
Using XACML for Privacy Control in
SAML-Based Identity Federations

Wolfgang Hommel

Munich Network Management Team,
Leibniz Computing Center Munich

hommel@lrz.de

Abstract. With Federated Identity Management (FIM) protocols, ser-
vice providers can request user attributes, such as the billing address,
from the user’s identity provider. Access to this information is managed
using so-called Attribute Release Policies (ARPs). In this paper, we first
analyze various shortcomings of existing ARP implementations; then,
we demonstrate that the eXtensible Access Control Markup Language
(XACML) is very suitable for the task. We present an architecture for
the integration of XACML ARPs into SAML-based identity providers
and specify the policy evaluation workflows. We also introduce our im-
plementation and its integration into the Shibboleth architecture.

1 Introduction

With Identity & Access Management (I&AM) systems, organizations are able
to efficiently manage their employees’ and customers’ Personally Identifiable
Information (PII) and access rights to local services, typically by storing them
in a central enterprise directory or relational database.

To support cross-organizational business processes, I&AM has developed into
Federated Identity Management (FIM); FIM standards, such as the Security
Assertion Markup Language (SAML, [1]), enable cross-domain Web single sign-
on, i.e. users are being authenticated by their so-called identity provider (IDP)
and may then use external service providers (SPs) without requiring separate
accounts there. Instead, the SPs trust the IDP, and the IDP vouches that the
user has successfully been authenticated. A set of SPs and IDPs with such trust
relationships established is called an identity federation.

The FIM protocols do not only provide single sign-on capabilities, i.e. the
transmission of authentication information, but also support the exchange of
user attributes between SP and IDP. For example, a SP could request a user’s
billing address and credit card information from the IDP. In business-to-business
(B2B) scenarios, the IDP typically is the organization the user is working for,
while in business-to-customer (B2C) scenarios it could be the user’s ISP or credit
card company.

Obviously, access to sensitive data such as Personally Identifiable Information
(PII) must be restricted, i.e. there must be a way to control which attributes

J. Dittmann, S. Katzenbeisser, and A. Uhl (Eds.): CMS 2005, LNCS 3677, pp. 160–169, 2005.
c© IFIP International Federation for Information Processing 2005



Using XACML for Privacy Control in SAML-Based Identity Federations 161

the IDP hands out to the SPs, in order to protect the user’s privacy and thus
gain the user’s acceptance. While the necessity for such a control mechanism is
well-known under the term Attribute Release Policies (ARPs), none of the three
major FIM standards — SAML [1], Liberty Alliance [2] and WS-Federation [3] —
addresses this issue concretely and instead leaves it up to actual implementations.

Fortunately, although not required for standards compliance, some FIM im-
plementations offer ARP support; e.g., Shibboleth [4] is the most advanced and
wide-spread open source FIM software currently in use, with its focus on pri-
vacy clearly being one of the major reasons for its popularity. However, even
Shibboleth only provides rudimentary ARPs in a proprietary format, and the
development of more sophisticated ARPs is explicitely encouraged. We analyze
existing ARP implementations and their deficiencies in section 2.

The eXtensible Access Control Markup Language (XACML, [5]) is a generic
and very flexible language for modeling access rights. In section 3, we derive
XACML’s suitability for the formulation and enforcement of ARPs and demon-
strate how it fulfills an advanced set of ARP design criteria and goals. We present
an architecture for the integration of XACML ARPs into SAML-based identity
providers and then introduce our implementation for Shibboleth in section 4.

2 Related Work and State of the Art

Privacy on the internet and in e-commerce scenarios is a well-studied field and
several solutions have found many adopters. To clarify the scope of our work,
we first demonstrate how our intents differ from and complement those found in
the established privacy standard P3P [6]. We then analyze two ARP implemen-
tations and show their limits by means of an e-commerce scenario.

Independent from the development of the FIM standards, the Platform for
Privacy Preferences (P3P) has been standardized by the W3C for the use in web
sites. P3P-enabled web browsers automatically fetch a web site’s privacy policies;
by comparing them with the user’s locally specified preferences, they can decide
whether the user agrees to use the site under the given privacy conditions. P3P is
neither intended nor suitable for modeling FIM ARPs, because it is an SP-side-
only mechanism which does not specify how user preferences shall be stored on
the browser or IDP side. It also is limited to web sites and defines an e-commerce
specific user profile, whereas FIM protocols work for any kind of web service and
support federation-specific user attributes. However, our XACML approach to
FIM ARPs leverages the rationale behind P3P and the P3P Preference Exchange
Language (APPEL, [7]).

