
Fast Edge Preserving Picture Recovery
by Finite Markov Random Fields

Michele Ceccarelli

Research Centre on Software Technologies-RCOST,
University of Sannio,

Via Traiano 1, 82100 Benevento, Italy

Abstract. We investigate the properties of edge preserving smoothing
in the context of Finite Markov Random Fields (FMRF). Our main result
follows from the definition of discontinuity adaptive potential for FMRF
which imposes to penalize linearly image gradients. This is in agreement
with the Total Variation based regularization approach to image recovery
and analysis. We also report a fast computational algorithm exploiting
the finiteness of the field, it uses integer arithmetic and a gradient descent
updating procedure. Numerical results on real images and comparisons
with anisotropic diffusion and half-quadratic regularization are reported.

1 Introduction

The Bayesian framework is particularly suited for solving computer vision prob-
lems as it can embed in a unique model the data consistency constraints, obser-
vation model and a priori assumptions. The underling probabilistic model is the
Markov Random Field [5], and it has been successfully applied to several inverse
imaging problems such as deconvolution, denoising, interpolation, segmentation,
depth estimation, shape from shading and shape from texture. The ill-posed na-
ture of these inverse imaging problems is typically treated by recurring to Gibbs
priors encompassing both the uncertainty about the solution and the desirable
characteristics it should have. The generic and most popular assumption regards
the smoothness of the solution [5,16]. It tends to prefer solutions characterized
by local coherence and homogeneity. However, it can lead, in many situations,
to over smoothed solution due to the imposition of the constraint everywhere in
the image. Indeed, classical image restoration approaches are essentially based
on the least squares criteria, which are basically linear and tend to smooth out
edges in the output image. Therefore, the application of the smoothness con-
straint which preserve discontinuities has been one of the most active research
areas in the computer vision community [4,11,13,14,15,18]. In particular, the
concept of discontinuity adaptive prior (or edge preserving regularization) [11]
is becoming even more adopted also due to the availability of fast and accurate
algorithms [4,19]. Here we show that the concept of discontinuity adaptive prior
can be introduced even in the context of Finite Markov Random Fields (FMRF)
where the underlying space of the solution is assumed to be finite. In particu-
lar, we classify a potential function as being edge preserving if it treats in the
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same way all the monotone functions in a given interval. This definition avoids
to introduce the behavior of the potential function at the infinity and therefore
it is more suited for FMRF. We show that in order to be edge preserving, a
potential function should weight linearly the image gradient, in agreement with
the recent approaches based on the Total Variation norm [3,15]. We also show
how to develop a fast computational algorithm for exploiting the finiteness of
the field, using integer arithmetic.

2 The MRF Approach

Here we consider the problem of restoring an image corrupted by noise. Let I0
i,j ,

i = 1, ..., M and j = 1, ..., N an observed image and Ii,j the “true” image, then
our model is

I0
i,j = Ii,j + ni,j (1)

where ni,j denotes the noise. This problem can be solved in the context of
Bayesian paradigm. The goal is to estimate the image I∗ with the maximum
a posteriori probability given I0

I∗ = argmax
I

p(I|I0). (2)

It is well known that this MAP estimate can be solved by imposing a constrained
problem [6,11,12]:

argmin
I

R(I) subject to ||I − I0||2 ≤ σ2 (3)

where, σ2 is the noise variance, and R(I) is the prior energy functional, it mea-
sures the “quality of the image” I, in the sense that smaller values of R(I)
correspond to “better” images. R(I) is the sum of local contribution form each
image pixel. When there is no particular knowledge about the kind of images
and the specific domain, the most natural assumption about I is its smoothness,
therefore, R(I) should be aimed at measure the irregularities of the solution I,
such irregularities being naturally depend on the derivative magnitudes of I.

Classical prior energy functionals are essentially based on the || · ||2 norm
of the gradient, which has the advantage of producing a set of linear equations
to be satisfied by the solution. The main drawback in their use is that these
functionals do not allow discontinuities in the solution, i.e. the edges are not well
restored. Recently, people is even more interested in edge-preserving methods
which produce much better results both from the perceptive point of view and
in terms of signal-to-noise ratio. The price to be paid for these advantages is the
solution of, sometimes complex, non-linear differential equation arising from the
minimum condition of problem (3). In general, the prior energy has the form

R(I) =
∑

i,j

φ[(DxI)i,j ] +
∑

i,j

φ[(DyI)i,j ]
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where φ is the potential function, Dx and Dy are the discretized derivative op-
erators in the x and y directions:

(DxI)i,j = (Ii,j − Ii−1,j)/δx (DyI)i,j = (Ii,j − Ii,j−1)/δy.

