
Hierarchical Scheduling for Moldable Tasks

Pierre-François Dutot

Laboratoire ID-IMAG
38330 Montbonnot St-Martin, France

Pierre-Francois.Dutot@imag.fr

Abstract. The model of moldable task (MT) was introduced some years ago and
has been proven to be an efficient way for implementing parallel applications. It
considers a target application at a larger level of granularity than in other models
(typically corresponding to numerical routines) where the tasks can themselves be
executed in parallel on any number of processors. Clusters of SMPs (symmetric
Multi-Processors) are a cost effective alternative to parallel supercomputers. Such
hierarchical clusters are parallel systems made from m identical SMPs composed
each by k identical processors. These architectures are more and more popular,
however designing efficient software that take full advantage of such systems
remains difficult. This work describes approximation algorithms for scheduling
a set of tree precedence constrained moldable tasks for the minimization of the
parallel execution time, with a scheme which is first used for two multi-processors
and several bi-processors and then extended to the general case of any number of
multi-processors. The best known approximations of competitive ratios for trees
in the homogeneous case is 2.62, and although the hierarchical problem is harder
our results are close as we obtain a ratio of 3.41 for two multi-processors, 3.73 for
several bi-processors and 5.61 for the general case of several SMPs with a large
number of processors. To our knowledge, this is the first work on precedence
constrained moldable tasks on hierarchical platforms.

1 Introduction

In recent years computer hardware became increasingly affordable. This trends led to
a greater number of parallel computers. However, a fast interconnection network is
still very expensive. A solution to this problem is to use several processors on each
motherboard connected by the network. This introduces a large difference in the time
needed for on-board communications and for communications between two different
motherboards.

In the case of Parallel Tasks (PT), where a task has to be processed by a fixed number
of processors, the execution time of a task cannot be easily predicted on such hierarchi-
cal architectures unless some very restrictive hypothesis are made such as tasks have
to be executed on one board only, or all communications are considered as long com-
munications. We consider in this paper the related Moldable Task (MT) model, where
the execution time of a task depends on the number of processors used to compute the
task. However, in a hierarchical system knowing the number of processors used is not
enough to predict the execution time, as communications can be local or distant. In [1],
we provided a new hypothesis to deal with this problem. This placement hypothesis is

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 302–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Scheduling for Moldable Tasks 303

recalled in Section 2. With this additional rule, the MT model is well suited to hierar-
chical systems.

Scheduling precedence constrained MT tasks is a NP-hard problem [2], and there-
fore approximation algorithms were developed to provide efficient schedules in poly-
nomial time. The first approximation algorithm for the homogeneous case has been
introduced by Lepère et al [3] with a ratio of 2.62 for tree based precedence constraints
and a ratio of 5.24 for general graphs. This scheme has been recently improved by
Hu Zhang in his PhD thesis [4–6] (under supervision of Pr. Jansen) achieving a 4.73
approximation ratio. In this paper, we adapted this scheduling technique of Lepère et
al. in the case of tree precedence constrained moldable tasks, as a first step towards
scheduling general graphs. To obtain ratios for general graphs without the improve-
ments designed by Hu Zhang, the results presented here can be simply multiplied by a
factor of 2. The recent improvements were not taken into consideration here due to the
length limitation.

In the next section, we will recall the definitions of the Moldable Task model and its
adaptation to hierarchical platforms. We will then briefly recall the scheduling scheme
used for the homogeneous case. This scheme (and improvements by Zhang) will then be
adapted for the two extremal cases of scheduling on two multi-processors and schedul-
ing for several bi-processors. Finally a general scheme for scheduling on several multi-
processors is proposed in Section 6.

2 The Moldable Tasks Model on Hierarchical Platforms

In the MT model a processor can compute only one task at a time, and the number of
processors allocated to a task is constant during its whole execution. The execution time
of a task depends on the number of processors allotted to it.