Shibboleth [4] is based on SAML and due to its origin, the higher education
institutions in the USA, privacy is an important aspect, so its built-in support for
fine-grained ARPs comes at no surprise. Shibboleth distinguishes between site
ARPs, which are used by IDP administrators to specify defaults for all users,
and individual user ARPs. Shibboleth ARPs consist of rules. Each rule specifies
one target, i.e. a tuple (service provider, service), which allows to differentiate
between multiple services offered by the same SP. For each attribute in the rule,



162 W. Hommel

this target’s access can be granted or denied, optionally based on the attribute’s
current value. In the following example access to the user’s surname is granted
to every SP (XML namespaces have been removed to enhance readability):

<Attr ibu teRe l easePo l i c y>
<Rule>

<Target> <AnyTarget/> </Target>
<Att r ibu te name=”surname”>

<AnyValue r e l e a s e=”permit ”/>
</ Att r ibute>

</Rule>
</ Att r ibu teRe l easePo l i c y>

Shibboleth combines the site ARP and the user ARP to form the effective
ARP ; if there is a conflict, i.e. one ARP allows access to an attribute while the
other does not, or if the SP requests an attribute for which no ARP has been
defined, access to the attribute will be denied.

To support distributed management of site ARPs and to distinguish between
multiple roles a user can be acting in, Nazareth and Smith suggested an alterna-
tive implementation, which uses public key based ARPs [8]. They are choosing
the simple public key infrastructure (SPKI, [9]) and the simple distributed secu-
rity infrastructure (SDSI, [10]) as a base for their ARPs. This approach features
hierarchical ARPs, so, for example, a department’s ARP can be intersected with
the whole company’s ARP to form the resulting site ARP, which in turn is inter-
sected with the user ARP. Opposed to Shibboleth’s built-in ARPs, no conditions
on an attribute’s current value can be specified.

Both implementations lack functionality which is demanded in many real
world scenarios; those deficiencies are:

– The ARPs are not context sensitive. For example, users typically are willing
to grant access to more attributes, such as their credit card data, when
they purchase something from a web site than when they are just looking
for information; i.e., the purpose why the SP requests the attribute is not
considered at all.

– No obligations can be specified. As an example, a user might want to be
informed whenever an SP accesses the credit card data, e.g. by means of a
logfile or by email.

– Access must be granted or denied to each attribute separately, i.e. there is
no way to group attributes. For example, a delivery address may consist
of the attributes given name, surname, street, postal code and city. It is
cumbersome having to set up five rules per target instead of one.

– The access conditions are not flexible enough. For example, only the cur-
rently requested attribute’s value can be part of a Shibboleth ARP condition
and there are no environmental functions available; so, if credit card number
and expiry date are stored in separate attributes, there is no way to release
the credit card number only if it is still valid.



Using XACML for Privacy Control in SAML-Based Identity Federations 163

Both approaches also use proprietary formats, leading to the typical impli-
cations such as lacking interoperability and the need for dedicated tools as well
as additional implementation work.

3 XACML-Based Attribute Release Policies

We will now demonstrate that XACML is an excellent choice to model and
enforce ARPs; our architecture, which integrates XACML components into a
SAML-based IDP, is introduced in section 3.2. We tailor XACML to specify
the ARP syntax and semantics in section 3.3 and define the policy evaluation
workflow in section 3.4.

3.1 XACML’s Suitability

There are many organizational and technical reasons to use XACML:

1. Interoperability. XACML is an OASIS-ratified standard which has success-
fully been employed in distributed access control before, for example in com-
bination with SAML ([11], [12]) and PERMIS [13]. Its relationship to P3P
has been outlined in [14]. Developers and administrators do not need to learn
yet another policy language, and GUIs for end users might be re-used with
only minor modifications.

2. Compatibility. As both are XML-based, Shibboleth ARPs can easily be con-
verted to XACML ARPs. The algorithm is outlined in section 4.

3. Extensibility. As requirements are known to change over time and as users
will be more familiar with ARP concepts, the language used for ARPs must
be flexible enough to allow later extensions; XACML clearly is.

4. Schema independency. Opposed to e.g. P3P, XACML has not been designed
for a fixed schema; instead, each identity federation can select a suitable data
schema or create a dedicated new one. Due to XACML’s support for XPath
expressions, attributes need not be flat key/value pairs, but structured at-
tributes are also supported. Note that a standardized format for ARPs is
independent of the arbitrary format of the data protected by ARPs.