In order to be a suitable potential function, φ should satisfy the following general
assumptions:

i) φ(t) ≥ 0, for any t;
ii) φ(t) = φ(−t);
iii) φ(t) is increasing for t ≥ 0 and decreasing for t ≤ 0.

In addition to these assumptions, a potential function φ is considered edge
preserving or discontinuity adaptive if it further satisfies [4,11]

iv) limt→∞
φ′(t)
2t = 0;

v) 0 ≤ limt→0
φ′(t)
2t < ∞.

A number of edge-preserving potential functions have been proposed in lit-
erature such as: φ(x) = |x|γ

2(1+|x|γ) [7]; φ(x) = log(1+ t2) [9]; φ(x) = log(coshx/γ)

[8] φ(x) = |x| [15];
√

1 + t2 − 1 [4]; e
−x2

γ , 1
(1+ x2

γ )2
[14]; and φ(x) = min{x2, γ}

[2].
These conditions are quite natural in the context of images belonging to a

continuous framework. However, in practice digital images have values over some
finite finite set, such as {0, ..., 255}. In such case the underlying image model is
called Finite Markov Random Field (FMRF) representing the fact that Ii,j can
take only a finite set of values. In this context, the concept of infinity, of course,
does not make sense, and condition iv) just represents an ideal behavior. There-
fore, successfully edge preserving recovery algorithm should necessarily rely on
some additional scale parameter representing thresholds which select candidate
edges of the basis of gradient values which are above this threshold. In particular,
the study reported in [11] classifies discontinuity adaptive potential functions in
terms of the band, which is the interval where φ′′(x) > 0, outside this interval
the penalty term does not depend on x, it can be either zero (no smoothing)
or constant as for example the so called line process potential function [2]. The
above potential functions are typically parametrized by a parameter γ which al-
low to shrink or expand the band of the potential thus allowing a king of smooth
threshold for the transition between uniform areas and candidate edges. This
parameter being chosen as function of the image scale and the amount of edges
one wants to consider inside the image.

Here we want to consider an alternative derivation of the energy potential
function which does not depends on the specific values attained by each pixel
and therefore is suitable for FMRF.

3 The FMRF Edge Preserving Model

In order to introduce the concept of discontinuity adaptive potential for FMRF
let us consider the simple one-dimensional example plotted in Fig. 1 reporting
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I1
I2

Fig. 1. The function I1 contains an abrupt change, whereas I2 is a smooth transition
from a value to another

two functions I1 and I2, the first containing an evident step discontinuity, the
second being a smooth transition from a value to another. Let us consider a
discretization of I1 and I2 as two sequences {I1

i }i=0,...,N and {I2
i }i=0,...,N with

the same discretization step, then

R(I1) =
N∑

i=1

φ(I1
i − I1

i−1); R(I2) =
N∑

i=1

φ(I2
i − I2

i−1).

If we want φ to be an edge preserving potential then I1 should not be penalized
more than I2, in the sense that the solution of the problem (3) should not be
biased toward I2, this means that

R(I1) ≤ R(I2).

This equation guarantees that sharp edges are preserved because the likelihood
of solution I1 is at least as much as that of I2. In other words, this model
does not prefer the smooth behavior of the second solution with respect to the
sharp discontinuity of the first. However, if, on the contrary, R is biased toward
I1 when applied to the image I2, the solution of (3) will introduce artificial
step discontinuities. This could be seen as the lake of the causality principle in
the smoothing process aimed at solving problem (3), or equivalently that the
smoothing behavior induced by such a potential can introduce artificial features
during the regularization process. This last event is particular disastrous in im-
age recovery processes where the aim is to automatic analyze image contents.
Therefore we also must have

R(I1) ≥ R(I2).

From these last two inequalities we derive our definition:
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Definition. A potential function φ satisfying the general conditions (i)-(iii) is
said FRMF edge preserving if given two monotonically increasing (decreasing)
sequences {I1

i }i=0,...,N and {I2
i }i=0,...,N such that I1

0 = I2
0 and I1

N = I2
N it

satisfies
N∑

i=1

φ(I1
i − I1

i−1) =
N∑

i=1

φ(I2
i − I2

i−1) (4)

Equation (4), according to the above analysis, is the right definition of edge
preserving potential for FMRF. Actually it does not make use of its behavior
at infinity, rather, it is based on the weight it gives to similar sequences which
eventually contain abrupt changes representing edges. Neither it requires the
choice, in terms of appropriate thresholds, of what a discontinuity is. It is our
aim, now, to characterize the properties a function should satisfy in order to be a
FMRF edge preserving potential. The first consequence of our definition is that
among the potential functions listed in table 1 the Total variation norm [15] is
FMRF edge preserving.