We consider an instance composed of n moldable tasks {T1, . . . , Tn} to be sched-
uled on a cluster of m identical SMPs composed each of k identical processors. The
tasks are linked with precedence constraints, in the form of trees (each node has at most
one predecessor). The execution time of the moldable task Ti when allotted to p pro-
cessors will be denoted by ti(p). Its computational area (or work) is defined as usually
as the time space product Wi(p) = pti(p). For a given allocation, we call critical path
the maximum sum of execution times over a chain of the graph, and work of the graph,
the sum of all the work of the tasks. The total work W =

∑
Wi(1) divided by mk, and

the critical path Lmax are straightforward lower bounds of the optimal makespan.
Using more than one processor to compute a task will cost some penalty for manag-

ing the communications and synchronizations. According to the usual behavior of the
execution of parallel programs, we assume that the tasks are monotonic. This means
that allocating more processors to a task will decrease its execution time and increase
its computational area.

There exists a difficulty inherent to hierarchical systems due to the fact that commu-
nications inside the same SMP are faster than between processors belonging to different
SMPs. In this case, the number of processors allotted to a task does not give all the in-
formations needed to determine the execution time of a task: a task will be scheduled
faster using processors inside the same SMP than using processors of different SMPs.
In order to avoid this problem, we introduce below a dominant rule:

304 Pierre-François Dutot

Definition (Best placement rule). For a given number of processors, we say that a
task is in its best placement if the penalty with this number of processors is the lowest
possible.

This definition is not very useful in the sense where many placements may verify
the best placement condition, and from the definition we cannot decide where it is best
to schedule the task. However, we can usually make the assumption that a task which
runs on less than k processors will be in its best placement if all the processors allotted
to the task are into the same SMP.

For tasks allotted to more than k processors, we need an additional hypothesis which
is the following:

Hypothesis (Minimal penalty). We assume in the rest of the paper that a task Ti allot-
ted to aik+bi processors (with ai ∈ [0; m] and bi ∈ [0; k−1]) is in its best placement if
exactly ai SMPs are dedicated to it during its execution and the remaining bi processors
are within the same SMP.

This hypothesis is clearly verified for clusters of bi-processors, as it avoids the cases
where a task is sharing more than one bi-processor with other tasks. For larger values of
k, this placement minimizes the number of clusters used by a task for a given allocation,
therefore it is probably not far from the optimal placement.

Remark that we do not ask the processors to be contiguous. For instance, Figure 1
represents two tasks verifying the minimal penalty hypothesis. The third one does not.

time

1 mk
processors

Task 3

Task 2

Task 1k

Fig. 1. Tasks 1 and 2 are in their best placement, whereas task 3 is not (m = 4).

In the rest of the paper, we will build algorithms whose output verify this best place-
ment rule. However, the competitive ratios given are with respect to an optimal schedule
which can use any kind of placement as long as the minimal penalty hypothesis holds,
as the proof is based on the total workload.

3 Previous Results with Precedence Constraints

The schemes used in this paper are mainly inspired from the scheduling algorithm for
the homogeneous case [3] (in this case m = 1). In this section, we will recall the basics
of this algorithm.

In the homogeneous case, there is no placement problem (k = 1). The algorithm
is composed of two phases. The first phase is a search for a good allocation for the

Hierarchical Scheduling for Moldable Tasks 305

moldable tasks, i.e. an allocation which realizes a trade-off between the workload and
the length of the critical path in the precedence graph. This problem is related to the
general class of time-cost problems where the time needed to perform a task depends
on the budget allotted to it. This problem has been solved by Skutella [7] very efficiently
in the case of tree precedence constraints leading to an optimal trade-off, and also has
good solutions for general graphs (leading to a 2 approximation on both the work and
the critical path).

Once this allocation is known, all allocations greater than a parameter µ (i.e. all
tasks using more than µ processors) are reduced to µ and then the second phase is a
classic list scheduling algorithm. The analysis of the algorithm is similar to the classic
proof of Graham’s list scheduling algorithm, and for the best possible µ the performance
ratio is (3 +

√
5)/2 � 2.62 for trees and 3 +

√
5 � 5.24 for general graphs [3].

4 Scheduling with Two Multi-processors (m = 2, k > 1)

Schedules produced by the homogeneous algorithm are usually inadequate in a multi-
processor setting, because of the placement rule. For a first view of the problem, we
will consider in this section the restricted case of scheduling on two multi-processors.

To keep the same construction scheme as in the homogeneous case, we have to
consider how the placement rule interferes in the list scheduling. As the parameter µ is
less or equal to mk/2 in the homogeneous case, a task in its best placement cannot use
processors in both multi-processors. We now distinguish two cases depending on the
value of µ.

