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Abstract. Networked multimedia applications have matured in recent years to 
be deployed in a larger scale in the Internet. Confidentiality is one of the pri-
mary concerns of these services for their commercial usages, e.g. in video on 
demand services or in video conferences. In particular, video encryption algo-
rithms are strongly required that fulfill real-time requirements. In this paper we 
present the video encryption algorithm Puzzle to encrypting video streams in 
software. It is fast enough to fulfill real-time constraints and to provide a suffi-
cient security. Puzzle is a video compression independent algorithm which can 
be easily incorporated into existing multimedia systems.  

1   Introduction 

Due to significant advances in video compression and networking technologies, net-
worked multimedia applications, e.g. video on demand or video conferences, are 
becoming increasingly popular. Confidentiality is one of the primary concerns for 
their commercial use. This issue is usually addressed by encryption. Only authorized 
parties who possess the decryption keys are able to access to the clear multimedia 
contents. While for text and audio encryption applicable algorithms are available, 
there is still a lack of appropriate video encryption algorithms. In particular, video 
encryption algorithms are strongly required that fulfill real-time requirements. The 
most straightforward approach is to encrypt the entire compressed video stream with 
conventional cryptographic algorithms such as AES [1]. This is called a naive algo-
rithm approach [2]. This approach is simple to implement and easy to integrate into 
existing multimedia systems, since it is independent of certain video compression 
algorithms.  

Nowadays, advanced computers are fast enough to encrypt a single channel 
MPEG2 video stream with a bit rate between 4 and 9 Mbps in real-time using the 
naive algorithm approach [3]. However, this evolution of the computer power does 
not completely eliminate the need to develop faster encryption algorithms for video 
data. Many multimedia applications such as video on demand and multiparty P2P 
video conferences always require specific algorithms for the video encryption because 
they usually support multi-channel video communication. The simultaneous encryp-
tion or decryption, respectively, of all streams causes a huge processing burden at the 
end systems. Appropriate encryption algorithms allow to alleviate these burdens and 
to enroll more users to the service.  
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Since mid 90’s many research efforts have been devoted to designing specific 
video encryption algorithms. Several algorithms were proposed. These algorithms, 
however, are characterized by a considerable unbalance between security and effi-
ciency. Some of them are efficient to fulfill the real-time requirements but with a 
limited security level, whilst others are vice versa strong enough to meet the security 
demands but with a limited encryption efficiency. Moreover, most of these algorithms 
are related to a certain video compression algorithm and implemented together in 
software. This makes them less practicable, because today video compression algo-
rithms are standardized and mostly implemented in hardware.  

In this paper we propose the video encryption algorithm Puzzle which is not only 
efficient but also sufficiently secure. Puzzle can be easily integrated into existing vi-
deo systems regardless of their implementation (i.e. software or hardware). The paper 
is organized as follows. After addressing related work in Section 2 we describe the 
principle of the Puzzle algorithm in Section 3. Next in Section 4, we evaluate its per-
formance and compare it with the standard cipher AES. In Section 5 we give a secu-
rity analysis of Puzzle. Some final remarks conclude the paper.  

2   Related Work 

Existing video encryption methods have been comprehensively surveyed in [4], [5], 
where they are called selective encryption algorithms. This underlines the essence of 
these methods. They only partially encrypt relevant video information to reduce the 
computational complexity by exploiting compression and perceptual characteristics. 
The relationship between selective encryption algorithms and video compression 
algorithms is a key factor to decide whether an encryption algorithm can easily be 
integrated into a multimedia system. In this paper we therefore further classify the 
selective encryption algorithms into two categories according to their association with 
video compression algorithms: joint compression and encryption algorithms and 
compression- independent encryption algorithms.  
    The main idea of the joint compression and encryption algorithms is that encryp-
tion is applied to a certain step of the compression algorithm so that the output is 
significantly different from a video stream using a standard compression algorithm. 
The receivers cannot re-establish the original video without having the encryption 
key. Figure 1 illustrates the paradigm. 

