
Soft Computing Approach to Performance Analysis
of Parallel and Distributed Programs�

Hong-Linh Truong and Thomas Fahringer

Institute for Computer Science, University of Innsbruck
Technikerstrasse 21A, A-6020 Innsbruck, Austria

{truong,tf}@dps.uibk.ac.at

Abstract. This paper describes a novel approach to performance analysis for
parallel and distributed systems that is based on soft computing. We introduce
the concept of performance score representing the performance of code regions
that is based on fuzzy logic. We propose techniques for fuzzy-based performance
classification. A novel high-level query language is designed to support the search
for performance problems by using linguistic expressions. We describe a fuzzy-
based bottleneck search, a performance similarity measure for code regions and
experiment factors, and performance similarity analysis. Our approach focuses
on the support of making soft decisions on evaluation, classification, search and
analysis of the performance of parallel and distributed programs.

1 Introduction

Recently, performance analysis community has focused on developing performance
tools for parallel and distributed programs that are capable of supporting semi-automatic
performance analysis, dealing with large performance data sets, and analyzing multi-
ple experiments. However the development of automatic and intelligent performance
analysis is still at an early stage. Current techniques in existing performance analy-
sis tools have mainly been used to process the performance data that are in the form
of precise numerical data. Firstly, these techniques always apply exact analysis meth-
ods that result in hard conclusions about performance characteristics of applications.
Secondly, existing performance tools interact with the user through complex numerical
values and visualizations which are not easily understood by the user. Thirdly, in the
real world we largely rely on domain expertise and user-provided inputs as parameters
to control the performance analysis and tuning. Such expertise and inputs may be inex-
act and uncertain. However, existing performance tools do not support the specification
and the control of approximate and inexact parameters in data analysis techniques, in
other words, these tools do not provide a mechanism to make soft decisions.

The recent emerging soft computing [1], however, presents another way for evalu-
ating and analyzing data that is based on the concept of soft, inexact, uncertainty. Soft
computing aims to support imprecision, uncertainty and approximate reasoning [1].

� The work described in this paper is supported in part by the Austrian Science Fund as part
of the Aurora Project under contract SFBF1104 and by the European Union through the IST-
2002-511385 project K-WfGrid.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 50–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Soft Computing Approach to Performance Analysis 51

In this paper we present a new approach to the performance analysis that we call
the soft performance analysis. In this approach, well known soft computing techniques
such as fuzzy logic (FL), machine learning (ML) concept, and the combination of FL
and ML are studied and developed for performance analysis of parallel and distributed
programs. We introduce the concepts of performance score and performance similarity
measure. Employing these concepts, we develop several soft techniques and methods
for performance analysis such as fuzzy-based performance classification, performance
search, similarity analysis, etc.

The rest of this paper is organized as follows. Section 2 outlines the so-called soft
performance analysis. Section 3 presents a few preliminaries. We introduce the con-
cept of performance score and performance similarity measure in Section 4 and Section
5, respectively. We describe soft techniques for performance analysis including fuzzy-
based performance classification, query language, fuzzy-based bottleneck search and
performance similarity analysis in Section 6. Section 7 discusses the related work. Sec-
tion 8 gives conclusions and the future work.

2 Soft Performance Analysis

Existing performance analysis tools are based on hard computing model that is based on
binary logic and crisp systems. For example, to classify the performance performance
analysis tools normally use a characteristic function. That is, given a performance met-
ric and a set of performance characteristic term, e.g., poor, medium and good, each
term represents a performance class and is associated with a data set, the performance
of a code region is classified according to characteristic terms by using a characteristic
function. However, such classification is in binary form, e.g., a performance of the code
region is either good or not, because the hard computing model does not accept impre-
cision and uncertainty. Since approximate search, classification and reasoning are not
possible, the cycle of finding performance patterns in a large set of performance data
has been lengthened because, in the real world, the boundaries between performance
classes, performance search constraints, etc., are not clearly seen, thus, exact methods
may not yield the expected results. Moreover, current tools focus on supporting the
performance analysis through statistical graphics which are not well suited for process-
ing large performance datasets. In practice, both performance data and expertise used in
performance analysis domain can be uncertain. For example, in the case of performance
classification, performance of code regions is classified into good, but depending on the
degree of good the performance of code regions can be considered as little good, fairly
good or very good. When we are not sure about performance data and expertise, we
may accept some degrees of uncertainty and approximate in our analysis techniques.