In the first case, for 2k+1
3 < µ ≤ k, the schedule produced by the list algorithm can

be split into two kinds of time intervals. The first kind (of total length I1) is composed
of all the time intervals during which at most 2(k − µ) + 1 processors are used. During
these intervals, there are enough idle processors on at least one of the multi-processor to
schedule a task. If those processors are idle there is no available tasks, which means that
as in the original proof from Graham, a precedence constrained chain of tasks which
covers all these intervals can be found. As 2(k− µ) + 1 < µ, the tasks in this chain did
not have their allocation reduced to µ processors. The other kind of interval (of total
length I2) is composed of all the other time intervals. We denote by ω the length of the
schedule.

With these two kinds of intervals defined, we can write the following (in)equalities:

ω = I1 + I2 (1)

ω∗ ≥ L∗
max ≥ I1 (2)

2kω∗ ≥ W ∗ ≥ I1 + 2(k − µ + 1)I2 (3)

where ω∗ is the optimal makespan. The first one states that the total schedule length is
the sum of all the time intervals, the second states that the critical path (and therefore
the optimal schedule length) is greater than the length of the first kind of interval, and
the third one is a lower bound on the workload in the optimal schedule.

A straightforward calculation proves that the ratio ω
ω∗ is at most equal to 4k−2µ+1

2(k−µ+1)

which takes its minimum when µ is smallest, i.e. µ ≤ 2k+4
3 . The ratio is therefore

bounded by 4 + 3
2(k−1) .

306 Pierre-François Dutot

In the second case, for µ ≤ 2k+1
3 , the schedule can be split into three different kinds

of time intervals. The first kind (of total length I1) is when less than µ processors are
used, the second kind (of length I2) when between µ and 2(k − µ) + 1 processors are
used, and the third when at least 2(k − µ + 1) processors are used.

In the first and second kind of intervals, there is enough idle processors to schedule
any tasks, therefore a chain of tasks covering all these intervals is again constructible.
However this time, the tasks executed during intervals of the second kind may have
been reduced from their original allocation to an allocation of size µ.

The previous (in)equalities are now:

ω = I1 + I2 + I3 (4)

ω∗ ≥ L∗
max ≥ I1 +

µ

2k
I2 (5)

2kω∗ ≥ W ∗ ≥ I1 + µI2 + 2(k − µ + 1)I3 (6)

To find the best upper bound for the performance ratio ω
ω∗ , we can consider these

inequalities as a set of linear programming constraints, where ω has to be maximized,
and I1, I2 and I3 are the variables. The dual problem is easier to solve, as there are only
two variables. It is composed of the following (in)equalities:

z = ω∗y1 + 2kω∗y2 (7)

1 ≤ y1 + y2 (8)

1 ≤ µ

2k
y1 + µy2 (9)

1 ≤ 2(k − µ + 1)y2 (10)

With the new objective of minimizing z. Combining equality 7 and inequality 9 we have
z

ω∗ ≥ 2k
µ , and adding 2(k−µ+1) times inequality 8 to 2k−1 time inequality 10, we get

z
ω∗ ≥ 1 + 2k−1

2(k−µ+1) . To minimize z we have to minimize the maximum of 2k
µ and 1 +

2k−1
2(k−µ+1) . The first quantity decreases when µ increases while the second quantity has
the opposite behavior. The real minimum is therefore achieved when the two are equal,
and the best µ is one of the two integers closest to the solution of 2k

µ = 1 + 2k−1
2(k−µ+1) ,

which is
8k+1−

√
(8k+1)2−32k(k+1)

4 � (2−√
2)k + 2+

√
2

4
√

2
. As k grows without bounds,

this minimum gets close to 2
2−√

2
� 3.41. The value of the performance ratio for small

values of k is given in Figure 2. With the exception of k = 2 where the ratio is 4, all
the obtained performance ratio are less than 2

2−√
2

, the minimum being 2.75 for k equal
to four. Therefore it is always better to choose µ lower or equal to (2k + 1)/3 for two
multiprocessors.

Remark that if 2k
µ ≥ 1 + 2k−1

2(k−µ+1) , the ratio is reached by a schedule of a single

task. Let T1 be a highly parallel task such as t1(p) = t1(1)
p , its optimal execution time

would be t1(1)
2k , and the schedule produced with our algorithm has an execution time of

t1(1)
µ , leading to the ratio 2k

µ .

