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Abstract. In this paper we concentrate on a measure of symmetry.
Given a transform S, the kernel SK of a pattern is defined as the maximal
included symmetric sub-set of this pattern. A first algorithm is outlined
to exhibit this kernel. The maximum being taken over all directions, the
problem arises to know which center to use. Then the optimal direction
triggers the shift problem too. As for the measure we propose to compute
a modified difference between respective surfaces of a pattern and its
kernel. A series of experiments supports actual algorithm validation.

1 Introduction

This paper deals with capturing approximate symmetry from pictures, wherever
it could show in them.

Symmetry is a prevalent perceptive feature for humans. From the survey by
Zabrodsky [ZAT], we retain results corroborating our own findings for machines:
a) saliency of vertical symmetry associated with a mental rotation: detected
symmetry is in the order vertical, horizontal, bent and then rotational; b) sym-
metry of parts near the axis contribute more than symmetry of further parts
near edges, themselves more critical than regions in between.

Symmetry is important in machine vision too as proven by an extensive
literature. See [OMI] for a recent quite interesting survey. Models of symmetry
suffer three major drawbacks: d; edges mainly support symmetry detection; do
perfect symmetry is targeted; dg the center of mass is assumed to be the focus
of attention.

Similar difficulties were long solved for other features as edges, regions or mo-
tion in actually measuring the phenomenon — edginess , uniformity, set-direction
— to make decisions from the measure rather than from a strict distance. We
addressed dy in a previous work [DG3| leading to define iterative transforms
as the IOT that better accounts for the inner object. In the present paper we
tackle the three d;-difficulties together. After a short bibliography in section 2
reviewing elementary tools, we first introduce the notion of a kernel in section
3. It stems logically from IOT through a gauge classical in functional analysis :
maximal included (resp. minimal including) set with same property. In section
4, a series of experiments on both binary and grey scaled pictures allow to check
proposed techniques, their sensitivity to the center position and the validity of
the degree of symmetry. Discussion and further comments conclude the paper.
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2 State of the Art

The Symmetry Azial Transform (SAT) [BLI] can be considered seminal for sym-
metry detection starting from borders of an object. Exhibiting centers of maxi-
mal circles, SAT retrieves only axes of symmetry already included in the medial
axis. Some limitations are solved by the Smoothed Local Symmetry [BR1]. Global
symmetry, if any, is retrieved from the local curvature of contours, through the lo-
cus of mid-edge-point pairs. Likewise, Sewisy [SEI] couples the Hough transform
with geometric symmetry to exhibit candidate ellipse centers. In [FUT] polygo-
nal approximations of contours are broken into elements (e.g. Delaunay/Voronoi
method) of which axial features are pieced together. Gray level symmetry was
firstly investigated in [MAI], where the descriptor is based on cross correlation.
In [DGI], symmetries stem from evaluating the azial moment of a body around
its center of gravity. This descriptor has been applied at a local level to define the
Discrete Symmetry Transform (DST). In [MNI], local reflectional symmetry is
computed in convolving with the first and second derivative of Gaussian’s. Both
a “measure” of symmetry and an axis orientation are provided at each point.
Shen [SHI] or DuBuff [BII] use complex moments associated with Fourier or
Gabor transforms for image approximation.

In [KII], authors introduce several descriptors from Marola’s one, further
extended to finite supports and varying scales based on Radon and Fourier
transforms. A global optimization approach is implemented by a probabilistic
genetic algorithm to speedup computations. Along the same line, Shen and al.
[SHI] detect symmetry in seeking out the lack of it. The asymmetric part of
their measure (energy) is null for a set of pixels invariant through horizontal
reflection, hence the minimization. In [CRI] (see also [DG2]), a vector potential
is similarly constructed from the gradient field. Edge and symmetry lines are
extracted through a topographical analysis of the vector field (i.e. curl of the
vector potential) at various scales. Symmetry axes are lines where the curl of
the vector vanishes and edges are where the divergence of the potential vanishes.
Yeshurun and al. [RE1] build on the Blum-Asada vein: they quantify a potential
for every pixel to be center of symmetry, based on pairs of edge points tentatively
symmetric from their gradient vectors. A symmetry degree is assigned to every
pair within a pixel neighborhood and a weighted combination of these makes the
potential, whose local maxima provide a measure depending on both intensity
and shape.