To address the above-mentioned issues, we investigate performance analysis tech-
niques that are based on soft computing. The soft performance analysis we propose aims
to develop techniques for performance tools that can (i) extract useful performance in-
formation from large, dynamic and multi-relational performance measurement sources,
(ii) support the specification and control of approximate and inexact parameters, com-
mands and requests in existing performance analysis tools, and (iii) interact with the
user through high level notions and concepts expressed in linguistic expressions.

52 Hong-Linh Truong and Thomas Fahringer

We outline the approach as follows. Firstly, fuzzy logic (FL) can help representing
and normalizing quantitative data. We can represent performance score of metric val-
ues by using fuzzy set (FS). By employing the concept of performance scores, we can
develop several techniques that support soft, inexact and uncertainty in performance
analysis. The application of FL theory also involves the concept of linguistic variables
and the use of linguistic variables is particular useful for the end-user because humans
employ mostly words in computing, as presented in the concept of computing with
words [2]. Therefore, by using FL, performance tools can provide a way to perform the
analysis and to interpret performance results with linguistic terms. Secondly, when pro-
cessing large and diverse performance data, information about performance summaries,
similarities and differences of data items in that data become more important as we can-
not examine each data items in detail. Similarity measure techniques can be exploited to
reveal the performance similarities and differences. ML techniques [3] can be utilized
to discover patterns in very large performance datasets. For example, machine learning
is combined with fuzzy computing to provide fuzzy clustering for performance data.
Due to the space limit, this paper presents only a few points of our approach, focusing
on FL and performance similarity techniques. More detail of soft performance analysis
can be found in [4].

3 Preliminaries

3.1 Performance Experiment Data

A program contains a set of instrumented code regions. Performance data collected in
each experiment of the program is organized into a performance experiment data. An
experiment is associated with a set of processing units. A processing unit pu is a triple
(n, p, t) where n, p and t are computational node, process identifier and thread identi-
fier, respectively. A region summary rs is used to store performance metric records of
executions of a code region cr in a processing unit pu. A performance metric record pm
is represented as a tuple (m, v) where m is the metric name and v is the metric value.
We denote rs(m) as the value of performance metric m stored in region summary rs.

We use performance data obtained from experiments of three Fortran applications
named 3DPIC (MPI program), LAPW0 (MPI program) and STOMMEL (mixed
OpenMP and MPI program). All experiments are conducted on a cluster of 4CPU SMP
nodes using MPICH library for Fast-Ethernet 100Mbps and Myrinet.

3.2 Representing Performance Characteristics Under Fuzzy Logic Theory

An FS is used to map metric values onto membership values in the range [0, 1]. An
FS is expressed as a set of ordered pairs FS = {(v, µ(v))|v ∈ U} where µ(v) is the
membership function determining the degree of membership of v, and U is the uni-
verse of discourse of v. Let v be a metric value with the universal of discourse U . U is
characterized by a given set of performance characteristic terms T = {t1, t2, · · · , tn};
performance characteristic terms are linguistic terms such as poor, medium and high.
Each ti is associated with a membership function µi(v) which determines the member-
ship of v in ti. v can be classified according to these terms. A modifier (e.g. slightly) is

Soft Computing Approach to Performance Analysis 53

an operation that modifies a performance characteristic term (e.g. bottleneck). The mod-
ification results in a new fuzzy set represented by a new phrase (e.g. slightly bottleneck).
In our experiments, we use the NRC-IIT FuzzyJ Toolkit [5] for fuzzy computing.

