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Abstract. The initiation rule of a load balancing algorithm determines when to
begin a new load balancing operation. Therefore, it is critical to achieve the de-
sired system performance. This paper proposes a generalized procedure for de-
riving initiation mechanisms or rules based on different objectives for the load
balancing algorithm. A new metric, the initiation efficiency, is defined in order to
evaluate the initiation performance and to compare the different alternatives.

1 Introduction

Load balancing is critical for achieving high performance in clusters and Grid systems
because it enables an effective and efficient utilization of all the available resources
(['L,[2]). Dynamic load balancing algorithms can be decomposed in different rules or
policies ([3], [4], [5]). But all these decompositions have something in common: it is
necessary an initiation mechanism to decide on each system node when to begin a load
balancing operation. This mechanism must be efficient, scalable, low overheading, and
must be capable of deciding about load balancing operations taking into consideration
the available system and workload information.

Different solutions have been proposed for the initiation rule. There are sender-
initiated ([5], [6], [7]), receiver-initiated ([%]), symmetric ([?]) and periodic ([10]) rules.
On the other hand, some of these solutions are completely local ([5], [7], [ I]), i.e, each
node evaluates only its own state to determine if a load balancing operations is necessary
or not, while other are global ([12]), taking into consideration the global system state.

An exhaustive analysis of all these alternatives allows to conclude that they are de-
signed for a particular load balancing algorithm. The main contributions of this paper
are a procedure for deriving initiation mechanisms from general objectives for load
balancing algorithms and a performance metric for the initiation rule, the initiation ef-
ficiency (¢). It has been defined in order to evaluate the initiation mechanisms perfor-
mance and to compare the different solutions. For illustration, three example objectives
have been proposed to derive their correspondent initiation mechanisms and to compare
their performance using the new defined metric.

The rest of this paper is organized as follows. Section 2 proposes the general method-
ology for obtaining initiation policies from the objectives of the load balancing algo-
rithms. Section 3 illustrates this methodology with three different examples of load bal-
ancing objectives. Section 4 defines the initiation efficiency necessary to evaluate these
initiation mechanisms performance and to establish comparisons. Section 5 presents
some experimental results for the example cases and finally, Section 6 with conclu-
sions.
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2 Generalized Procedure for Deriving Initiation Rules

To implement the initiation mechanism for a load balancing algorithm, it is necessary to
decide when a load balancing operation should be requested, considering both its pos-
sible benefits, and on the other hand, the overhead it will cause. This section proposes
a general procedure for designing initiation mechanisms for load balancing algorithms
taking into account their general objectives. The steps of this procedure are the follow-
ing:

1. Describe quantitatively the requirements for the load balancing algorithm. Let w
be the objective that should be achieved with the algorithm to ensure that these
requirements are met.

2. Identify an objective function to quantify the achievement of this objective. Let
@ be the objective function for w. This objective function must depend on the
available information about the local and the global state. Mathematically, it should
be expressed as ¢ (I) where I is a vector composed of the system nodes load
indexes (these load indexes quantify the system nodes computing capabilities and
must be updated in all the system nodes with some kind of information policy).

3. Incorporate this objective function to the initiation mechanism in the load balancing
algorithm. For this last step two kind of objective functions can be distinguished:

— Boundary functions: In this case the objective function defines an upper or
lower bound to a certain magnitude. This condition can be directly transferred
to the initiation mechanism.

— Optimization functions: The objective function requires the optimization of a
certain magnitude. Even though this kind of functions can be sometimes easily
incorporated to the initiation rule, they usually introduce too much overhead in
the algorithm. To evaluate the load balancing operation it is necessary to solve
an optimization problem and such computation may be very expensive for a
dynamic load balancing algorithm. In such cases the optimization objective
should be transformed to a boundary one, defining an upper or lower bound for
the magnitude that was initially supposed to be optimized.