 

Fig. 1.  Principle of joint compression and encryption algorithms 
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The approaches [6], [7], [8], [9] are well known examples of such kind of algori-
thms. The weakness of the joint compression and encryption techniques is that they 
cannot be integrated into multimedia systems whose video codecs are implemented in 
hardware. Certainly, these approaches can be combined with multimedia systems im-
plemented in software, but they completely destroy the modular design of the original 
codec. Appropriate modifications of the standard video codecs must be made to ac-
commodate these schemes. Therefore, joint compression and encryption algorithms 
preclude the use of standard video codecs in multimedia systems.     

The basic idea of compression-independent encryption algorithms (see Fig.2) is 
that compression and encryption are carried out separately. Only parts of the com-
pressed video streams are encrypted with conventional algorithms taking the particu-
lar characteristics of the compressed video streams into account.     

 

Fig. 2. Principle of compression- independent encryption algorithms 

So Spanos and Maples [10] and Li [11] exploit the fact that B- and P-frames are 
predicted from I-frames in interframe compression algorithms. Both proposed encryp-
tion approaches in which only the I-frames are encrypted. In theory it should prevent 
an eavesdropper without encryption key from the reconstruction of the original video. 
However, Agi and Gong [2] demonstrated that some scene contents are still discerni-
ble by directly playing back the selectively encrypted video stream on a standard 
decoder, since the unencrypted I-macro blocks in the B- and P-frames can be fully 
decoded without any information from the I-frames. Moreover, this approach did not 
achieve a significant computational reduction with respect to the total encryption, 
because the I-frames make about 30~ 60 per cent of an MPEG video [2]. Qiao and 
Nahrstedt [12] introduced the video encryption algorithm VEA in which half of the 
bit stream is encrypted with a standard encryption algorithm. This half stream is ex-
clusive-ORed with the other half stream. The statistical analysis shows that MPEG 
video streams are almost uniformly distributed. VEA takes advantage of this special 
statistical behaviour of MPEG video streams to achieve the sufficient security level. 
However, the algorithm reduces the encryption load only by 47 per cent, since a half 
bit stream has to be encrypted with conventional algorithms.   

The inflexibility and confinement to deploying joint compression and encryption 
algorithms in current multimedia systems make them less practicable. Compression- 
independent encryption algorithms, in contrast, do not suffer from this weakness.   
They can be easily integrated into existing multimedia systems. Although several 
such kinds of algorithms are available, they do not achieve a noticeable encryption 
speed improvement compared to naive algorithms (only about a double speed-up). 
Moreover, some of them are not resistant to the simple perceptual attack (playing 
back an encrypted video stream on a standard video player).  
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In the sequel, we present an efficient and sufficiently secure video encryption algo-
rithm. The outstanding benefit of this scheme is the drastic reduction of encryption 
overhead for the high resolution video. The algorithm we present here has been im-
proved compared to the first sketch in [13] which appeared not strong enough to resist 
against sophisticated differential attacks [15]. The new version performs the encryp-
tion in reverse order to remove the suspected vulnerability. This reordering in part 
changed the encryption steps.  

3   Principle of the Puzzle Algorithm 

In this section we first give an overview on the basic idea of the Puzzle algorithm. 
After that the steps of the algorithm are described in detail.  

3.1   Principle  

The Puzzle algorithm is inspired by the children game puzzle which splits an entire 
picture into many small pieces and places them in disorder so that children cannot 
recognize the entire picture. When children play the game, they have to spend much 
time to put these pieces together to re-establish the original picture (see Figure 3).  

 
 
 

 
 
 
 
                                                 

Fig. 3.  Puzzle game 

Children usually reconstruct the original picture using or comparing known frag-
ments of the picture and referring them to the accompanied original picture. We can-
not therefore straightforwardly apply the game to encrypt a video frame. If we, how-
ever, modify the rules of the game in the following way, it will be nearly impossible 
for children to recover the original picture. The children should be only allowed to 
view the reverse side of the pieces, so that they have to re-establish the picture with-
out any hints to the original picture. It is manifested that n! trials are required to re-
establish the original, where n is the number of pieces. Basically, n needs not neces-
sarily to be large. Assume that a picture is divided into 64 pieces, then the number of 
possible permutations is 64! = 1.27x1089. It is unlikely that children reconstruct the 
original picture when having so many permutations. With this rule in mind we de-
signed our Puzzle algorithm.  