Theorem 1. A FMRF edge preserving potential φ(x) is a linear function of x
for x ≥ 0.

Proof. Let us consider an increasing sequence {f1
i }i=0,...,N , N > 1, and two

integers ξ and η such that 0 < ξ < η ≤ N . Set

f1
i =

{ b i ≥ η
a ξ ≤ i < η
0 i < ξ

where a, b ∈ R, with a < b. Now, let us define another increasing sequence f2 as
follows

f2
i =

{
b i ≥ η
0 0 ≤ i < η

.

Both f1 and f2 are increasing, therefore f1
i − f1

i−1 ≥ 0 and f2
i − f2

i−1 ≥ 0,
moreover f1

0 = f2
0 and f1

N = f2
N , then let c = b − a, if φ is a FMRF edge

preserving than

φ(a + c) = φ(b) =
�

i

φ(f2
i − f2

i−1) =
�

i

φ(f1
i − f1

i−1) = φ(a) + φ(b − a) = φ(a) + φ(c)

and this is true for any a ≥ 0 and c ≥ 0.

This result is, of course, not surprising. For example, most of the edge pre-
serving functions propsed in literature have a linear behavior at infinity such as
[8] [15] and [4]. In addition to the edge preserving property these three functions
have the nice property of convexity, which is of help in the solution of (3). Our
derivation, however, sates that in order to have an edge preserving potential,
this linear behavior should be always satisfied, clarifying what implicitly stated
by condition (iv).
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3.1 Computation of a FMRF Edge Preserving Solution

Given an FMRF edge preserving potential we want to show how we can solve
problem (3) with a fast and efficient algorithm. Let us call G = {g0, ..., gL−1}
the finite set where the image pixels take values, i.e. Ii,j ∈ G and consider the
maximum difference between two image values:

∆ = min
k �=l

|gk − gl|.

Here we develop a simple iterativa algorithm aimed at the minimization of the
discrete functional R with the given constraint by following the iterative scheme

In+1
i,j = In

i,j + ∆ · sign[sign(In
i+1,j − In

i,j) − sign(In
i,j − In

i−1,j) (5)
+sign(In

i,j+1 − In
i,j) − sign(In

i,j − In
i,j−1)]

this scheme is iterated while ||In+1 − I0|| ≤ σ is true. Since R(I) ≥ 0, the
following proposition states the convergence of the scheme.

Theorem 2. The sequence of potentials R(In) generated by scheme (6) de-
creases monotonically.

The proof easily follows by considering all the possible configurations (which are
finite) in the neighborhood of each pixel and will be reported elsewhere. The
next proposition states the causality property, which is fundamental for every
iterative smoothing process. Roughly speaking, the causality principle states
that each feature at a coarse scale must have a cause at a finer scale. This means
that the smoothing process does not introduce spurious features. Formally, it
can be shown that every causal smoothing process must be governed by, or be
the discretized version of, a parabolic partial differential equation obeying a
maximum principle [1].

Theorem 3. The scheme (6) satisfies

min{In
i,j , I

n
i−1,j , I

n
i+1,j , I

n
i,j−1, I

n
i,j+1} ≤ In+1

i,j ≤ max{In
i,j , I

n
i−1,j , I

n
i+1,j , I

n
i,j−1, I

n
i,j+1}

Proof. Let m = min{In
i,j , I

n
i−1,j , I

n
i+1,j , I

n
i,j−1, I

n
i,j+1}, and M = max{In

i,j ,

In
i−1,j , I

n
i+1,j , I

n
i,j−1, I

n
i,j+1} if In

i,j = m then it is easy to verify that

[sign(In
i+1,j −In

i,j)− sign(In
i,j −In

i−1,j)+sign(In
i,j+1 −In

i,j)− sign(In
i,j −In

i,j−1)] ≤ 4

and, in this case, from (6)

In+1
i,j = In

i,j + ∆ ≥ m.

In the other cases, from the definition of ∆, we have

In
i,j ≥ m + ∆

and therefore
In+1
i,j ≥ In

i,j − ∆ ≥ m

where the first inequality comes from (6). The proof that In+1
i,j ≤ M is analogous.
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4 Experiments and Comparisons

In this section we will present some experimental result about the application
of the developed algorithm to synthetic and real grayscale. In particular the
algorithm reads as:

Digital Picture Recovery Algorithm

//Input: a discrete image I0
i,j , i = 1, ..., M and j = 1, ..., N

//Output: the recovered image

1. Estimate σ̃
2. Ii,j := I0

i,j

3. n := 0;
4. while (

∑
i,j(I

n
i,j − I0

i,j)
2 ≤ MN · σ)