Hierarchical Scheduling for Moldable Tasks 307

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 5 10 15 20 25 30 35 40

Fig. 2. Best performance ratio for two multi-
processors of sizes up to 40 processors each.

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 5 10 15 20 25 30 35 40

Fig. 3. Best performance ratio for up to 40
bi-processors. The dotted line is for µ ≤
2m+1

3
, and the solid line for 2m+1

3
< µ.

5 Scheduling on Bi-processors (m ≥ 2, k = 2)

The second restricted case which is interesting to consider before addressing the gen-
eral case, is scheduling on a large number of bi-processors. In this case, restricting the
allocation to a portion of a bi-processor as we did previously makes no sense. The solu-
tion we considered is to directly use the homogeneous algorithm, with a different value
for µ, and try to prove that the placement constraint with bi-processors is generally
satisfiable.

Let m be the number of available bi-processors. As previously, we restrict the al-
locations of the first phase which are greater than µ to µ. The placement rule states
that to place a task of allocation a, we need to have at least

⌊
a
2

⌋
idle bi-processors plus

eventually a processor if a is odd. As we did in the previous section, we will consider
two cases depending on the value of µ.

For 2m+1
3 < µ ≤ m, the schedule can be split into two kinds of time intervals of

respective length I1 and I2. The first kind of time intervals is when at most m − ⌊
µ
2

⌋

processors are used. In these intervals, there is enough idle processors to schedule a
task using µ processors. All other time intervals are counted in the other kind of time
interval.

As previously, we can write some inequalities on the length ω of the schedule pro-
duced by the algorithm:

ω = I1 + I2 (11)

ω∗ ≥ L∗
max ≥ I1 (12)

2mω∗ ≥ W ∗ ≥ I1 +
(
m −

⌊µ

2

⌋
+ 1

)
I2 (13)

From these (in)equalities, it is straightforward to prove that:

ω

ω∗ ≤ 3m − ⌊
µ
2

⌋

m − ⌊
µ
2

⌋
+ 1

(14)

which means that the best ratio is obtained for the smallest possible value of µ, which
is

⌊
2m+1

3

⌋
+ 1. This ratio is lower than 4 and tends to 4 for large values of m.

308 Pierre-François Dutot

For smaller values of µ, i.e. µ ≤ 2m+1
3 , we again have to distinguish three kinds of

time intervals, of respective length I1, I2 and I3, depending on the number of processors
used. The first kind is made of intervals where less then µ processors are used, the
second kind is composed of intervals with a number of processors between µ and m −⌊

µ
2

⌋
and the third of time intervals with more than m − ⌊

µ
2

⌋
busy processors.

Again, there is a set of (in)equalities describing the length of the schedule:

ω = I1 + I2 + I3 (15)

ω∗ ≥ L∗
max ≥ I1 +

µ

2m
I2 (16)

2mω∗ ≥ W ∗ ≥ I1 + µI2 +
(
m −

⌊µ

2

⌋
+ 1

)
I3 (17)

Which can be seen as a linear programming set of equations, and the dual is this
time:

z = ω∗y1 + 2mω∗y2 (18)

1 ≤ y1 + y2 (19)

1 ≤ µ

2m
y1 + µy2 (20)

1 ≤
(
m −

⌊µ

2

⌋
+ 1

)
y2 (21)

As before, some straightforward rewriting yields to:

z

ω∗ ≥ 2m

µ
(22)

z

ω∗ ≥ 1 +
2m − 1

m − ⌊
µ
2

⌋
+ 1

(23)

Again, we have to find the µ which will minimize the maximum of the two lower
bounds. This time, the best µ can be bounded between two functions of m:

⌈
4m − 1 −

√
12m2 + 4m + 1

⌉
− 1 ≤ µ (24)

µ ≤
⌊
4m−

√
12m2 − 8m

⌋
+ 1 (25)

The obtained performance ratio is presented in Figure 3, with a dotted line for small
values of µ and a solid line for large values of µ. When the number of bi-processors
is lower than ten, the best solution is achieved with a large µ, whereas for more bi-
processors, µ has to be smaller. As m grows without bounds, µ

m gets close to (4−2
√

3)
and the performance ratio of the algorithm tends to 1

2−√
3
� 3.73.