3.2   Encryption Steps 

Puzzle consists of two steps: (1) Puzzling the compressed video data of each frame 
and (2) Obscuring the puzzled video data. In step (1) the video data are partitioned 
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into many blocks which are randomly shuffled afterwards. Step (2) corresponds to the 
turning over the pieces to the reverse side.  

3.2.1   Puzzling  
A compressed video frame is puzzled by partitioning the frame into n blocks of same 
length b and disordering these blocks according to a random permutation list.  

3.2.1.1 Partitioning 
Given a L bytes long frame (excluding the frame header) of compressed video data V 
( v1v2...vL). The partitioning of the compressed video data V of length L into n blocks 
of the same length b is a typical factoring problem, i.e. bnL ×= . This problem is 
easy to solve if one of two variables (n,b) is assumed as constant. Unfortunately, we 
cannot solve this problem this way. If we fix the value of b, the value of n may be-
come very large in some frames or very small in other ones, since the length L varies 
for each frame. On the other hand, a too large value of n causes a larger computation 
overhead when exchanging the blocks. If the value of n is too small the scheme can be 
easily be broken. To solve the problem we put some constraints on the variables n,b. 
The length of a block b should be b=2m, where m is an integer. The value of n is only 
allowed to vary in the range from mb to 2mb, whereby mb is a predefined constant 
number. It indicates that the compressed video data V should be at least split into mb 
blocks.  

Using these constraints, the value of m can be uniquely determined by the follow-
ing formula:  

                                          mbLmb m 22/ <≤ .                                                     (1) 

    The length of a block is given through b=2m. The actual block number n can be 
calculated by the following formula: 

                                     
⎩
⎨
⎧

−
=

 odd  is   if             1

even      is    if                  

pnpn

pnpn
n                                      (2) 

Where pn is the quotient of L/b. Formula (2) makes the value of n always an even 
number. This operation is necessary to disorder the blocks in the next step. With for-
mula (1) and (2), the product of n and b might be unequal to the video frame length L 
when pn is odd or the remainder of L/b is unequal to zero. The difference between 
both is determined using the following formula: 

                                              bnLd ×−=                                                          (3) 

Formula (3) implies that the d bytes video data at the beginning of the video frame 
will be excluded from the disordering procedure. 

3.2.1.2   Disordering  
The basic idea for the disordering of the blocks is that the n blocks of compressed vi-
deo data V(vd+1v d+2…vL) are divided into two equal parts: an upper and the lower one. 
Each consists of n/2 blocks. Both parts are interchanged in accordance with a permu-
tation list P=p1p2…pn/2. This permutation list should be derived from a random se-
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quence to resist an attacker to guess the original position of the blocks. We exploit a 
stream cipher with an key K, such as SEAL [16] or AES-CTR[17], to generate l bytes 
of random sequence, called key stream S (s1s2…sl), for each video frame. Since the 
values of the key stream S vary for each video frame, the permutation lists of different 
frames are distinct. The algorithm to generate the permutation list is described in the 
Appendix. After deriving the permutation list we can generate the temporary cipher 
text T=t1t2…tL-d from the video data V=vd+1v d+2…vL by swapping the ith block of the 
upper part with the pi

th block of the lower part of V. Figure 4 shows an example of 
this disordering process. It is assumed that a frame V is split into 256 blocks B1B2… 
B256. The permutation list derived from the key stream S is P= {256, 213, 216 … 
130}. 