4 Performance Score

When evaluating and comparing performance of code regions most existing perfor-
mance tools are normally based on quantitative measurement values and do not employ
quantization or normalization techniques to evaluate multiple metrics. We present the
concept of performance score which is used to evaluate the performance of a code re-
gion within a base, e.g. the parent code region or the whole program. The concept is
based on (i) a set of selected performance metrics characterizing the performance of the
code region, and (ii) a weight set representing the significance of performance metrics.
Given a code region cr, let rs be the region summary of cr with a set of n performance
metrics {m1, m2, · · · , mn}. Suppose the number of performance metrics measured is
the same for every code regions. rs can be represented in n dimensional space. Let
vi = rs(mi) be the value of metric mi in rs and let si be a score that represents the
performance of rs with respect to metric mi. We compute si as follows

si = µi(vi), µi(v) : [0, Vmi] → [0, 1] (1)

where µi(v) is the membership function determining the performance score, and Vmi

is the maximum observed value of mi. Vmi is dependent on the level of code region
analysis. For example, if we analyze performance scores of rs with its parent rsparent

as the base, Vmi = rsparent(mi).
The value of si is in the range [0, 1]; 0 means the lowest score, 1 means the highest

score. A higher performance score might be used to imply a higher performance or to
indicate a lower significant impact. The exact semantics of the value of the performance
score is defined by the specific implementation. As a result, performance scores can be
used in various contexts such as to indicate (i) a significant impact level: the higher a
performance score is, the higher impact the code region has, or (ii) a severity, the higher
a performance score is, the more severe the core region is. There are several ways to
select µ(v), depending on the specific analysis and approximate model used. The most
simple way is to define the membership function µ as µ(vi) = vi

Vmi
which assumes that

the score is based on linear model. We can choose trapezoid, S-function, Z-function,
triangle, etc., and tool-defined function for µ(v).

Each rs is associated with a vector of performance scores �s. However, we may
only select a subset of �s as metrics to represent the performance of the code region.
Like quantitative measurement values, we can compare two performance scores of two
different metrics. However, because performance scores are normalized values, we can
aggregate performance scores �s of rs into a single score by using the overall weighted
average (OWA) operator. Let {s1, s2, · · · , sn} be performance scores of rs and W =
{w1, w2, · · · , wn} be the set of weights. wi is a weight factor associated with metric
mi. The aggregate performance score for �s may be computed as follows

OWA(�s) =
∑n

i=1 (|siwi|)∑n
i=1 wi

(2)

54 Hong-Linh Truong and Thomas Fahringer

For the sake of simplicity, normally wi ∈ (0, 1) and
∑n

i=1 wi = 1. OWA score is
particular useful for support of decision making in performance analysis and tuning
because very often we have to decide which are the focused metrics of the code regions
that should be tuned and optimized in order to achieve a better performance. Hence we
use the notation (mi,wi) to denote mi with its associated weight wi.

We use performance score in ranking analysis, fuzzy C-means clustering, fuzzy
rules, and similarity analysis. The former three analyses are covered in [4].

5 Performance Similarity Measure

Most existing performance tools employ numerous displays, e.g., process time-lines
and histograms, to compare performance measurements and visualize that measure-
ments. Those displays are crucial but the user has to observe the displays and perceive
the similarity and the difference among these values. Moreover, it is difficult to com-
pare multivariate data through visualization. We propose methods to compute the per-
formance similarity measure which can be used as a metric to indicate the performance
similarity among code regions and among experiment factors. Formally, let oi and oj be
objects, a similarity measure is a function sim(oi, oj) → [0, 1] that compares oi with oj

where 0 denotes complete dissimilarity and 1 denotes complete similarity. Performance
similarity measure can help uncovering similar/dissimilar performance patterns among
code regions, e.g., for making decisions in dynamic performance tuning [6].

5.1 Similarity Measure for Code Regions

Let rsi and rsj be region summaries of cr. Let sil and sjl be performance score of rsi

and rsj with respect to metric ml, respectively. We use Equation 1 to compute sil and
sjl. The performance similarity measure simij(rsi, rsj) is defined as follows

simij(rsi, rsj) = 1 − dij , dij =

√
√
√
√

n∑

l=1

(|sil − sjl|2) (3)

where dij is the distance measure between rsi and rsj ; dij is computed based on Eu-
clidean distance. Note that we can use other distance functions, e.g., Minkowski, Man-
hattan, Correlation and Chi-square, and can use weight factors associated with metrics.

To determine the performance similarity among executions of code regions across
a set of experiments, we use Equation 3 to measure the performance similarity. Given a
code region cr and a set of experiments {e1, e2, · · · , en}. Let rsi be region summary of
cr in experiment ei. We compute similarity measure sim(rs1, rsi), i : 2 → n by using
various membership functions. Given metric mi, when determining performance score,
the maximum observed value Vmi is obtained from e1 which is the base experiment.