5. Multiple roles. IDPs may allow a user to store several profiles, e.g. one used
at work and one used in spare time; XACML ARPs can easily be applied to
each of them.

6. Grouping of attributes. XACML allows the definition of variables, which can
be used to group attributes, so access rules need not be specified for each
attribute separately. An example is given below.

7. Decentralized management. Besides distinguishing between user ARPs and
site ARPs, it is possible to split ARPs into multiple distributed parts, each
of which can be maintained on its own. The distribution optionally can
reflect hierarchical structures, but priority based and other policy conflict
resolution mechanisms are supported as well. The total number of rules
required even for sophisticated policies can be kept low. Policy evaluation is
easy to understand for the users, and the results are comprehensible.



164 W. Hommel

8. Conditions. XACML is very flexible regarding the formulation of conditions
under which an attribute can be accessed. Primarily, this includes the spec-
ification of a) the service provider who requests the data, b) the actual
service being used, in case an SP offers more than one service, and c) the
purpose the data is being collected for. Furthermore, all attributes’ current
values and environmental information, e.g. the current date and time, can
be used.

9. Obligations. XACML features the specification of obligations, such as send-
ing an email or writing to a logfile when a positive or negative decision about
an access attempt has been made.

10. Optional use of PKI. While it is possible to use an existing public key in-
frastructure (PKI) to assure the integrity of user ARPs, it is not a prereq-
uisite for the use of ARPs. In particular, users are not required to handle
client-side certificates with their web browser, as this is often error-prone
and constrains the use of different machines, devices and browsers. Note
that this only affects how ARPs are stored and is independent of whether
the released attributes are transmitted to the service provider encrypted or
not.

11. Existing implementation. XACML ARPs can be evaluated by any standard
compliant XACML implementation. An excellent open source implementa-
tion is available [15].

Yet, XACML is a generic access control language and must be tailored to
our purpose. After an architectural overview, we specify the XACML elements,
which are necessary for ARPs, along with their syntax and semantics.

3.2 Architectural Overview

We have integrated an XACML component into a SAML-based IDP, which is
minimally invasive and maintains full SAML compatibility. Our XACML com-
ponent consists of a policy enforcement point (PEP) which we have designed and
implemented as described below, and an out-of-the-box XACML policy decision
point (PDP).

Figure 1 shows a high-level overview of the relevant components:

– Attribute requests are received by the SAML PDP, which passes them on to
our XACML PEP.

– The XACML PEP converts attribute requests into appropriate XACML
requests, which the XACML PDP evaluates. Details are given below.

– The attribute values and ARPs are kept in dedicated stores, such as LDAP
servers or relational database management systems.

– Administrators and users use dedicated interfaces to maintain the site and
user ARPs, respectively. For users, the ARP editing frontend could be com-
bined with the usual self services, i.e. the web site where they can change
their passwords, set up their e-mail addresses, update their personal infor-
mation, etc. The realization of a suitable web interface will be part of our
future work.



Using XACML for Privacy Control in SAML-Based Identity Federations 165

Policy
Decision

Point

Service Provider

Attribute Authority / Identity Provider

Policy
Enforcement

Point

FIM Component,
e.g. SAML PDP

Attribute
Request

Attribute
Statement

ARP StoreAttribute
Store

User Self
Services

Administrator’s
Interface

XACML
PDP

Frontend,
XACML PEP XACML

Component

Fig. 1. Overview of components involved in ARP processing

The ARP processing workflow for new attribute requests is as follows:

1. Several parts of the attribute request are extracted by the SAML PDP and
forwarded to the XACML PEP: a) The list of the requested attributes, and
b) meta-data, such as an identifier of the service provider, the actual service
being used and the purpose as stated by the requester.

2. The XACML PEP creates one XACML request per requested attribute,
which is then evaluated by the XACML PDP. This is necessary for the
following reason: if the complete list of requested attributes would be passed
on to the XACML PDP in a single XACML request, the result would be
an “all or nothing” response. This means that if just one attribute was not
allowed to be released, none of the requested attributes would be released.
However, in practice many SPs are greedy and request more attributes than
would be required for service provision. Thus, we have to decide about the
access to each of the attributes separately.

3. To provide everything the XACML PDP needs, the PEP fetches the neces-
sary ARPs and attributes from the appropriate stores:
– Multiple ARPs may have to be evaluated; typically, there is at least one

site and one user ARP involved. Their combination and evaluation is
specified in section 3.4.