5. Apply (6) to each image pixel
6. n := n + 1
7. end while
8. output In.

Note that there are several methods to perform step 1. Our implementation
adopts a variant of the method proposed in [10]. In particular,

σ̃ =
1
36

Variance(I0 ⊗

⎡

⎣
1 −2 1
2 −4 2
1 −2 1

⎤

⎦) (6)

where ⊗ represents the convolution operator. Note that the algorithm does not
require any parameter. In our implementation we have the choice to implement
filter (6) in a recursive manner, i.e. the updating is performed in place, this kind
of updating produces a significant speed-up of the convergence while maintaining
the causality properties of the method. In any case the experiments presented
below are based on batch updating. Since we also report computing time, the
adopted computing platform is significant, all the experiments were performed
on a 600 MHz Pentium II Linux Personal Computer.

In order to evaluate the behavior of the algorithm, and to compare it with
other edge preserving denoising, we artificially add to the original image some
amount of noise and then measure the quality of the reconstruction as function
of the iteration. Here we compare the algorithms with well known edge preserv-
ing image recovery techniques such as the half-quadratic regularization by the
ARTUR algorithm [4,6] and anisotropic diffusion [3,14,15]. It is well known that
the quantitative measures of image reconstruction may often fail with respect to
perceptually plausible measures. For example the mean squared error measure
tends to compress small errors and to overweight large errors. In this paper we
adopt as a quantitative measure of the reconstruction the so called Mean Error
(ME) defined as

ME(I, I0) =
1
n

∑

i,j

|Ii,j − I0
i,j | (7)
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a) b)

c) d)

Fig. 2. The lena image, corrupted by uniform noise at 8.5 dB of SNR a), and its
recostruction by the proposed method b), the anisotropic diffusion c) and half quadratic
regularization d) (α = 0.075)

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

proposed
Rudin & al.

Half-Quadratic Reg. alpha=0.025
Half-Quadratic Reg. alpha=0.050
Half-Quadratic Reg. alpha=0.075

5

6

7

8

9

10

11

12

13

14

15

0 10 20 30 40 50 60 70 80

proposed
Rudin & al.

Half-Quadratic Reg. alpha=0.025
Half-Quadratic Reg. alpha=0.050
Half-Quadratic Reg. alpha=0.075

a) b)

Fig. 3. The ME measure as funtion of the iteration for the reported algorithms. For the
half quadratic regularization the measure is computed at each iteration of the iterative
algorithm adopted to solve the inner linear system, which our case is a conjugate
gradient algorithm with a multigrid preconditioner. This figure refers to uniform noise
at 14.5 dB a) and at 11 db b) of SNR.
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where n is the number of image pixels. The first case adopts uniformly dis-
tributed additive noise. In particular we add uniform noise at an amount of
8.5dB, 11dB and 14.5dB of Signal to Noise Ratio (SNR). The corrupted image
and the corresponding reconstruction are reported in Fig. 2. As it can be seen
from the images there is no significant difference between the reconstructions, at
least from the perceptual level. In order to quantitatively appreciate the behav-
ior of the algorithm we report the ME as function of the iteration number. As
Fig. 3 shows, the proposed algorithm compares well in terms of quality of recon-
struction with the other algorithms reported. For what concerns the parameters
adopted for the generation of such figure let us mention that our algorithm does
not need any free parameters, whereas for the case of anisotropic diffusion we
choose the time step as 0.5, the maximum number of iteration is 80 and the
noise variance the same that estimated by (6). Whereas, for the half-quadratic
reconstruction we adopted the regularization parameters reported in the figure,
and fixed the maximum number of outer iterations to four and the maximum
number of inner iteration of the preconditioned conjugate gradient algorithm to
seven. The above figures also show that the ARTUR algorithm has a very fast
convergence rate however one should consider that the price in terms of compu-
tation is much higher with respect to the proposed algorithm. Specifically, for
the reported 256 × 256 grayscale image the computing times over the adopted
platform of each inner iteration, are 0.027, 0.076 and 0.562 seconds respectively
for the proposed algorithm, an isotropic diffusion and half-quadratic regular-
ization. This means that each inner iteration takes 5% of the the time of half
quadratic algorithm, and 14% of the time of each non linear diffution iteration.
If, in addition, we consider that the right regularization parameter must be typ-
ically chosen in an experimental trial and error fashion, the advantage of the
proposed method is even more evident.

5 Conclusions

We have reported an image recovery algorithm which is based on the Finite
Markov Random Field model. We have investigated the properties of edge pre-
serving potential functions for FMRF and clarified that the linear behavior of
potential functions is fundamental for convex edge preserving priors. The result-
ing algorithm is fast and efficient, does not require any choice of free parameters.
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