5.2 Similarity Measure for Experiment Factors

Experiment factors which can be controllable, e.g. problem size, the number of CPUs
and communication libraries, or uncontrollable such as CPU usage, have significant im-
pact on the performance of the applications. Without considering the similarity between

Soft Computing Approach to Performance Analysis 55

experiment factors, it is difficult to explain cases in which the performance of code re-
gions is not similar because the experiment factors can be different. Therefore, initially
we try to address this problem by measuring similarity between controllable factors.

Let simf(ei, ej) be similarity measure for factor f between experiments ei and ej .
Given a set of controllable factors F = {f1, f2, · · · , fn}, similarity measure is com-
puted for each factor fi ∈ F . There is no common way to compute simf as a control-
lable factor and its role depend on each experiment. The objective of our analysis is to
find out the relationship between the performance similarity of the code regions, simo

(e.g. sim(rsi, rsj)), and simfi . Naturally we expect that the similarity measures of the
controllable factors of two experiments and the similarity measures of the performance
of these experiments behave in a similar fashion, e.g. if the controllable factors are very
similar then the performance of experiments should be very similar.

6 Soft Techniques for Performance Analysis

6.1 Performance Classification

Performance classification classifies the performance of code regions according to per-
formance characteristic terms. Formally, given a metric value v and a set of performance
characteristic terms T = {t1, t2, · · · , tn}, v are classified according to that terms. In ex-
isting performance tools, the classification gives a binary result: v belongs to only one
ti ∈ T , with no degree of membership. Conversely, the fuzzy-based classification de-
termines the degree to which v fits into ti, for all ti ∈ T .

To classify performance of code regions, we firstly define a set of performance
metric terms for each performance metric m by partitioning the universal of discourse
of metric m into segments and each segment is described by a performance metric term
which is associated with a FS. Performance characteristic terms can be defined based
on training data. After membership functions are determined, the membership degree
of v is computed based on quantitative value v of m.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

D
eg

re
e

L2 cache miss ratio

medium
high
low

Fig. 1. Performance characteristic terms low, medium,
high with their associated fuzzy sets.

To demonstrate this analy-
sis, we classify code regions of
3DPIC application executed on
4 processors according to per-
formance characteristic terms
T = {low, medium, high}
representing the L2 cache miss
ratio. Three FSs Z-function,
trapezoid and S-function are
associated with low, medium,
and high term, respectively, as
shown in Figure 1. We then conduct the classification with a few selected code regions.
Figure 2 presents the result with five selected code regions. As shown in Figure 2, the
code region PARTICLE LOAD has high L2 cache miss ratio. However, code region
CAL POWER is member of both low and medium.

New performance characteristic terms can also be built by combining existing ones
with modifiers. For example, we can classify code regions according to very low L2

56 Hong-Linh Truong and Thomas Fahringer

Fig. 2. Membership in {low, medium, high} L2 cache miss ratio for selected code regions of
3DPIC.

cache miss ratio; the term very is a fuzzy modifier. The use of modifiers allows us to
extend and enhance the description of performance characteristic terms.

6.2 Fuzzy Query for Performance Search

The fuzzy-based approach offers the possibility of search of performance data with
words. Fuzzy-based search that uses linguistic expressions has been widely employed
in database systems, information retrieval, etc., but not in existing performance tools.

〈Statement〉::=〈Expr〉|〈Statement〉 OR 〈Expr〉
〈Expr〉 ::=〈Term〉 | 〈Expr〉 AND 〈Term〉
〈Term〉 ::=(METRIC is 〈F Expr〉)

Fig. 3. Top-level syntax of PERFQL.