– Besides the attributes which have been requested, additional attributes
for the evaluation of conditions within ARPs may be required. Those at-
tribute values are included in the XACML request as ResourceContent,
see section 3.3.

4. Each attribute request is then evaluated by the XACML PDP; its response
is composed of the release decision and optional XACML obligations. The
XACML PEP fulfills these obligations before returning the attributes, whose
release was permitted, to the SAML PDP.

5. The SAML PDP delivers the attributes to the SP.

The next section describes the elements available within each XACML ARP.



166 W. Hommel

3.3 XACML ARP Syntax and Semantics

In general, each XACML policy consists of rules. Rule combining algorithms
such as “first applicable” or “deny overrides” control how rules are evaluated and
when rule processing stops. Both rules and whole policies can specify targets; if
the policy’s targets do not match the actual attribute requester, none of its rules
are considered. An empty target definition makes sure that the whole policy is
always considered.

Each rule must have an effect, which is either permit or deny. It can declare
its own target by specifying the protected resources, one or more subjects and
the actions attempted by these subjects, and optionally also have a condition.

An XACML ARP will typically contain the following elements (a complete
example can be found below):

1. Priority specification. The policy’s priority is specified as XACML
CombinerParameter element. Typically, user ARPs will have higher priori-
ties than site ARPs, so users can override the default settings made by the
IDP administrator. The combination of multiple ARPs during the evaluation
of a request is described in section 3.4. Lines 2–6 demonstrate the priority
declaration in the example.

2. Rule precedence specification. Each policy must choose one rule combining
algorithm. XACML’s built-in “first applicable” algorithm, which stops rule
evaluation after the first matching rule has been found, is suitable for most
tasks and easy to comprehend by the users (see line 1 in the example).

3. Grouping of attributes. To group attributes, the names of any number of
attributes can be concatenated to form a regular expression, e.g. Street|-
ZIP|City, and assigned to a variable using a VariableDefinition element.

4. Attribute specification. XACML resource elements specify the user attribute
identifiers. Each attribute identifier is an URI, which shall be composed
of the IDP identifier, the user identifier, the user role and the attribute
name. XACML VariableReference elements can be used to speficy at-
tribute groups. Wildcards can also be used. In the example, lines 11–20
show how a user’s creditCardNumber attribute is selected.

5. Requester specification. The triple (service provider, service, purpose) is spec-
ified as a a conjunctive sequence of three SubjectMatch elements within an
XACML subject node-set as shown in lines 21–33 of the example.

6. Action specification. The obligatory XACML action is always read, as
SAML does not allow write operations by the SP yet (see lines 34–40).

7. Conditions. XACML conditions may be used to achieve even finer-grained
restrictions. All user attributes are included as ResourceContent in the
XACML request. A description of the powerful XACML functions which
can be used within conditions is out of the scope of this paper.

8. Obligations. XACML provides the Obligation element; writing to a text file
and sending an email are part of the standard, but arbitrary other obligations
can be implemented as well (see lines 42–49 in the example).

If a PKI is available, the integrity of ARPs can be protected by applying
XML signatures as described in [16]. Below is an example which grants access



Using XACML for Privacy Control in SAML-Based Identity Federations 167

to the user’s credit card number to an online shop only if an actual book order
is placed; an obligation specifies that each allowed release must be logged.

1 <Po l i cy id=”xacmlARP1” RuleCombiningAlg=” f i r s t −app l i c ab l e ”>
2 <CombinerParameters>
3 <CombinerParameter ParameterName=”ARPpriority ”>
4 100
5 </CombinerParameter>
6 </CombinerParameters>
7 <Desc r ipt ion> ARP by user John Doe </Desc r ip t ion>
8 <Rule id=”CreditCardToBookShop ” e f f e c t=”permit”>
9 <Desc r i pt ion> Release c r e d i t card number to bookshop </Desc r ip t ion>

