This idea is based on the fact that finer-scale dyadic squares nest inside 
coarser-scale squares, and the dyadic squares are statistically dependent across scale 
for images consisting of fairly large, homogeneous regions [2]. During the fusion 
procedure, relatively reliable coarser-scale information is used to guide less reliable 
fine-scale decisions. This Bayesian inter-scale decision fusion computes one maxi-
mum a posterior (MAP) estimate MAPĉi for the class label of each di , i.e. 

{ }
MAP

1,2,...,
ˆ : arg max ( )

cc N
c c

∈
=

i

i ip x
{ }1,2,...,

( ) ( )
arg max

( )
cc N

f c c
f∈

=
i

i ipx

x
. (3) 

Let { }:=j j
id d denote the collection of all dyadic squares at scale j (each d j contains 

complete information on the imagex ). A posterior equivalent to (3) is then 

{ }

MAP

1,2,...,

( ) ( )
ˆ : arg max

( )
c

i i

c N

f c c
c

f∈
=

j

i

j jj

i;j j

pd

d
, (4) 
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where
( ) ( )

( )
( )
i i

i

f c c
c

f
=

j j

j

j

j
j

p
p

d
d

d
 is the marginal of the joint PDF ( )j jp c d  denoted as 

( ) ( ) ( )( ) ( )
( ) ( ) i

f
f c

f f
= = ∏ j

j j j j
jj j
ij j

i

p p
p

d c c c
c d d

d d
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Equation (5) is based on the assumption that each di is generated with the distribu-

tion ( )if cid independently of all other class labels kc and dyadic squares dk , ≠k i. 

However, the calculation of the marginal of ( )j jp c d above is generally a difficult 

task unless ( )jp c has a special structure. In [2], a new organization structure, context 
labeling tree (CLT), was used to alleviate this difficulty. In this structure, the joint 
distribution of all the class labels j

iC (the random variable corresponding to j
ic ) at 

scale j is completely determined by 1j
iC
− at the immediately coarser scale and thus a 

Markov chain { }-1C C→ → dj j j
i i i  is formed. Given 1 1− −=C cj j , the j

iC s at scale j are 

independent, and the multiscale priori 1 1( ) ( )
i

c− −=∏c c cj j j j
ip p holds. However, due 

to the high dimensionality of the conditioning vector 1−cj , the estimate of the mar-
ginalized class priori distribution 1( )−cj j

ip c  still requires a prohibitive amount of 

training data [2]. In practice, a context vector vj
i , the function of the -1cj , is intro-

duced to provide further simplification of the priori 1( )−c cj jp . A notation vj  is used 

to denote the collection of all contexts at scale j . Conditioned on the context vj , 
equation (5) can be reformulated as  

( ) ( ) 1( , ) ( ) ( )
( ) ( )

j
i

i

f
f c c

f f
⎡ ⎤= = ⎣ ⎦∏

j j j j

j j jj j j
i i ij j j j

p
p p

d c c v
c d v d v

d v d v
. (6) 

Thereby, the marginal ( , ) ( ) ( )f∝j j j j j j j
i i i i i i ip c c p cd v d v  is obtained, a simplified version 

of the MAP ( )cip x in Eq. (3). The factor ( )f j j
i icd has been computed in the second 

step of HMTseg method, and the conditional probability ( )j j
i ip c v can be denoted as 

( )
1

( ) ( )

( ) ( )
cN

f

f
=

=

∑
j
i

j j j
i i ij j

i i
j j j
i i i

c

c p c
p c

c p c

v
v

v

. 
(7) 

A new EM algorithm for CLT has been developed in [2] to solve 
for ( )f j j

i icv and ( )jip c . Thus far, the MAP estimate MAPĉi for the class label of each 

dyadic square di has been on hand. 
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Effective modeling of context models for each dyadic square id is crucial to effec-
tively fuse the ML raw segmentations from coarse scale to fine one in order to obtain 
good results in multiscale fusion stage. In the original HMTseg method [2], the con-
text j

iv is specified as a vector of two entries consisting of the value of class la-
bel ( )Cρ i of the parent square and the majority vote of the class labels of the parent 
plus its eight neighbors, as illustrated in Fig. 2 (a). This simplified context is typi-
cally effective for images made up of separate large homogeneous textures since it 
lays more emphasis on the information of class labels at coarse scales. However, the 
segmentation results are mostly unsatisfactory when the images in hand, remotely 
sensed images for example, include more complex structures. Therefore, one slightly 
complicated and yet feasible context model, as shown in Fig. 2(b), is introduced here 
to incorporate both the information about the class labels at the coarse scale and that 
at the fine scale so as to take into account the region consistency and edge accuracy 
of segmentation performance simultaneously, which will be detailed in section 3.2. 

       
        (a)                                  (b) 

Fig. 2. (a) Context in [2] (b) new context proposed 

As mentioned in section 2, the second step in the HMTseg method is multiscale 
likelihood computation by which the raw ML segmentations can be obtained. These 
raw segmentations are given only at the each individual scale without taking into the 
interactions across scales. Thus, the results from each single scale are typically un-
satisfactory, which can be solved by the fusion of raw ML segmentations across 
scales using the third step in section 2. On the one hand, one appropriate context 
model is prerequisite to effectively implement fusion. On the other hand, modest 
preprocessing of raw segmentations could facilitate the following fusion and further 
improve segmentation performance. To this end, an 8-connectedness labeling [4] is 
introduced to amend the raw segmentations, which would favor better fusion results. 
This stage is carried out at each scale successively except for the coarsest scale of 
wavelet decomposition. 