6 A General Framework (m > 2, k > 2)

The algorithms of the two previous sections cannot easily be extended to an arbitrary
number of multi-processors with a large number of processors. The number of multi-
processors m is a lower bound on the ratio of the first algorithm, as µ is always lower
than k, while k is a lower bound of the ratio of the second one as m sequential tasks

Hierarchical Scheduling for Moldable Tasks 309

can prevent the execution of tasks allotted to at least k processors. A closer look shows
that the first algorithm corresponds to µ < k, and the second one to µ ≥ k.

To design efficient schedules for the general case, we have to take the best of the
two previous algorithms, considering both the tasks with a large allocation and the tasks
with a small allocation. The main idea is to use different values µ for small and large
tasks, and then restrict the execution of the small tasks on a specific part of the platform.

For the rest of the paper, we consider m multi-processors, having k processors each.
Let γ be an integer between 1 and m, γ sets the threshold between “small” and “large”
tasks. Tasks allotted to less than γk processors are “small”, while other tasks are “large”.
As we will need two different values of µ for small and large tasks, we will keep the µ
notation for small tasks, and denote by δk the largest allotment allowed (hence δk plays
the same role for large task as µ does for small tasks).

After the first allotment phase, the allotment of the tasks is reduced in the following
way:

– Tasks allotted to a processors, with a ≤ µ are kept in their original allotment.
– Tasks allotted to a processors, with µ < a < γk are reduced to µ processors.
– Tasks allotted to a processors, with γk ≤ a < δk are reduced to

⌊
a
k

⌋
k processors.

– Tasks allotted to a processors, with δk ≤ a are reduced to δk processors.

Once this allotment is determined, the schedule is produced by a list scheduling al-
gorithm, with always at most θ multi-processors1 filled with small tasks. However, the
large tasks can fill more than (m−θ) multi-processors if there is not enough small tasks.
As previously, we can split the resulting schedule in several kind of time intervals, de-
pending on occsmall and occlarge which are the number of processors used respectively
by small and large tasks:

– S1 is the set of intervals such as 1 ≤ occsmall < µ and occlarge = 0. In all the time
intervals of this set, there is always a task which is part of the constructed critical
path, and whose allocation has not been reduced.

– S2 is the set of intervals such as µ ≤ occsmall < θ(k − µ + 1) and occlarge =
0. In all the time intervals of this set, there is always a task which is part of the
constructed critical path, and whose allocation may have been reduced to µ.

– S3 is the set of intervals such as γk ≤ occlarge < δk and occsmall = 0. In all
the time intervals of this set, there is always a task which is part of the constructed
critical path, and whose allocation has been reduced to the nearest multiple of k.

– S4 is the set of intervals such as δk ≤ occlarge < (m − δ + 1)k and occsmall =
0. In all the time intervals of this set, there is always a task which is part of the
constructed critical path, and whose allocation may have been reduced to δk.

– Scritical is the set of intervals which are not in the previous sets, and where you
can still schedule a task, either small or large. Mathematically, the occupations are
either occlarge < (m − θ − δ + 1 + a)k and occsmall ≤ θ − a for a between 1
and θ, or occlarge < (m − θ − δ + 1)k and occsmall < θ(k − µ + 1). We can
redistribute all the time intervals from this set to sets S1 to S4, depending on the
task of the interval which is considered for building the critical path.

1 Please note that these θ SMPs are not fixed. If a small task is ready and less than θ SMPs are
used by small tasks, any available SMP can be partially used by the small task.

310 Pierre-François Dutot

– S5 is the set of intervals such as θ(k − µ + 1) ≤ occsmall. In these time intervals,
if a task of size µ is available, it may be impossible to schedule it.

– S6 is the set of intervals such as (m − δ − θ + 1)k ≤ occlarge and m + 1 − δ −
occlarge

k ≤ occsmall. In these time intervals, if there is an available task of size δk,
it may be impossible to schedule it.

Remark that some of these intervals may be empty, and some are overlapping. De-
pending on the values of θ, k and µ, S2 can be empty. If this is the case, the upper
bound on occsmall of S1 is reduced to meet the upper bound of S2. In the same way,
depending on the values of m and δ, S4 may be empty. Again, if this is the case, the
upper bound of S3 must be reduced to the upper bound of S4. Time intervals which can
be in S5 and S6 are put in the set S5 if θ(k − µ + 1) > (m − δ − θ + 1)k + θ and in
set S6 otherwise.