10 <Target>
11 <Resources>
12 <Resource>
13 <ResourceMatch MatchId=” st r ing −equal ”>
14 <AttributeValue>
15 idp . example . com/ johndoe / d e f a u l t r o l e / creditCardNumber
16 </AttributeValue>
17 <ResourceAttr ibuteDes ignator Attr ibute Id=” resource −i d ” />
18 </ResourceMatch>
19 </Resource>
20 </Resources>
21 <Subje ct s>
22 <Subject>
23 <SubjectMatch MatchId=” st r ing −equal ” AttributeValue=”shop . example . com”>
24 <Sub je ctAt tr ibuteDes ignator At tr ibu te Id=” s e r v i c e p r ov i d e r ” />
25 </SubjectMatch>
26 <SubjectMatch MatchId=” st r ing −equal ” AttributeValue=”bookshop”>
27 <Sub je ctAt tr ibuteDes ignator At tr ibu te Id=” s e r v i c e ” />
28 </SubjectMatch>
29 <SubjectMatch MatchId=” st r ing −equal ” AttributeValue=”purchase ”>
30 <Sub je ctAt tr ibuteDes ignator At tr ibu te Id=”purpose” />
31 </SubjectMatch>
32 </Subject>
33 </ Subjec ts>
34 <Actions>
35 <Action>
36 <ActionMatch MatchId=” st r ing −equal ” AttributeValue=”read ”>
37 <Act ionAttr ibu teDes ignato r Attr ibu te Id=”action −i d ” />
38 </ActionMatch>
39 </Action>
40 </Actions>
41 </Target>
42 <Obl igat ions>
43 <Obl iga t ion Id=”Log” Fu l f i l lOn=”Permit”>
44 <AttributeAssignment Id=” text ”>
45 Your c r e d i t card number has been re l e a s e d t o :
46 <SubjectAt tr ibu teDes ignato r Att r ibu te Id=” s e r v i c e p r o v i d e r ” />
47 </AttributeAssignment>
48 </Obl iga t ion>
49 </ Obl igat ions>
50 </Rule>
51 <Rule id=”DoNotReleaseAnythingElse ” e f f e c t=”deny”/>
52 </Pol i cy>

3.4 Policy Evaluation Workflow

For the evaluation of an attribute request, an XACML PolicySet is created by
combining all relevant ARPs, i.e. those ARPs whose target element matches
the requester. This is handled by our XACML PEP.

Each ARP has a priority, and the XACML PolicySet is built by including
the ARPs ordered by decreasing priority; the “first-applicable” algorithm is then
used for the evaluation of the PolicySet. If multiple ARPs have the same pri-
ority, the inner order of their inclusion in the policy set is indeterminate; this
should be avoided to achieve deterministic evaluation results, unless other tech-
niques are applied to ensure that those ARPs have disjunctive target sets. The
resulting PolicySet can be evaluated by any standard compliant XACML PDP.

Obviously, the complexity of XACML policies and XACML implementations
can lead to security vulnerabilities; we address these issues by using Sun’s refer-
ence XACML PDP implementation and working on easy and intuitive graphical
user interfaces, as outlined in the next sections.



168 W. Hommel

4 Implementation and Integration into Shibboleth

We have implemented the XACML component in Java, using Sun’s XACML
PDP implementation [15], which does not support XACML variables yet, so
attribute grouping has to be done by our XACML PEP if necessary.

A standalone version is command line driven and creates the XACML re-
quest which is evaluated by the PDP. It also creates the XACML PolicySet as
described in section 3.4; future versions will take the more elegant approach of
implementing a custom XACML policy combiner which supports policy priori-
ties because XACML itself does not yet, but it provides the necessary extension
hooks. Besides its usefulness for development, we will use the standalone version
to enable users to test and debug their ARPs through a web interface.

An integration into Shibboleth’s IDP component (called Origin) is possi-
ble by replacing two methods in the build-in attribute resolver: first, list-
PossibleReleaseAttributes() must return the names of the user attributes
which should be retrieved, and afterwards filterAttributes() has to remove
all attributes whose release is not permitted by the ARPs. The user’s and service
provider’s ids are passed to both methods, which provides sufficient information
for identifying, combining and evaluating the relevant XACML-based ARPs.

Shibboleth’s built-in ARPs can be lossless converted to XACML-based ARPs.
Basically, Shibboleth ARP targets become XACML subjects and Shibboleth
ARP attribute elements turn into XACML resources. As release decisions are
made on attribute and not on rule level in Shibboleth ARPs, each Shibboleth
attribute is converted into a dedicated XACML rule. We have successfully
automated this transformation using an XSLT stylesheet.