Some methods provide symmetry descriptors for measures to be computed,
others aim at straight symmetry measures. The difference is obvious in com-
paring for instance Cross’s and Yeshurun’s. Finally, preceding works show that:
1- introducing true measures helps building more abstract versions of distances,
more suitable for approximate comparison of objects; 2- sets which measures
apply on may be “sets of pixels or vectors” (shapes) or “sets of patterns” (class
transforms): in either case set operations , as Minkowski’s ones, are worth con-
sidered. They do not limit to contours and bridge logic with geometry.

Before to explain why and how we put these ingredients together, let us con-
clude by pointing out two more works that fit the algorithmic line above and are
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the closest to ours. It makes clear the main contributions of this paper respective
to previous work. R. Owens [OM2] searches explicitly for a measure to indicate
approximate bilateral symmetry of an object. But she defines tentative symme-
tries from the principal axes of inertia, whence the centroid again. Although it
is not mentioned, her measure based on the sum of absolute differences of grey
levels in symmetric pairs amounts to a slightly modified L;-difference between
the object and a maximal-for-inclusion symmetric version of it in the given di-
rection. Kazhdan et al. [KA1] use explicitly the same idea of a difference (L in
their case) between the image and its closest symmetric version. They need a
measure that integrates all reflective invariance about a bundle of straight lines
(or planes in 3-D) and a center is necessary to this representation.

3 The New Symmetry Measure

In previous papers [DG3] we defined the IOT that is a map product of iterated
morphological erosion and symmetry detection.

Definition 1. The Symmetry Transform, S, on a continuous object X C R? is:
Sa(X) :/ m(z) x p*(z,r(a))dz for ac 0,7 (1)
X

where, r(«) is the straight line with slope « passing through the center of gravity
of the object X, m(x) is the mass of the object in z € X, and p is a distance
function of x from the straight line.>

Each value of S represents the axial moment of X.

Definition 2. The Iterated Object Transform, IOT is given by:
I0To1(X) = Sa(X) i T0Tun(X)=Sa |E)"(X)]  for n>1 (2)

(E)" stands for the morphological erosion by the unit sphere (or any other
suitable structuring element would any suitable a priori information be avail-
able), iterated n times.

The number of iterations depends on the size of the input image and on
the distribution of the gray levels. The S transform is thus computed on pro-
gressively shrunk versions of the binary input image or on steadily intensity
reduced versions of the gray level input image, until some predefined decrease
or a minimum of intensity is reached.

The iterated elongation, 1, (X), is defined as follows:

minae[o,,r[ {[OTa,n(X)}

3
mazacon {10Tan(X)} )

nn(X) =

It represents dynamic changes of X shapes indicators versus n. Since in
most cases, 1 curves become flat or show some other type of constancy after a
certain number of erosions, it was conjectured that any pattern larger than the
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structuring element would have a symmetric kernel that TOT reveals: indeed, in
eroding a pattern at least one pixel remains to meet the definition. Let us call
IOTK this pattern. The intuitive idea here is that the closer the kernel to the
pattern, the more symmetric pattern. Unfortunately it is easy to design examples
(see Figure M)where the JOTK is as “far” as one wants from the pattern. Never
the less, such a symmetric pattern, bound to the more or less symmetric object
under study, should then contribute to a symmetry measure, and more generally
to a feeling (sensing) of symmetry by machines.

Remark 1: when it proves necessary, this included version of the kernel could
be balanced by the including version obtained by dilation.