We propose a fuzzy-based
query language for search of per-
formance data. Queries are con-
structed based on fuzzy modifiers,
AND and OR operators, and per-
formance characteristic terms. Figure 3 presents the top-level syntax of our PER-
FQL (Performance Query Language based on fuzzy logic). METRIC is a metric
name or a metric expression. A metric expression consists of operands and +, -, *,
/ arithmetic operators; operands are metric names. F Expr describes the syntax of
generic linguistic expressions (see [5] for the syntax). These expressions are con-
structed from performance characteristic terms and modifiers. For example, the fol-
lowing query can be used to find code regions which have high wallclock time and
poor L2 cache miss ratio: "(wtime is HIGH EXECUTION TIME) AND (L2 TCM

L2 TCA
is

POOR CACHE MISS)" , where HIGH EXECUTION TIME and POOR CACHE MISS
are performance characteristic terms.

PERFQL allows the user to easily define queries for search of performance data by
using words, not numerical expressions. Thus, it is easy to be understood and interpreted
by the user. Moreover, fuzzy-based queries enable approximate search thus interesting
performance data which is slightly less or greater than the crisp condition can be easily
obtained.

6.3 Fuzzy Approach to Bottleneck Search

There are several tools supporting bottleneck search, e.g., [7, 8]. These tools, however,
support crisp-based searching as the search is conducted by checking crisp threshold.
Given a performance metric, a threshold is pre-defined. During the search, the per-
formance metric is evaluated against the threshold, and when the performance metric

Soft Computing Approach to Performance Analysis 57

exceeds the threshold, a bottleneck is assumed to exist in the code region. There are two
drawbacks of current crisp search strategy. Firstly, the search does not give the degree
of severity of the bottleneck, e.g. extremely or slightly bottleneck. Secondly, there is no
support to specify inexact bottleneck search statements such as negligible bottleneck.
These statements are important as the threshold, by nature, is not an exact value.

Degree

1

0

Bottleneck
threshold

Metric ValueUpper bound

Crisp bottleneck membership function
 Fuzzy “severe bottleneck“ membership function

Fuzzy “negligible bottleneck“ membership function

Fig. 4. Fuzzy vs crisp bottleneck search.

We propose fuzzy-based bot-
tleneck search that addresses the
above-mentioned drawbacks. Figure
4 outlines the fuzzy-based bottle-
neck search. Given a threshold, we
can use FSs to represent the severity
of bottleneck and the negligible bot-
tleneck range besides the FS repre-
senting the bottleneck threshold. For
example, in Figure 4 we define a Pi-
function FS used to check the neg-
ligible (close to) bottleneck points and S-function FS used to check the severity of
bottleneck. When searching the bottleneck points, the value of metric used in bottle-
neck search is evaluated against these FSs. Not only we can locate bottleneck points as
usual but also we can provide the severity of bottleneck, and are able to find negligible
bottleneck points.

(a) Without negligible bottleneck search

(b) With negligible bottleneck search

Fig. 5. Example of fuzzy-based bottleneck search.

Very simply, to show advantage of fuzzy-based bottleneck search, we experience
with 3DPIC code to locate code regions that may have L2 cache access problems. Sup-
pose a code region whose L2 cache miss ratio exceeds 0.7 is a bottleneck. In the first
case we use a set of performance characteristic terms T = {low, medium, high} rep-
resenting the severity of the bottleneck. Three different fuzzy sets Z-function with range
[0.7, 0.8], Pi-function with range [0.75, 0.95] and S-function with range [0.9, 1] are asso-
ciated with low, medium, and high term, respectively. We apply this search with 3DPIC
code executed with 4 processes and we find that there is only one bottleneck as shown
in Figure 5(a). The bottleneck falls into both classes medium and high, as shown in Fig-
ure 5(a). Since we are not certain about the threshold we decided to use another triangle
FS with parameter (0.65, 0.7, 0.75) to describe close area of the pre-defined bottleneck
threshold. The result is that we find another code region as presented in Figure 5(b).

58 Hong-Linh Truong and Thomas Fahringer

6.4 Similarity Analysis

We have implemented similarity analysis for all region summaries of a given code re-
gion in one experiment, and for region summaries of a set of selected code regions in a
single or multiple experiment(s).

Fig. 6. Similarity analysis for LAWP0. We used (wtime, 1.0) to compute similarity mea-
sure. Experiment 2Nx4P,P4,36 is selected as the base. 1Nx4P means 1 SMP node with 4
processors. P4 and GM correspond to MPICH CH P4 and Myrinet, respectively. The problem
size is either 36 or 72 atoms. Distance measure is based on Euclidean function.