A New Wavelet-Domain HMTseg Algorithm for Remotely Sensed Image Segmentation 371 

3   Modified Image Segmentation Using Proposed Method 

3.1   Preprocessing of Raw Segmentations 



Herein, a new context j

iv  for dyadic square j
id  is defined, which consists of the ma-

jority vote of the class labels for the parent’s eight neighbors and that for the child’s 
eight neighbors. 

The purpose of multiscale fusion is to maximize the conditional probabil-
ity ( , )j j j

i i ip c d v with which the label ˆjic for j
id can be found with MAP criterion, i.e. 

{ } { }1,2,..., 1,2,...,
ˆ arg max ( , ) arg max ( ) ( )

c cc N c N
f

∈ ∈
= =j j j j j j j j

i i i i i i i ic p c c p cd v d v , (8) 

where the computation of likelihood function ( )f j j
i icd has been completed in raw 

segmentation stage. Hence, the key task is to calculate the conditional probability 
( )j j

i ip c v based on which ˆjic can be obtained. According to Eq. (7), the probabili-

ties ( )f j j
i icv and ( )jip c are undetermined temporarily. Here, we use the EM algorithm 

[2] specific for CLT to solve for ( )f j j
i icv and ( )jip c . Similar to the settings in [2], 

( )f j j
i icv and ( )jip c are assumed the same at each individual scale, and two notations 

: ( )e = =j
j;n ip c n , , , : ( )α = = =

m

j j
mi ij v n

p c nv v , { }cNn ,,1∈ , { }2,,1 cNm ∈  are de-

fined for all iat scale j .The EM algorithm to calculate { }, ,,e α=P
mj;n j nv

runs as follows. 

Initialize: Set counter I=0 and choose appropriate P0; 

Expectation (E) step: Given PI, calculate 

, ,

, ,
1, ,

( )
( , )

( )
c

j
ij

i j
i

c N

e f

e f c

α

α
=

=
= =

=∑
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j
i

j
j;n ij nj j

i i j
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c n
p c n

c

v

v

d
v d

d
; 

Maximization (M) step: Update the two elements of PI+1 

, 2

1 ( , )
2j ne = =∑ j j j

i i ij
i

p c n v d , 

2, ,

1 ( , )
2 i withe

α
=

= =∑m
j

mi

j j j
i i ijj v n

j;n

p c n
v v

v d ; 

Iterate: Increment 1I I→ + , and apply E and M steps until 
converged. 
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3.2   Multiscale Fusion Based on a New Context Model 



Pixel-level segmentation can not be obtained directly from the ML raw segmentation 
procedure, since the wavelet transform (Haar wavelet base is adopted in this paper) 
characterizes the joint statistics of dyadic squares only down to 2 2×  blocks [2]. As 
mentioned in section 2, the GMM can be exploited to model the pixel intensity val-
ues for each training texture, based on which the likelihood for each pixel is calcu-
lated and the multiscale fusion algorithm above can be naturally extended to the 
pixel level, and the final segmentation is accomplished. The segmentation of SAR 
images, however, can not be performed as well as natural textured images due to the 
intrinsic speckle in them. We use here the truncated HMTseg method [3] in which a 
scale threshold J was chose so that only the coefficients corresponding to dyadic 
squares not more than Jd were trained. Moreover, a combination strategy, using 
HMT-based raw segmentations and pixel-intensity-based ones, was utilized during 
inter-scale fusion procedure to finally get better results. 

The experiments were conducted on remotely sensed images including an aerial 
photo ( 256 256× pixels, 256 gray levels) from USC-SIPC image database [5] and an 
SAR image ( 256 256× pixels, 256 gray levels, China Lake Airport, California, 3-m 
resolution) from Sandia national laboratories SAR image repository [6], shown in 
Fig. 3 (a) and (c). The HMT models for different types of textures (two classes for 
the aerial photo and three classes for the SAR image) were firstly trained based on 
the training data with size of 64 64× manually extracted from two original images. 
The number of wavelet decomposition levels was restricted to four with the balance 
between time consumption for model training and the reliability of segmentations in 
mind. The pixel-level segmentations were performed using GMM technique.  

The final fusion results using original HMTseg method [2] and our method are 
demonstrated in Fig. 4. Not only is region consistency of segmentation performance 
obtained but the accuracy of boundary localization is improved further in Fig. 4 (b) 
and (d) obtained using the proposed method. For example, the ports in the aerial 
photo and the runways encircling the airports in the SAR image can be mostly dis-
criminated. The results suggest that it is important to make full use of the informa-
tion from coarse and fine scales simultaneously in the fusion process to gain better 
segmentation results. 

In this paper, a modified HMTseg method is proposed using a new context model 
and a preprocessing stage introduced to further amend the raw ML segmentations at 
different scales to facilitate the final multiscale fusion. Based on the proposed 
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3.3   Pixel-Level Segmentation 

4   Experimental Results and Analysis 

5   Conclusion and Future Work 

method, performance for remotely sensed images are improved, especially in the 
accuracy of boundary localization. Edges in an image provide important information 



for identifying the objects in remotely sensed images. Combining the edge cues in an 
image to devise an edge-guided segmentation method is our further work. 

 

    
(a)                       (b)                   (c)                    (d) 

Fig. 3. Multiscale raw segmentation and pixel-level segmentation results of remotely sensed 
images: (a) aerial photo; (b) 4-level raw segmentation and pixel-level segmentation of (a); (c) 
SAR image; (d) 4-level raw segmentation and pixel-level segmentation of (c) 

     
(a)                     (b)                    (c)                    (d) 

Fig. 4. Multiscale fusion results: (a) fusion result of Fig. 3 (b) by the method in [2]; (b) fusion 
result of Fig. 3 (b) by the proposed method; (c) fusion result of Fig. 3 (d) by the method in [2]; 
(d) fusion result of Fig. 3 (d) by the proposed method 
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