Following commonly used gauges in functional analysis, a possible first an-
swer with a flavor of optimality would be maximal included symmetric pattern
resp. minimal including symmetric pattern : extremal then subjects to the mea-
sure.

Definition 3. The S-kernel of the pattern P - SK(P) - is the maximal for
inclusion symmetric (pattern) subset of P.

A first algorithm to be discussed and optimized is to compute a symmetric
pattern included in the given one, ptrn, starting from an initial center, G, and
iterate the process for all G’s and all directions (Figure [I]) until the maximum
is reached. Here is the main core loop:

For all a
For all p
Consider
the symmetric couple (D,, D_,),
intersections S, and s, (resp. S_, and s_,) of D, (resp. D_,)
with the frontier of ptrn
S,* realizing min_, , t(5)
sp* realizing max_, ,t(s)
Let Kq(ptrn) be the union of segments [s,%, S,*] over p
Compute Symmetry (K (ptrn))
Compute max, (Symmetry(Kq(ptrn)), obtained for oo = ax
SK (ptrn) = Kax«(ptrn)

The meaning of S, and s, (resp. S—,, s—,) and D, (resp. D_,) is illustrated in
Figurdh. In case of more than 2 intersections (concavities) the algorithm extends
by segments in a natural way. Actually the algorithm implementation makes use
of the min (resp. max) operators pixel to pixel in D, and D_, respectively, to
exhibit the kernel without any prior thresholding (see FiguresBlc¢ and d and @b
and d) for result samples). Except for some pathological patterns and following
Definition 1, the center of mass is conjectured a good enough approximation
to balance the pattern from. Therefore, not to span the all search space, G is
set first to the center of mass of ptrn so that the initial state be likely close
to the global optimum. The result for the pattern in Figure [h is the grey
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Fig. 1. (a) Sketch of the kernel detection algorithm; (b) the kernel of the pattern in
(a); (c) expanding the JOT'K of the pattern in (a) into the kernel

shaded part as given in Figure [[b. One has then to relate the latter kernel to
the former indicators (IOTK). Let us assume we applied the TOT and found
a stable pattern after multiple erosion, like the dark rectangle in the Figure [Tk
(meaning after that, erosion will confirm symmetry and 7 remains constant).
Starting from there we expand the pattern and mark progressively every where
the expansion intersects the border, together with the symmetric pixel wrt. the
axis. Every marked pixel is not expanded further. That way the kernel should be
obtained again, provided the center of mass be stable. The preceding algorithm
is a line by line version of the one here, and that makes the expected link.

Remark 2: the center of mass varies from the kernel to the pattern, still all
definitions so far assume that tentative symmetry axes pass by this center.

This introduces an additional question: how to define the likely symmetry axis
where to compute the kernel from? For instance, let be p = argMaxSymmetry
(ptrn). How does K, (ptrn) compare with K(ptrn)? How do their respective
Symmetry relate? In most cases K, (ptrn) should be a good enough gauge of
K (ptrn), or their difference will be most indicative. The last part of experiments
is devoted to answering the question, in checking results over translations of
the axis.

In order to test the proposed algorithm we compute a measure of symmetry
classically defined as:

Area(D)
Area(A)

with A, the pattern, B, its kernel, and Area(D) = Area(A — B)

It remains a robust first approximation where A = 1 if Area(B) = Area(A).
In any case, different ways of limiting the pattern should be compared to the
one here, that is based on the sole erosion.

A=1

4 Experimental Results and Further Comments

In this section we show some results of the S-kernel algorithm applied to synthetic
and real images. The purpose of experiments can be summarized as:
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Fig. 2. Sample of images used for experiments: (a) binary; (b) gray level; (¢) textured

1ip ) n u
) (c) (d)

(a) (b c d

Fig. 3. Finding the direction of maximal symmetry for the binary pattern in Figure Zh-
1 through G (a) and through shifted centers around G (b) and actual SK superimposed
to the input pattern - in white - according to G (c) and the shifted center (d)

1 check the sensitivity of the method to the center position. Two cases will be
compared: a) through G; b) shift from G;

2 validate the method ability to measure a degree of symmetry, by comparing
In(SK (ptrn)) — n(ptrn)| with A, and n(IOTK) with n(SK (ptrn));

All experiments are parameterized by direction and completed on both binary
and gray level images (see Figure [2I).