Figure 6 presents an example of using similarity analysis to examine selected code
regions in 6 experiments. The first observation is that the performance of code region
FFT REAN0 in the last 5 experiments is almost complete similar to the first experi-
ment. The performance of FFT REAN3, FFT REAN4 is almost similar in the first 4
experiments. This suggests that the performance of these code regions is not affected
by changes of number of processors, communication libraries, even problem sizes (in
case of FFT REAN0). All code regions have similar performance in the first two ex-
periments, suggesting the use of Myrinet does not increase much performance. This is
confirmed by many cases in which communication libraries are different but the perfor-
mance is very similar.

Table 1. Parameters for controllable factors.

Factor Fuzzy Set Range Factor Category
atoms linear [0,72] problem size
CPU S-function [0,64] machine
network S-function [0,158.20] communication

Table 1 shows an example of
parameters of controllable fac-
tors. Table 2 presents the result
of an example in which similar-
ity is measured for code region
CA MULTIPOLMENTS in 6 ex-
periments of LAPW0 by using parameters in Table 1. Performance score of the code
region is based on S-function and distance measure is based on Euclidean function. In
some cases, communication factor has very little impact on the performance, e.g., the

Table 2. Example of similarity analysis with experiment factors for CA MULTIPOLMENTS re-
gion in 6 experiments. The first experiment is selected as the base.

Experiments 2Nx4P, 2Nx4P, 3Nx4P, 3Nx4P, 3Nx4P, 3Nx4P,
P4,36 GM,36 P4,36 GM,36 P4,72 GM,72

simfatoms ({atoms,1}) 1 1 1 1 0.5 0.5
simfCPU ({(CPU,1)}) 1 1 0.9531 0.9531 0.9531 0.9531
simfnetwork

({(network,1)}) 1 0.1519 1 0.1519 1 0.1519
simo ({(wtime,1)}) 1 0.996 0.638 0.635 0.625 0.625

Soft Computing Approach to Performance Analysis 59

network between the first and the second experiment is quite dissimilar while other fac-
tors are very similar, but the performance is very similar. A similar result obtained if we
examine the fifth and sixth experiments. The CPU factor has significant impact on some
cases. E.g., factors of the third experiment are the same as those of the first experiment,
except that CPU factors are slightly different. However, the performance of the code
region is quite different.

7 Related Work

FL has been used in performance monitoring of parallel and distributed programs, e.g.
performance contracts [9], but has not been exploited in data analysis techniques, e.g.
performance classification, of existing performance tools.

APART introduces the concept of performance property [10] that characterizes a
specific negative performance behavior of code regions. However, performance prop-
erty is associated with a single performance metric. A performance property cannot rep-
resent a set of performance metrics. There is no concept of weight operator associated
with performance properties. Also, our performance score is based on FL that allows
the representation of fuzzy concepts such as near and very. Performance score can be
computed based on linear and non-linear model with various membership functions.

Toward high-level scalable and intelligent analysis, classification based on machine
learning has been used for classifying performance characteristics of communication in
parallel programs [11]. Ahl and Vetter used multivariate statistical techniques on hard-
ware performance metrics to characterize the system [12]. However, they do not deal
with cases of multiple variables with different scales and weight factors. In [13], statisti-
cal analysis is used to study different (controllable and uncontrollable) factors that affect
the mapping process of scientific computing algorithms to advanced architectures.

In [14] dispersion statistics is used to characterize the load imbalance by measuring
the dissimilarity of performance metrics; metrics are normalized by measuring devia-
tion from a mean value of a data set. Our similarity measure is based on fuzzy-based
performance scores and is applied to not only code regions but also experiment factors.

In [6], historical data is used to improved automatic tuning systems. Performance
score, similarity measure and fuzzy rules are fitted well for describing parameters and
for improving decision making in performance tuning.

8 Conclusion and Future Work

This paper proposes a new approach to performance analysis that is based on soft com-
puting. On the one hand, soft performance analysis techniques provide flexible, scal-
able and intelligent techniques for analyzing and comparing the performance of com-
plex parallel and distributed applications. On the other hand, they interact with the user
through high level notions. We complement existing work and contribute flexible and
convenient methods to deal with uncertainty in the performance analysis, e.g. fuzzy-
based bottleneck search, and to conduct the analysis in the form of high level notions,
e.g. fuzzy-based search query. Still the soft performance analysis approach is just at an

60 Hong-Linh Truong and Thomas Fahringer

early stage, we believe it is a promising solution to provide soft, scalable and intelligent
methods for automatic performance analysis.