3 Some Initiation Rule Examples

3.1 Objective 1: Maximize System Load Balance

In this first example the aim of the algorithm is to maximize the balance among the
system nodes. This is usually the main objective of any load balancing algorithm but it
is not the only one as it will be seen later. Once this objective is identified (step 1 of the
proposed procedure), an objective function can be defined for the step 2. Let b denote
the system balance, therefore, the objective function is:

o' - max(b) (1)

The larger the b value, the more balanced is the load of the system. This balance can
be quantified at a given instant as the ratio of the minimum load index to the maximum.
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That is, it can vary from O to 1. With this definition, the objective function can be
denoted:

o' (1) : max (Imin ) (2)
Imaz

But this is an optimization function, so every time a new task arrives to a system
node, its initiation mechanism must evaluate the b value for each possible allocation for
this task, searching in each case the minimum and the maximum load indexes in the
system. This process can suppose a great overhead for the load balancing algorithm,
specially in systems with a large number of nodes. To overcome this scalability limita-
tion, the objective function is transformed to a boundary one. This function is:

o1y : min s 3)

Imaw

Where 7 is the algorithm tolerance value, which defines the threshold desired for
the system balance. With this objective function, the step 3 of the general procedure
is immediate. The initiation rule must try to allocate all the new tasks achieving this
objective: the system balance must be always above the 7 value after the allocation.
This boundary condition can be directly transferred to the load balancing algorithm
with a very simple evaluation, without solving the maximization problem.

3.2 Objective 2: Maximize System Throughput

Here the aim of the algorithm is to maximize the system throughput, that is, to minimize
the individual processes elapsed time to finish as many tasks per time unit as possible.
This objective is typically identified during the step 1 in systems executing independent
tasks for high performance computing. It must be achieved using a load balancing algo-
rithm, therefore, assigning each task to the system node in which its elapsed time will
be the shortest. Let ¢; be the elapsed time of th ith task, therefore the objective function
proposed in the step 2 is:

®? : min(t;) Vi 4)

But again ¢? is an optimization function that implies evaluating the new task elapsed
time for each possible allocation before assigning it to the best system node in terms of
this time requirement. Therefore, this objective function is transformed to a boundary
one. In this case the bound is referred to the elapsed time of the new task in its home
node, that is, the node to which this task is initially assigned. The objective function is:

¢2:ti<7'£i Vi (5)

Where #; is the elapsed time of the izh task in its home node and 7 is the algorithm
tolerance to define the threshold desired for this objective. For the step 3, this objective
function implies that the initiation rule tries to allocate new tasks to nodes where their
elapsed time will not be more than 7 times greater than in their home nodes. In this
paper the DYPAP monitor ([ | 3]) is used to provide local and global state information to
the load balancing algorithm, so the objective function can be based on the load indexes
values provided by this tool. The load index provided by the DYPAP monitor is based
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on the CPU assignment, defined as the percentage of CPU time that would be available
for a new task on a system node, and on the nodes computational powers.

In the home node the objective function is achieved if the CPU assignment for the
new task is:

a=- (6)

i

This CPU assignment is the minimum necessary to accomplish the elapsed time
requirements for the new task on this node, but due to system heterogeneity, this may
not be the minimum in another node (for example, on a node with more computational
power). Therefore, the objective function is based on the load indexes values, which
take into account the nodes computational powers. The minimum index necessary to
achieve the objective is :

Phome _ 1 Phome

Imin = Qmyin *
Prax T P

@)
Where Pome is the computational power of the home node and P, is the com-

putational power of the most powerful system node. That is:

1 Phome
T Pra

¢*(1): 1> (8)
The initiation mechanism of the load balancing algorithm must look for a node
which fulfill this bound to allocate the new task.