 

Fig. 4. A Puzzle scenario 

3.2.2   Obscuring  
The temporary cipher text T is obscured using a light-weight encryption. Its basic idea 
is to encrypt only a small portion of T (first l bytes) with a stream cipher. Every l 
bytes are grouped into a portion for the rest data of T. Each portion is encrypted by 
simply exclsive-ORing its preceding. The procedure is as follows. The first d bytes of 
the compressed video data V( v1v2...vd) that are not involved in the puzzling procedure 
are exclusive-ORed with d bytes of key stream A(a1 a2…ad) generated by a stream 
cipher with the encryption key K. The first l (l<L) bytes of T (t1t2...tl) are exclusive-
ORed with l bytes of the key stream S (s1s2…sl) generated in the puzzling step. The 
sense of the reuse of key stream S is to make the algorithm more efficient. After that 
the first l bytes of T are used as key stream and exclusive-ORed with the second l 
 
 
Input text       v1v2...vd     t1       t2  

 … tl    tl+1       tl+2    …   t2l     t2l+1       t2l+2    …  t3l       … …tL-d 

        
Key stream    a1a2…ad   s1      s2   …  sl   t1           t2        …   tl       tl+1        tl+2       …  t2l       … …tL-d-l 
         
Cipher text    c1 c2…cd  cd+1 cd+2…cd+l   cd+1+1 cd+l+2...cd+2l  cd+21+1 cd+2l+2… cd+3l   … … cL 
 
 Note: vi, si, ai and ti denote a data byte.  The input text contains the temporary cipher text T and the first d 

bytes of the compressed video data. 
 

Fig. 5.  Obscuring algorithm 
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bytes. Then the second l bytes of T are exclusive-ORed with the third l byte and so on 
until the end of the frame is reached. As output we receive the L bytes long cipher text 
C (c1c2.. .tL). Figure 5 shows the principle. Note that the frame header remains unen-
crypted, because it usually contains standard information. 

3.3    Encoding and Decoding Procedures  

The components of the Puzzle encoding procedure described above are summarized in 
Figure 6a). The original compressed video sequence can be recovered from the cipher 
text at the receiver’s side by executing the encoding operations in reverse order (see 
Figure 6b)).  

     

a) Encoding                                                            b) Decoding 

Fig. 6. Encoding and decoding procedures of Puzzle 

4   Measurements 

We run a series of experiments for different resolution videos to measure the speed of 
Puzzle in comparison with the standard cipher AES on a SUN ULTRA 10 platform. 
To make a trade-off between security and efficiency, the values of the variable l and 
mb in our algorithm are both set to 128. Further we used AES-CTR [17] as stream 
cipher. The measurement results are depicted in Figure 7.      
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Fig. 7. Comparison of the encryption speed  of  AES and Puzzle 
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Figure 7 shows that the encryption speed of AES basically does not change for dif-
ferent frame sizes, whereas that of Puzzle noticeably increases for larger frames. AES 
and Puzzle only have a nearly equivalent encryption speed at a frame size of 300 byte. 
With increasing frame sizes the encryption speed of Puzzle becomes considerably 
higher than that of AES. This indicates that Puzzle is better suited for high resolution 
video streams which usually have a large frame size.   

5    Security Analysis of the Puzzle Algorithm 

In this section we evaluate the security properties of the Puzzle algorithm. A good 
crypto system should withstand the following most important attack classes [14]: ci-
phertext-only attacks, known-plaintext attacks, and chosen-plaintext attacks. Further-
more, the measure to defend against differential attack should be taken into account. 

Ciphertext-only attacks: Based on the cipher text an adversary has two possibilities 
for trying to re-establish the original frame encrypted with Puzzle (see Figure 6b)). 
He/she can either attempt to break the puzzling and then the obscuring operation or to 
crack these steps in the reverse order. The first attack corresponds to the situation 
when the child first tries to put the disordered pieces to their correct position only 
looking at their backside and then turns the whole correctly reordered picture to the 
right side. In Puzzle each frame is split in at least 128 blocks in the puzzling opera-
tion, i.e. more than 64! = 1.27x1089 trials to reconstruct a single original frame. This is 
obviously computationally infeasible to be broken, especially as a 128 bit key length 
standard block cipher is believed to be computationally secure enough today. The 
number of possible permutation for such standard block cipher is, however, only 2128 
= 3.4x1038. 