Our future work is to study the application of soft performance analysis for dynamic
performance tuning. Our proposed techniques could be applied to the performance anal-
ysis of large-scale complex dynamic Grid environments on which resources and their
usage are unpredictable, performance data collected tends to be more imprecision and
uncertainty. Moreover, performance similarity can be used to analyze and compare di-
verse Grid resources. Linguistic variables and fuzzy rules can be used in specifying and
controlling service level agreements (SLAs) in the Grid.

References

1. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37 (1994)
77–84

2. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems
4 (1996) 103–111

3. Mitchell, T.M.: Machine Learning. McGraw Hill, New York, US (1997)
4. Truong, H.L.: Novel Techniques and Methods for Performance Measurement, Analysis

and Monitoring of Cluster and Grid Applications. PhD thesis, TU WIEN, Austria (2005)
http://dps.uibk.ac.at/t̃ruong/publications/linh-diss.pdf.

5. FuzzyJ Toolkit: http://ai.iit.nrc.ca/IR public/fuzzy/fuzzyJToolkit.html (2004)
6. Chung, I.H., Hollingsworth, J.K.: Using Information from Prior Runs to Improve Automated

Tuning Systems. In: ACM/IEEE SC2004, Pittsburgh, PA (2004)
7. Cain, H.W., Miller, B.P., Wylie, B.J.: A Callgraph-Based Search Strategy for Automated

Performance Diagnosis. In: Euro-Par 2000 Parallel Processing. (2000) 108–122
8. Fahringer, T., Seragiotto, C.: Aksum: A performance analysis tool for parallel and distributed

applications. Performance Analysis and Grid Computing (2003)
9. Vraalsen, F., Aydt, R.A., Mendes, C.L., Reed, D.A.: Performance contracts: Predicting and

monitoring grid application behavior. In: Proceedings of GRID 2001. Volume LNCS 2242.,
Denver, Colorado, Springer-Verlag (2001) 154–165

10. Fahringer, T., Gerndt, M., Mohr, B., Wolf, F., Riley, G., Träff, J.: Knowledge Specification
for Automatic Performance Analysis. Technical report, APART Working group (2001)

11. Vetter, J.: Performance analysis of distributed applications using automatic classification of
communication inefficiencies. In: Conference Proceedings of the 2000 International Confer-
ence on Supercomputing, Santa Fe, New Mexico, ACM SIGARCH (2000) 245–254

12. Ahn, D.H., Vetter, J.S.: Scalable Analysis Techniques for Microprocessor Performance
Counter Metrics. In: IEEE/ACM SC’2002, Baltimore, Maryland (2002)

13. Santiago, N.G., Rover, D.T., Rodriguez, D.: A Statistical Approach for the Analysis of
the Relation Between Low-Level Performance Information, the Code, and the Environ-
ment. In: Proceedings of 2002 International Conference on Parallel Processing Workshops
(ICPPW’02), Vancouver, B.C., Canada, IEEE Computer Society Press (2002) 282–

14. Calzarossa, M., Massari, L., Tessera, D.: A methodology towards automatic performance
analysis of parallel applications. Parallel Comput. 30 (2004) 211–223

	Soft Computing Approach to Performance Analysis of Parallel and Distributed Programs
	1 Introduction
	2 Soft Performance Analysis
	3 Preliminaries
	3.1 Performance Experiment Data
	3.2 Representing Performance Characteristics Under Fuzzy Logic Theory

	4 Performance Score
	5 Performance Similarity Measure
	5.1 Similarity Measure for Code Regions
	5.2 Similarity Measure for Experiment Factors

	6 Soft Techniques for Performance Analysis
	6.1 Performance Classification
	6.2 Fuzzy Query for Performance Search
	6.3 Fuzzy Approach to Bottleneck Search
	6.4 Similarity Analysis

	7 Related Work
	8 Conclusion and Future Work
	References