First, we consider the variation of A with the angle o used to compute
SK (ptrn) on the binary pattern in Figure2Zh-1. Figure[Bh shows A versus a when
the pole is G in this example the maximum similarity is A = 0.76 and the direc-
tion is a = 135°. Figure Bb shows A\ys(a) = maz{A(a,C), G—S < C <G+ S}
when the pole is shifted around G for all a’s; the maximum similarity is A = 0.76
and the direction is @ = 11.25°. The human perception, bound to display, would
favor the local minimum near /2. The variation of A for @ = 7/2 versus the
shift of C shows maximum similarity for a negative five pixels shift from G.
White pixels in Figure Bl,d display kernels obtained when A\,.. = maz,{\}
for fixed and varying centers respectively.We tested the robustness of the algo-
rithms in rotating the images by 45°; it comes A\g = 0.76, ag = 45.00° and
Ao = 0.78, ac = 45.00° for image 1b, A\g = 0.92, ag = 135.00° and \¢c = 0.95,
ac = 45.00° for image 2b. Table 1 reports the results for all Figure[2k subscripts
G and C indicate respective processing through G and with shifting. The two
rightmost columns display the maximum of the Object Symmetry Transform,
OST ez = Mazo<a<x{OST (o)}, and corresponding direction, apsr, obtained
with the algorithm in [DG3]. Results are comparable, but the kernel algorithm
is more accurate with directions. Figuresdh,b show plots of A\g and A¢ for the
image 1c . The ability of the proposed kernel operators is evident in detecting
global object symmetries. In fact, the mean values and the variance of Ag and
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Table 1. Comparing kernel results and OST on images in Figure 2]

Image \¢ ac AIc ac OST aosr
la 0.76 135.00° 0.76 11.25° 0.86 112.50°
2a  0.74 90.00° 0.79 33.75° 0.93 101.00°
3a  0.82 157.50° 0.76 22.50° 0.87 56.25°
4a  0.76 0.00° 0.80 0.00° 0.80 0.00°
1b  0.80 90.00° 0.80 90.00° 0.72 90.00°
2b  0.70 90.00° 0.89 90.00° 0.92 45.00°
lc  0.99 90.00° 0.99 135.00° 0.90 90.00°
2¢ 0.99 0.00° 0.99 90.00° 0.96 0.00°

: ')
() (d)
=y SN
(e) (f) (8) (h)

Fig. 4. Plot of Ag and A¢ for the image 2b (resp. a and c) with corresponding kernels
(resp. b and d), and for the image 1c (resp. e and f) and 2c (resp. g and h) of Figure 2]

Ao are (0.94,0.2) and (0.94,0.01) respectively indicating the circular symme-
try of the image 1c. Note that A¢ is a more robust indicator of the circularity.
Same considerations hold for the image 2c (see Figure [)). For comparison, the
mean value and variance of the OST of image 1c are (0.89,0.01) confirming the
circular symmetry too.

5 Concluding Remarks

This paper describes a new measure of axial symmetry derived from an ob-
ject feature named “symmetry-kernel”. The symmetry kernel of an object is the
maximal subpart that is symmetric regarding a given direction. An algorithm
is proposed, based on the computation of the OST for bilateral symmetry. It is
rotation invariant and provides quite interesting results. However, it is compu-
tationally expensive on conventional computers as it computes line intersections
and distances. Eventually, it is sensitive to numerical precision. It was tested on
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both synthetic and real data. Experiments show the ability of the symmetry-
kernel to detect the main directionality of objects. The distance between an
object and its kernel is a crucial point needing further investigation.
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