3.3 Objective 3: Minimize the Application Elapsed Time

In this last example the aim of the algorithm is to obtain the best elapsed time for the
application executing on the system. Once the objective is identified in the step 1, the
objective function must be proposed in the step 2. Let 1" denote this elapsed time:

¢ = min(T) )

Again this objective must be accomplished using a load balancing algorithm, i.e.,
allocating new tasks in the best way for this objective function. In this case, this function
can be easily implemented in the initiation mechanism despite it is an optimization
function:

> (I) : mazx(I) or min(I) (10)

That is, in the step 3, new tasks are always assigned to the system node with the
lowest or greatest load index, depending on this index meaning. For example, assuming
again the utilization of the DYPAP monitoring tool, the index maximization should be
used because the system node with the greatest load index is the one which offers the
best compromise between computational power and CPU assignment and can be easily
found by the initiation mechanism without evaluating any expression or predicting the
system behavior. In this example the optimization only implies the search of the system
node with the greatest index value and this does not introduce too much overhead in the
algorithm. Therefore, it may not be necessary to transform it into a boundary function.



296 Marta Beltran, Jose L. Bosque, and Antonio Guzmén

4 Initiation Efficiency

In order to evaluate the different initiation rules performance and to compare the differ-
ent alternatives, an initiation performance metric is needed. In this paper, the initiation
efficiency (¢) is defined considering two important issues: the ratio of accepted load
balancing operations to the requested operations (R) and the degree of achievement for
the load balancing algorithm objective (A). Therefore, the efficiency definition is:

e=R-A (1)

The first factor must be taken into account because a good initiation mechanism
should begin load balancing operations only when they are going to be accepted. The
rejected operations imply an unnecessary overhead to the system, specially to the net-
work. If the mechanism is not efficient or if it is, but it does not have updated informa-
tion to decide about load balancing operations, some load balancing operations might
be rejected in the target node. The ratio of the accepted operations to the requested
operations quantifies the efficiency of the initiation rule in this sense (the largest value
being 1 in the best case):

Oacep
Oraq

Where Ogcep is the number of accepted load balancing operations and O, the
number of requested operations.

On the other hand, an efficient initiation rule should comply with the objective of
the load balancing algorithm. Due to inaccuracies in the state information, to wrong
initiation mechanisms or to very demanding requirements this objective might not be
achieved. The degree of achievement of the load balancing algorithm objective is quan-
tified in a different way for the boundary and optimization functions:

R= (12)

— Boundary objective function: The degree of achievement of the objective can be
measured with the ratio of tasks which are assigned accomplishing the proposed
objective to the total number of assigned tasks:

e tasks accomplisjz\;'ng the objective (13)

Where N denotes the total number of tasks composing the executed application.

— Optimization objective function: In this case, the magnitude or attribute that has
to be optimized (M) gives the degree of achievement of the objective. Its value can
be referred to its optimal value (M,,) to quantify how near is the system to the

optimal situation:
M, M
P or A=
M M,,
Depending on the kind of optimization the first equation (for a minimization) or the
second equation (for a maximization) must be used.

A:

(14)
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Anyway, the A value is always normalized, varying from 0 in the worst case to 1
in the best case. With these definitions, for the initiation rules proposed in the previous
section, the initiation efficiency can be measured as:

— Objective 1:
Ogcep tasks assigned with b > 1

€= Orey ~ (15)
— Objective 2: A
. %zc:: . tasks asszgne]il] witht < T-t (16)
— Objective 3:
€= %%c:: . % (17)

To evaluate the application elapsed time in the optimum or perfect situation, when
all the system load is perfectly balanced, only some information must be known
([14]): the number of tasks that compose the executed application (/V), the number
of system nodes (g) and their computational powers (P; with ¢ = 1,...,¢). The
optimum time value can be obtained supposing that all the workload is sequentially
executed on a system with computational power equal to the total computational
power of the system (Pr), therefore:

N N
Top = —=— = — (18
g g:l‘Pi Pr )

With the given definition, a perfect initiation rule would obtain ¢ = 1. It would
request load balancing operations only when they are necessary and can be performed,
that is, when they are going to be accepted. And in addition, it would completely achieve
the load balancing objective, assigning all the tasks to accomplish this objective or
obtaining the desired optimum situation.

