
Texture Granularities

Paul Southam and Richard Harvey

University of East Anglia, Norwich,
Norfolk, NR4 7TJ, England

Abstract. We introduce three new texture features that are based on
the morphological scale-space operator known as the sieve. The new fea-
tures are tested on two databases. The first, the Outex texture database,
contains Brodatz-like textures captured under constant illumination,
scale and rotation. The second, the Outex natural scene database, con-
tains images of real-world scenes taken under variable conditions. The
new features are compared to univariate granulometries, with which they
have some similarities, and to the dual-tree complex wavelet transform,
local binary patterns and co-occurrence matrices. The features based
upon the sieve are shown to have the best overall performance.

1 Introduction

Granulometries [10] have had a long history in texture analysis. They have been
used for the analysis of digital mammograms [2], radiographic imaging of lungs
[17] and Diatom classification [16]. Univariate granulometries comprise varying-
scale morphological openings and closings applied in parallel using a fixed shape
structuring element, scaled by a parameter. It is known [1], that the shape of
the structuring element affects texture classification. This poses in interesting
question, is it the shape of the structuring element that is important or the
analysis over scale? Until recently it was not possible to separate these two
criteria because the shape of the filter is fixed. However, by using a different
class of mathematical morphology filters called sieves, it is possible to analyse
an image by scale without the filter imposing a shape – a technique we explore
in this paper.

First we justify our evaluation methods and choose from the many texture
databases available. Next we introduce sieves and show how they can provide new
texture filters. In the final sections we evaluate the performance of these systems
and compare them to a number of benchmark systems including granulometries.

2 Databases

This paper uses Outex [11] which has recently become regarded as the best avail-
able framework for evaluating texture [15]. It contains several tasks. Here we use
TC 00000 which is the texture classification task using textures imaged under
consistent conditions (perpendicular to the surface, fixed scale, rotation and illu-
mination and so on). Examples of these textures are shown in Figure 2. Stylised
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Fig. 1. Various Outex samples used in Outex task TC 00000

Fig. 2. Various Outex natural scene images (left) and hand-segmented ground-truth
(right)

textures such as these are extremely common in the literature (Brodatz[6] and
MeasTex [14] are examples) and automatic texture classifiers are known to per-
form extremely well on such data ([9,1] for example). Unfortunately, so far, the
performance of such systems has not extrapolated to real-world scenes ([8] and
[13]). The natural scenes Outex database contains 20 colour images (2272 × 1704
pixels) of real-world scenes taken with a digital camera under varying illumina-
tion and orientation. The view is said to be “roughly consistent, simulating a
navigating vehicle” [13]. There five defined texture classes, sky, trees, grass, road
and buildings which are defined through hand-labelled regions in ground-truth
images. Examples of the scene and ground truth images are shown in Figure 2.

3 Sieve

Sieves are described as a one-dimensional non-linear scale-space decomposition
algorithm in [5] and are extended to n-dimensions in [3] by adopting techniques
from graph morphology. Sieves use morphological scale-space operators, specifi-
cally openings and closings, or combinations of them, to filter an input signal by
removing extrema of specific scale. They apply flat structuring elements to an
input signal which, unlike conventional morphological operators such as those
used in granulometries, have a fixed size but varying shape. A stated advantage
of this approach is that the shape of the structuring element is not visible in
filtered signal.

The sieve performs a decomposition by scale via the structure shown in Figure
3. At each stage the filtering operator ϕ removes extrema of only that scale.
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Fig. 3. The structure of a 1D sieve decomposition where ϕ is a filtering operator
chosen from a set [5,3]. Non-zero regions in the output are called granules and the set
of granules is called the granularity domain in an analogy to granulometries.

At the first stage ϕ1 removes extrema of scale 1 (removed extema are called
granules), ϕ2 removes extrema of scale 2 and so on until the maximum scale
m (which is the number of pixels in the image). This serial structure can be
contrasted with the parallel structure used in granulometries. Because objects in
images are often delineated by iso-intensity contours, sieves have been applied to
image segmentation tasks in which semantically meaningful objects are removed
at a specific (typically higher) scale. At lower scales the sieve can been seen to
remove at first image noise then textural information. Figure 4 shows a example
sieve decomposition of an image using a 2D M -filter sieve.

Fig. 4. An original image (top left) sieved to scales, reading left-to-right, top-to-bottom,
15, 251, 2500, 8500 and 25000 . Each image has fewer intensity extrema than its pre-
decessor. A full decomposition may be summed to re-create the original thus the sieve
is a transform of the original image.
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4 Methods

Here we introduce three new sieve-based texture features. All the new methods
are based on granules. In [3], granule images are defined as the difference between
successive sieve outputs, Gn = Sn −Sn−1 where Sn is the nth stage in the serial
structure shown in Figure 3. There are thus a great number of granule images.
The Gn are a transform of the texture which can be reconstructed through a
simple summation. Here, each texture image is sieved to a few scales, [s1 . . . sN ]
where log10 sn are equispaced between 0 and log10 P , where N = 5 and P = 30
are chosen to remove all textural information from all images. The difference
between these images are termed channels, Cn = Ssn − Ssn−1 . The intensity of
the granule, or channel, images as a function of scale is an indicator of the scale-
distribution of the texture features. The mean, standard deviation and skewness
of the magnitude of the granule images make suitable features.