5 Summary and Outlook

In this paper, we first analyzed existing implementations of Attribute Release
Policies (ARPs), which are the core privacy management tool in today’s iden-
tity federation standards. We have found several shortcomings and described
their consequences for real world applications and user acceptance. We then
provided arguments to use XACML as base for ARPs, a well-established ac-
cess control language standard, which has been successfully used in the field of
distributed access control before. We presented an architecture for the integra-
tion of XACML ARPs into SAML-based identity providers, which remains fully
compliant to the SAML standard. The syntax and semantics of XACML ARPs
have been specified along with the policy evaluation workflow, which makes use
of an out-of-the-box XACML policy decision point. Finally, we introduced our
implementation, the way to integrate it into Shibboleth, a popular open source
identity federation software, and outlined an algorithm which converts existing
Shibboleth ARPs lossless to XACML ARPs.

We are planning to integrate this ARP engine into the next major version
of Shibboleth, but for use in a production environment, intuitive graphical user
interfaces for the creation, testing and maintenance of these ARPs must be con-
ceived and implemented to hide the complexity from the end users. We will



Using XACML for Privacy Control in SAML-Based Identity Federations 169

also investigate the use of XACML for the so-called Attribute Acceptance Poli-
cies, which are the counterpart to ARPs on the service provider side; similar
deficiencies such as yet another proprietary format can be found there presently.

Acknowledgment. The author would like to thank the members of the Munich
Network Management (MNM) Team (http://www.mnm-team.org/), directed
by Prof. Dr. Hegering, for helpful discussions and valuable comments on earlier
drafts of this paper.

References

1. Cantor, S., Kemp, J., Philpott, R., Maler, E.: Security Assertion Markup Language
v2.0. OASIS Security Services Technical Committee Standard (2005)

2. Varney, C.: Liberty Alliance — Privacy and Security Best Practices 2.0.
http://project-liberty.org/specs/ (2003)

3. Kaler, C., Nadalin, A.: Web Services Federation Language (WS-Federation).
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/
(2003)

4. Erdos, M., Cantor, S.: Shibboleth architecture (v05). http://shibboleth.internet2.
edu/docs/ (2002)

5. Moses, T.: OASIS eXtensible Access Control Markup Language 2.0, core specifi-
cation. OASIS XACML Technical Committee Standard (2005)

6. Reagle, J., Cranor, L.F.: The Platform for Privacy Preferences. In: Communica-
tions of the ACM. Volume 42., ACM Press (1999) 48–55

7. Langheinrich, M.: A P3P Preference Exchange Language — APPEL 1.0.
http://www.w3.org/TR/P3P-preferences/ (2002)

8. Nazareth, S., Smith, S.: Using SPKI/SDSI for Distributed Maintenance of At-
tribute Release Policies in Shibboleth. Technical Report TR2004-485, Department
of Computer Science, Dartmouth College, Hanover, HN 03744 USA (2004)

9. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylnen, T.: SPKI
Certificate Theory. IETF Proposed Standard, RFC 2693 (1999)

10. Rivest, R., Lampson, B.: SDSI — A Simple Distributed Security Infrastructure.
Presented at CRYPTO’96 Rumpsession (1996)

11. Lepro, R.: Cardea: Dynamic Access Control in Distributed Systems. Technical
Report TR NAS–03–020, NASA Advanced Supercomputing Division, Ames (2003)

12. Mazzuca, P.: Access Control in a Distributed Decentralized Network: An XML
Approach to Network Security. Honors Thesis, Dartmouth College (2004)

13. Chadwick, D., Otenko, A.: The PERMIS X.509 Role Based Privilege Management
Infrastructure. In: Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies. SACMAT, ACM Press (2002) 135–140

14. Anderson, A.H.: The Relationship Between XACML and P3P Privacy Policies.
http://research.sun.com/projects/xacml/ (2004)

15. Proctor, S.: Sun’s XACML implementation. http://sunxacml.sf.net/ (2004)
16. Anderson, A.: XML Digital Signature profile of XACML 2.0. OASIS TC Commit-

tee draft, 16. September 2004 (2004)

http://www.mnm-team.org/
http://project-liberty.org/specs/
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/
http://shibboleth.internet2.edu/docs/
http://shibboleth.internet2.edu/docs/
http://www.w3.org/TR/P3P-preferences/
http://research.sun.com/projects/xacml/
http://sunxacml.sf.net/

	Introduction
	Related Work and State of the Art
	XACML-Based Attribute Release Policies
	XACML's Suitability
	Architectural Overview
	XACML ARP Syntax and Semantics
	Policy Evaluation Workflow

	Implementation and Integration into Shibboleth
	Summary and Outlook


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