S Experimental Results

This section presents some experimental results to show the influence of the initiation
mechanism on the load balancing algorithm performance and to establish the utility of
the initiation efficiency in selecting the best initiation rule. These experiments have been
performed on a 32 nodes heterogeneous cluster called Medusa. In all the experiments
an application composed by 320 tasks is executed on this system. For simplicity, these
tasks are independent, i.e. there are no communications between them. In addition it is
assumed that they arrive periodically to the cluster, and that they are initially assigned
to system nodes between nl7 and n31. These assumptions have been made only to
simplify the experiments but they are not part of the general formulation presented in
previous sections. The computational power (P) for the different system nodes has been
computed as the inverse of the elapsed time for this application tasks on each kind of
node, being Pr=2.47 the global system computational power.
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The elapsed time for the selected application is 436 s without the load balancing
algorithm, and with equation 18, the elapsed time with an optimum balance would be
T,,=129.38 s. In this context, the implemented load balancing algorithm must dynami-
cally balance the system workload. This load balancing is based on the DYPAP model
([13]), therefore, it includes the DYPAP monitoring tool to periodically characterize the
system nodes state. An event-driven information policy has been used to exchange this
state information between the system nodes. And to evaluate the three proposed initia-
tion mechanisms, different implementations of the load balancing algorithms have been
used. But the only difference between all these implementations is the initiation rule, in
order to establish fair comparisons and to draw general conclusions from the obtained
results.

The implemented load balancing algorithm is based on non-preemptive tasks as-
signment, thus, the objective functions proposed in equations 3, 8 and 10 have been
directly translated to the initiation mechanism:

— Objective 1: When a new task arrives to a cluster node, it must be assigned to
obtain a balance greater than the algorithm tolerance (7) after its allocation.

— Objective 2: In this case, it is required that the new task allocation achieves an
elapsed time for this task no more than 7 times its elapsed time in its home node
(the node to which it was initially assigned when it arrived to the cluster).

— Objective 3: For this last objective function, the new task is always allocated to the
node with the largest I value in order to minimize the application elapsed time: it
is assumed that this kind of allocation always obtains the best elapsed time for the
individual tasks and, thereby, for the global application.

In these three implementations, after checking the local and remote execution of
the task, if the achievement of the initial objective is not possible, this requirement is
relaxed to avoid blocking a task execution, for example, if it is impossible to comply
with this objective in some environment. That is why the algorithm objective achieve-
ment not always equals 1. For the objectives 1 and 2, boundary functions have been
used, thus, the algorithm tolerance is in both cases an implementation parameter. Ta-
bles 1, 2 and 3 show the results obtained for the three proposed initiation mechanisms,
and for the two first objectives, different tolerance values have been considered. Each
table shows the number of accepted (Oqcep), requested (Oyq) and rejected operations
(Or.j), the application elapsed time (1), the A and R values, and finally, the initiation
efficiency (¢) for the different algorithm implementations.

In table 1, results for the first objective are shown. The larger the value of the al-
gorithm tolerance, the more restrictive is the initiation mechanism: more load balance
is required in the system. This is why for the largest 7 values, more load balancing op-
erations are requested, because they are needed to achieve these exigent load balance
requirements. But it can be seen that the increase of 7 leads to a decrease of both A and
R, due to the difficulty in finding a proper allocation to achieve the algorithm objective.
Therefore, the initiation efficiency decreases when the 7 value increases. The intuitive
explanation for this behavior is that the more difficult is to find a good allocation the
less efficient becomes the initiation mechanism. The best elapsed time for the applica-
tion is obtained with the medium tolerance values. With low 7 values, the load balance
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Table 1. Experimental results with the objective 1

T Oaqcep Oreq Ore;j T(s) R A ¢
0.20 291 328 37 304 0.890.96 0.85
0.30 286 335 49 289 0.850.860.74
0.40 313 395 82 276 0.79 0.82 0.65
0.45 318 403 85 272 0.79 0.80 0.63
0.50 325 402 77 269 0.81 0.74 0.60
0.60 318 410 92 286 0.78 0.63 0.49
0.70 315 419 104 297 0.75 0.55 0.41

Table 2. Experimental results with the objective 2

T Oacep Oreq Orej T(s) R A €

1 315 423 108 372 0.74 0.92 0.68
2 313 420 107 311 0.750.98 0.73
3 240 332 92 259 072 1 0.72
4
5
6