In the first method ϕ is a 2D M -filter [3] which filters the image using an
morphological opening followed by a morphological closing in one operation.
This produces bi-polar granule images that are invariant to simple rotation of
the texture image.

In the second method ϕ is a 1D recursive median filter [4] where each image
is sieved at orientations of ±30◦, ±60◦, ±90◦ which produces bi-polar granule
images which are sensitive to the image rotation.

The final method (oc-sieve) is similar to granulometries because it uses two
sieves: one using an opening filter (o-sieve) and the other using a closing filter (c-
sieve). This produces twice the number of granule images as in the first method,
one set of positive granule images derived from only the image maxima and
another set derived from only the image minima. The results from this method
highlights the difference between processing maxima and minima in on one bi-
polar operation as in the 2D M-sieve, and separately using the uni-polar o-sieve
and c-sieve.

For comparison we also implement features based on, the dual-tree complex
wavelet transform [7], Local binary pattern analysis [12], co-occurrence matri-
ces, and three granulometic methods with different sized structuring elements.
The first granulometic method uses a combination of disc and vertical structur-
ing elements (denoted GDV subsequently) as these are known to perform best
on a selection of Brodatz textures [1]. We also implement a rotation-invariant
granulometic method based upon disc and square structuring elements (denoted
GDS) for comparison with the 2D sieve; and a rotation-sensitive method using
line structuring elements at angles of ±30◦, ±60◦, ±90◦ (denoted GLA) for com-
parison with the 1D sieve. In all the granulometic methods the size of the struc-
turing element is within the scales used for a sieve channel. Features are formed
from the means, standard deviations and skewnesses of the differences between
successive openings and closings of the image as with the oc-sieve method.

In all the methods the results are always improved by re-projecting the fea-
ture vectors via principal component analysis (PCA) with the further possibility
to reduce feature dimension. During classification the Euclidean distances are
measured between each feature vector in the PCA space and a k nearest neigh-
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bour classifier is used to predict the test class. For test set TC 00000 it is known
that k = 1 is optimal [15] (indicating, incidentally, that TC 00000 could be im-
proved with more data). For the natural scenes data we find k = 3 to be the
best.

5 Results

Outex TC 00000 comprises 480 images (24 texture classes each with 20 images).
There are 100 standard learning tasks. Each has 240 training and 240 test im-
ages. Table 1 shows the mean success rate over the 100 tasks using the nearest
neighbour classifier with a Euclidean distance measure on the feature vector
after PCA (the final column of Table 1 (left) is the size of the PCA vector with-
out truncation). Note that the success rate of the LBP method differs from [12]
because, for consistency, we are not using their histogram distance measure.

These results show (as in [1]) that oriented structuring elements (GLA and
GDV) are the best among the granulometric methods. However both the DT-
CWT and 1D sieve score better in this test and are the best performing over-
all. The DTCWT produces eight sub-bands per level so three levels produce
8 + 82 + 83 bands hence 336 features (mean and standard deviation of the abso-
lute value). The 1D-sieve feature (and the GLA feature) is formed over only five
channels (at scales 0 to 1, 1 to 2, 2 to 5, 5 to 13 and 13 to 30) and six orientations
which is only 30 components so we can afford to compute the mean, standard
deviation and skewness which still retaining fewer features than the DTCWT.
The 2D- and oc-sieves have channels of the same scales as the GLA and 1D-sieve.
The 2D-sieve hence as 15 features (mean, standard deviation and skewness per
channel) and the oc-sieve has double the number because it has channels at
positive and negative scales. LBP has 256 features as described in [12]. The co-
occurrence matrices have 12 features representing energy, inertia, entropy and
homogeneity at orientations of 0◦, 90◦ and 45◦. GDV has 48 features which are
the mean, standard deviation and skewness over the five standard channels for
the vertical element. The circular element structuring elements must have inte-
ger radii which leads us to choose only three scales for the discs (radii 1, 2 and
3). GDS uses the same discs and squares with sides of 1,2,4 and 5 pixels.

Table 1 (right) shows the result of running McNemar’s test at a significance
of α = 0.05. The entries show the number of times, out of a 100 runs, that
the test allows us to reject the null hypothesis. Ignoring any arguments about
Bonferroni adjustments, this is a crude measure of whether the texture classifiers
differ significantly. The 1D-sieve, DTCWT, GDV and GLA have very similar
performance with 1D-sieve and DTCWT the best performing. Using PCA to
reduce feature dimensionality improves the 1D sieve success rate to 0.999 which
is the same as the DTCWT but using only 40 features. The effect of applying
PCA to the DTCWT incurs no performance increase but maintains a 0.999
success rate using 77 features.