As previously, denoting Ix the total length of the intervals in set Sx, we can bound
the length of the intervals with the total workload and the critical path:

ω = I1 + I2 + I3 + I4 + I5 + I6 (26)

ω∗ ≥ I1 +
µ

γk − 1
I2 +

γk

(γ + 1)k − 1
I3 +

δ

m
I4 (27)

mkω∗ ≥ I1 + µI2 + γkI3 + δkI4 + θ(k − µ + 1)I5

+ ((m − δ − θ + 1)k + θ) I6 (28)

And from these equations, we can write the dual problem:

z = ω∗y1 + mkω∗y2 (29)

1 ≤ y1 + y2 (30)

1 ≤ µ

γk − 1
y1 + µy2 (31)

1 ≤ γk

(γ + 1)k − 1
y1 + γky2 (32)

1 ≤ δ

m
y1 + δky2 (33)

1 ≤ θ(k − µ + 1)y2 (34)

1 ≤ ((m − δ − θ + 1)k + θ) y2 (35)

Although it may seem much more complicated, this problem is still two dimensional
and the extremal point of the polytope can be found. Due to the restrictions on the
paper length the case analysis will not be presented here, but is instead provided in an
extended version of this paper [8]. Unsurprisingly the guarantees for the general case
are not as good as in the two special cases studied in the previous sections. These results
are summarized in Figure 4 and Figure 5.

We can see in these figures that the performance ratio is quickly worse than 4, and
does not get bigger than 5.5 for small values of k and m. For very large values of k and
m, this ratio tends to 5.61.

Hierarchical Scheduling for Moldable Tasks 311

 5
 4

 0 5 10 15 20 25 30 35 40
m 0 5 10 15 20 25 30 35 40

k

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

Fig. 4. Performance ratios for up to 40 SMPs
having each up to 40 processors.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

m

k

4
5

Fig. 5. Projections of the iso-levels 4 and 5
of Figure 4.

7 Conclusion

The algorithms presented in this paper are (to our knowledge) the first to address the
problem of scheduling moldable tasks on hierarchical platforms. The next step is to add
the improvements from Hu Zhang. In the longer run, we should implement the resulting
algorithms in operational resource management systems. This implementation has to be
preceded by a simulation phase, as the behavior of the algorithms on real workloads can
be quite different from expected.

References

1. Dutot, P.F., Trystram, D.: Scheduling on hierarchical clusters using malleable tasks. In: Pro-
ceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures,
ACM Press (2001) 199–208

2. Du, J., Leung, J.T.: Complexity of scheduling parallel tasks systems. SIAM Journal on
Discrete Mathematics 2 (1989) 473–487

3. Lepere, R., Trystram, D., Woeginger, G.: Approximation algorithms for scheduling malleable
tasks under precedence constraints. In Springer-Verlag, ed.: 9th Annual European Symposium
on Algorithms - ESA 2001. Number 2161 in LNCS (2001) 146–157

4. Zhang, H.: Approximation Algorithms for Min-Max Resource Sharing and Malleable Tasks
Scheduling. PhD thesis, University of Kiel, Germany (2004)

5. Jansen, K., Zhang, H.: Scheduling malleable tasks with precedence constraints. In: 17th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2005), Las Vegas (2005)

6. Jansen, K., Zhang, H.: An approximation algorithm for scheduling malleable tasks under
general precedence constraints (2005) submitted.

7. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem. Mathe-
matics of Operations Research 23 (1998) 909–929

8. Dutot, P.F.: Hierarchical scheduling for moldable tasks – extended version. Technical report,
Laboratory ID-IMAG (2005) www-id.imag.fr/∼pfdutot/perso.html.

	Hierarchical Scheduling for Moldable Tasks
	1 Introduction
	2 The Moldable Tasks Model on Hierarchical Platforms
	3 Previous Results with Precedence Constraints
	4 Scheduling with Two Multi-processors ($m=2, k> 1$)
	5 Scheduling on Bi-processors ($m \ge 2, k=2$)
	6 A General Framework ($m>2, k>2$)
	7 Conclusion
	References