197 286 89 292 0.69 0.69
184 263 79 316 0.70 0.70
163 234 71 329 0.70 0.70
0 142 210 68 359 0.68 0.68
5 121 177 56 388 0.68 0.68

—_—

Table 3. Experimental results with the objective 3

Version Oacep Oreq Ore; T(s) R A ¢

Simple 300 340 40 323 0.88 0.40 0.35
Modified,F'=1.2 288 318 30 320 0.91 0.40 0.37
Modified, F'=1.8 258 315 57 280 0.82 0.46 0.38

required in the system is too low to give good elapsed times, but with the largest values,
the tasks assignment becomes too complicated and this has a negative influence on the
elapsed times.

For the second objective (table 2), similar conclusions can be derived. But in this
case low tolerance values imply more restrictive requirements, therefore, more requested
load balancing operations. The main difference with the first objective is that in this case
the influence of the 7 value on the A, R and ¢ values is not so significant. Similar effi-
ciency values can be obtained with all the considered algorithm tolerances. This is due
to the specific features of the performed experiment, that is, with this system-application
combination, it is easier to achieve the objective 2 than the objective 1 even with the
more restrictive requirements.

Finally, in table 3 the results for the objective 3 are shown . The ’simple’ implemen-
tation is based on the objective function proposed in equation 10. But this optimization
function leads to a poor system performance, in terms of elapsed time and initiation
efficiency. So, an easy modification is proposed (the *'modified’ version), to assign new
tasks to the system node with the largest load index only when this index is F' times
greater than in the local node. The utilization of this threshold does not affect the objec-
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tive achievement and allows to avoid unnecessary load balancing operations, improving
the algorithm performance specially for F' values significantly different from 1.

In the proposed context, the three implementations can obtain similar elapsed time
values: 269, 259 and 280 s respectively. But the third objective must be rejected due
to its efficiency value, only 0.38 for this best elapsed time. For the first and second
objectives, similar initiation efficiencies can be obtained, 0.60 and 0.72, therefore both
objective functions could be used for this algorithm, being a little best the second ob-
jective performance for this experiment.

6 Conclusions

This paper proposes a general procedure to methodically obtain initiation mechanisms
for load balancing algorithms. This methodology implies choosing a general objective
for the load balancing algorithm. This objective is mathematically expressed with an
objective function, which can be an optimization or a boundary one, depending on the
available system state information. And finally, this function is directly translated into
an initiation mechanism for the load balancing algorithm. In addition, a performance
metric for this mechanism, the initiation efficiency, has been defined.

For illustration, three example objectives have been presented to derive their initi-
ation mechanisms using the proposed methodology and to evaluate their performance
with the defined metric. The presented experiments for these three objectives show the
utility of the proposed procedure in implementing initiation policies and of the initiation
efficiency in selecting the best alternative.

All these results highlight the fact that it is possible to find different tasks allo-
cations with similar elapsed times values but very different values for the initiation
efficiency. And in this situation, the implementation with the best initiation efficiency
must be always selected because it implies a better resources utilization (less rejected
load balancing operations) and a better degree of the algorithm objective achievement.
And of course, it can be seen with the different examples that the best elapsed time
does not necessary imply the best initiation efficiency for the algorithm, because for
this performance metric the important issue is the degree of achievement for the algo-
rithm objective and the resources utilization efficiency to obtain this degree, and not the
elapsed time.

Furthermore, a general observation can be made based on all the performed experi-
ments: the boundary objectives are the best solution for load balancing algorithms, their
performance always improve the obtained with optimization objectives. The explana-
tion for this behavior is that the optimization objectives always introduce more over-
head in the initiation mechanism and are not scalable, while a good selected boundary
objective can obtain better results without causing this overhead due to its simplicity.
An example of this behavior is that the mechanism 3 achieves a worse elapsed time
for the global application although it is its main objective, due to the utilization of an
optimization function.

On the other hand, for these boundary objective functions the algorithm tolerance
must be tuned, taking into account that too demanding requirements can have a negative
influence on the system performance.
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