The second attack resembles the situation when the child first turns the disordered 
pieces to the right side one by one and then re-establishes the picture using content 
information. In Puzzle the cipher text C is generated by connecting two puzzled plain-
texts fragments using the exclusive OR operation except the first l+d bytes of the 
obscuring operation. As shown in [12] the computation complexity to obtain a 10 
bytes MPEG compressed video sequence by separating two 5 bytes long exclusive-
ORed plaintext is equivalent to that of breaking a 64-bit key length block cipher 
which has 264 combinations. As mentioned in Section 4, we recommend to applying 
Puzzle on video sequences with a frame length larger than 300 bytes. Accordingly the 
attacker has at least to try all 30x264 ≈ 269 combinations to obtain the plain texts of the 
disordered blocks for a single frame. 

Known- plaintext attacks: Given a compressed video frame and its corresponding 
cipher text, as show in Figures 5 and 6b), it is not difficult for an attacker to get the l 
bytes long key stream S and the d bytes long key stream A. However, the attacker is 
unable to decrypt the other video frames using this key stream, since we utilize AES-
CTR as the stream cipher to generate the distinct key streams S and A with encryption 
key K for each frame. It is further impossible to derive the encryption key K from a 
known key stream S, since AES-CTR is a confidentiality mode [17] which is secure 
against known-plaintext attacks. Therefore our algorithm can withstand these attacks.  

Chosen-plaintext attacks: Our scheme is resistant against chosen-plaintext attacks 
for the same reasons given for known- plaintext attacks.  
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Differential attacks:  The original goal of the differential cryptanalysis is to attempt 
to reconstruct the encryption key by studying the differences between the plaintext 
and the respective ciphertext pairs. The differential cryptanalysis can reduce the com-
plexity of attacking a cipher by half. Generally speaking, it is a specific kind of a 
chosen-plaintext attack. As discussed above, such attack is not effective to our 
scheme. On the other hand, attackers might apply the basic idea of differential crypt-
analysis to launch a specific ciphertext-only attack by analyzing the ciphertext of our 
scheme without the knowledge of the respective plaintext for the specific structure of 
our scheme. The order of encryption procedure in our scheme decides, whether our 
scheme is strong enough to withstand such a specific ciphertext-only attack. In [13] 
we first obscured the original frame and then puzzled the obscured one. This encryp-
tion order is suspect to be too weak for specific ciphertext-only attacks, because the 
edges values of the blocks of the original video frame tend to be very close. These 
close values are inherited to the obscured frame in this encryption order. The attacker 
might determine which blocks might be neighbors using this information. For that 
reason, we have changed the encryption order, i.e. first puzzling then obscuring. The 
edges of neighbor blocks will now have significantly different values so that such an 
attack is avoided.   

6    Final Remarks 

In this paper we presented the improved video encryption algorithm Puzzle for en-
crypting video communication in real-time. Puzzle is a compression-independent 
encryption algorithm which can be easily integrated into available multimedia appli-
cations. It provides a good trade-off between security demands and encryption effi-
ciency. Puzzle achieves a sufficiently fast encryption speed to meet the real-time re-
quirements of most used multimedia applications, especially for high resolution video 
streams. Puzzle withstands most important cryptanalysis attacks. By changing the 
order of the encryption steps the algorithm has become resistant against differential 
attacks. We use Puzzle as part of the security architecture of our multiparty P2P video 
conference system BRAVIS [18] to ensuring confidential talks over the Internet.  
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Appendix:  Generation of the Permutation List  

   
Algorithm Permutation list generation          

   Input: A key stream S=s1s2…sl, n --  number of blocks in the compressed video data V  
   Output: A permutation list P=p1p2..pn/2.    
 
   begin 

           Let A be an auxiliary sequence A=a1a2…an/2, its value of an element is    
2/1   ,2/ niniai ≤≤+= ;                                                                                                                 

           Define D as another auxiliary sequence which is used to temporarily save the value 
           selected from the key stream S;   

           for i=1 to l do 
                /* Make the value of every element in S ranging from 1+n/2 to n. */  
              if ((si mod n)≤n/2)  si= (si mod n)+n/2; 
                   else si= si mod n;                         
              end if  
             Put si in the auxiliary sequence D without repetition;  
             Extract si from the sequence A and build sequence {A-D}; 
           end for; 
            /* Get the permutation list P, || denotes the append operation. */  
           P=D||{A-D};                    
     end  
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