For the Outex natural scene database, features are generated from each hand-
segmented region in the 20 images in this database. Not all texture methods are
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Table 1. Left: x̄ = 1 - e (success rate), max and min success rate out of the 100
trials, standard deviation σ, (for standard error divide by ten) and number of features
f for Outex test suite Outex TC 00000. Right: The number of times out of the Ou-
tex TC 00000 100 trials that, under McNemar’s test, we can confidently (α = 0.05)
reject the null hypothesis that the two data distributions are drawn from the same
source.

x̄ m
ax

m
in

σ f
1D sieve 0.998 1 0.988 0.0034 90

GLA 0.995 1 0.975 0.0054 90
2D sieve 0.954 0.975 0.929 0.0106 15

GDS 0.986 1 0.954 0.0081 42
GDV 0.995 1 0.975 0.0046 48

oc-sieve 0.970 0.988 0.938 0.0105 30
DTCWT 0.999 1 0.988 0.0019 336

LBP 0.986 0.996 0.967 0.0007 256
co-occ 0.946 0.983 0.900 0.0015 12
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1D sieve 0 0 95 8 61 0 10 96 0

GLA - 0 88 3 39 0 3 94 0
2D sieve - - 0 54 14 98 43 2 87

GDS - - - 0 16 11 1 71 2
sieve OC - - - - 0 64 8 25 82
DTCWT - - - - - 0 12 96 0

LBP - - - - - - 0 67 3
Co-occ - - - - - - - 0 94
GDV - - - - - - - - 0

easily applicable to this set because the regions are hand-drawn so, for example,
wavelet support-regions are not guaranteed to fit the ground-truth. We therefore
restrict the comparison to sieves and granulometries because, for these, we can
generate the filtered images, apply the hand-segmented region as a mask, and
generate a feature for each region. There are a total of 91 labelled regions which
is too few for holdout. Therefore we use leave-out-one cross-validation. Table
2 (left) shows the success rate across all classes, with a knn classifier (k = 3,
Euclidean distance). Also shown is the number of samples per class. GLA and
GDV perform quite well as expected. However it appears that both are quite
fragile – certain types of texture are difficult to classify with these methods. The
best overall performers are the oc- and 2D-sieves.

Table 2 (right) shows the p-values obtained under McNemars test where
p > 3.84 allows the null hypothesis (that the two classifiers are indistinguishable)
to be rejected at α = 0.05 with oc-sieve probably the best performing overall.

6 Conclusions and Discussion

The Outex TS 00000 test suite has images of texture at a large scale captured
under consistent illumination and rotation. This test set is highly representative
of the data used to evaluate the majority of texture classifiers over the past thirty
years. Scholarly interest in granulometries seems to have declined recently but
here we show that granulometries are among the best-performing particularly
when using directional structuring elements. The overall trend in these results is
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Table 2. Left: Number of samples per class, mean success rate for each class and
overall mean success rate for the Outex natrual scene database. Right: McNemar’s
p-values (p > 3.84 is the threshold for rejecting the null hypothesis at α = 0.05)
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sky 14 0.79 1 1 0.93 1 1
tree 17 0.59 0.76 0.82 0.76 0.71 0.88
bush 15 0.20 0.27 0.53 0.60 0.33 0.53
grass 20 0.60 0.70 0.65 0.70 0.75 0.80
road 16 0.38 0.56 0.88 0.56 0.63 0.69

building 9 0 0.22 0.33 0.11 0.33 0.56
mean 0.42 0.59 0.70 0.60 0.62 0.74
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1D sieve 0 5.63 14.69 7.03 19.31 8.65
GLA - 0 3.12 0.05 5.33 0.10

2D sieve - - 0 2.04 0.31 1.75
GDS - - - 0 3.70 0.06

sieve OC - - - - 0 3.70
GDV - - - - - 0

that rotationally invariant methods such as GDS, the oc-sieve and the 2D-sieve
perform poorly, implying that, when the orientation of the texture is known,
then there is no advantage to rotationally invariant features [15]. The DTCWT
is also directionally sensitive and performs well but it uses a large number of
features compared to the 1D-sieve.

When the rotation of the texture is unknown, a more realistic situation for
unconstrained computer vision, then directional texture features are likely to
perform poorly. For this reason one seeks systems that are able to operate on
natural scenes. In the Outex natural scene database the 2D-sieves and oc-sieves
have the highest success rates (and are usually the best performing on individual
classes) followed by the GDV and GDS. The 1D-sieve, which was one of the best
performing methods on Outex TS 00000, is now the worst which is a concern for
those who wish to extrapolate from the performance on stylised texture images
to reality.
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