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Abstract. The Master/Worker paradigm is one of the most commonly used by 
parallel/distributed application developers. This paradigm is easy to understand 
and is fairly close to the abstract concept of a wide range of applications. How-
ever, to obtain adequate performance indexes, such a paradigm must be man-
aged in a very precise way. There are certain features, such as data distribution 
or the number of workers, that must be tuned properly in order to obtain such 
performance indexes, and in most cases they cannot be tuned statically since 
they depend on the particular conditions of each execution. In this context, dy-
namic tuning seems to be a highly promising approach since it provides the ca-
pability to change the parameters during the execution of the application to im-
prove performance. In this paper, we demonstrate the usage of a dynamic 
tuning environment that allows for adaptation of the number of workers based 
on a theoretical model of Master/Worker behavior. The results show that such 
an approach significantly improves the execution time when the application 
modifies its behavior during execution. 

1   Introduction 

The Master/Worker (M/W) paradigm is one of the most commonly used by paral-
lel/distributed application developers. In this paradigm, a master process distributes a 
set of data to be processed among a set of worker processes that receives this data, 
processes it and returns the results to the master. This structure fairly faithfully repre-
sents the developer abstract concept. It can be applied to a wide range of applications 
and is therefore fairly easy to treat and manage. However, the actual behavior of this 
structure depends on several features (target system, number of available processors, 
computing capabilities, communication features, input data) that cannot be controlled 
by the application developer and can only be found out during runtime. In order to 
reach high performance indexes and eliminate performance bottlenecks, the behavior 
of the particular application must be analyzed and problems that appear during the 
execution must be determined. 

One of the major performance bottlenecks in the Master/Worker paradigm is the 
inadequate number of workers. When there are not enough worker processes, the 
master process distributes the data and becomes idle as it waits for results. On the 
other hand, if there are too many workers, the amount of data is divided into small 
pieces and the communications saturate the system. Therefore, it is important to find 
an optimal number of workers. This number depends on: the computing volume per 
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datum, the volume of data sent to and received from the worker processes, the com-
puting capabilities of each of the system’s processors and the latency and bandwidth 
of the communication network.  

In many cases, these features are not completely static and change dynamically 
during the execution of the application (e.g., the computing requirements evolve dur-
ing execution of the application or the computing capabilities of the processors 
change due to an additional load in the system). In these situations, the optimal num-
ber of workers is not fixed, but changes during the execution of the application and it 
must be tuned dynamically. 

In the following sections of this paper, we present a complete performance optimi-
zation scenario that considers the problem of the number of workers in a dynamic 
approach. Section 2 presents example automatic analysis and tuning environments. In 
Section 3, we describe the performance model used to calculate the optimal number 
of workers. In Section 4, we analyze the tuning of the number of workers using the 
MATE environment that supports the dynamic tuning of parallel applications. In 
Section 5, we present the results of the experiments conducted in the MATE envi-
ronment to dynamically tune the number of workers using the presented performance 
model. Finally, Section 6 shows the conclusions of this study. 

2   Related Work 

The optimization process requires a developer to go through the application perform-
ance analysis and the modification of critical application parameters. First, the per-
formance measurements must be taken in order to provide information about the ap-
plication. Then, the analysis of this information is carried out. It finds performance 
bottlenecks, deduces their causes and determines the actions to be taken to eliminate 
these bottlenecks. Finally, appropriate changes must be applied into the application. 

To reduce developers efforts, an automatic analysis has been proposed. Tools using 
this type of analysis are based on the knowledge of well-known performance prob-
lems. They are able to identify critical bottlenecks and help in optimizing applications 
by giving suggestions to developers [1, 2, 3, 4]. 

Such tools require a certain degree of knowledge and experience of paral-
lel/distributed applications. To tackle these problems, it is necessary to provide tools 
that automatically perform program optimizations during run time. Active Harmony 
[5] is a framework that allows an application for dynamic adaptation to network and 
resource capacities. The application must be Harmony-aware, that is, to use the API 
provided by the system. The project focuses on the selection of the most appropriate 
algorithm. Active Harmony automatically determines good values for tunable  
parameters by searching the parameter value space using heuristic algorithm. MATE 
uses a distinct approach in which performance models provide conditions and formu-
las that describe the application behavior and allow the system to find the optimal 
values. The AppLeS [6] project has developed an application-level scheduling ap-
proach. It combines dynamic system performance information with application-
specific models and user specified parameters to provide better schedules. A pro-
grammer is supplied information about the computing environment and is given a 
library to facilitate reactions to changes in available resources. Each application then 
selects the resources and determines an efficient schedule, trying to improve its own 
performance without considering other applications. MATE is similar to AppLeS in 
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that it tries to maximize the performance of a single application. However, MATE 
focuses on the efficiency of resource utilization rather than on resource scheduling.  

3   Performance Model for the Number of Workers 

In this section, we present the problem of determining a suitable number of workers 
for a M/W application. We will only consider this problem for homogeneous M/W 
applications, defining these as applications where all tasks (i.e. a set of data to be 
processed by each worker) are approximately of the same size and require the same 
processing time. In actual fact, these kinds of applications exhibit a similar perform-
ance to a balanced M/W application with the same total processing time and the same 
global communication volume, as shown in [7]. This is an important observation, 
because in homogeneous application it is easier to determine the appropriate number 
of processors to be used. 

For this analysis, we have assumed that the following conditions are met: 

• There is just one process (master or worker) per processing element. 
• The master process distributes all available data among workers, then waits for all 

results and, eventually sends a new set of tasks to workers, which means that the 
application could be iterative. 

In addition, we will use the following terminology to identify the different parame-
ters that will form part of the performance model: 

• tl = fixed network time overhead per message, in ms. 
• λ = communication cost per byte (inverse bandwidth), in ms/byte. 
• vi = size of tasks sent to worker i, in bytes. 
• vm = size of results sent back to master from each worker, in bytes. 
• V = total data volume (Σ (vi + vm)), in bytes. 
• n = current number of workers in the application. 
• tci = time that worker i spends processing a task, in ms. 
• Tc = total computing time (Σ tci ) 
• Tt = total time spent on an application iteration (execution time). Our objective is 

to estimate and minimize this magnitude. 
• Nopt = number of workers needed to obtain the minimum Tt (best performance). 

It can be seen that the parameters that must be monitored in order to apply the per-
formance model associated to a M/W application are: 

• tl and λ which could be calculated at the beginning of the execution and should be 
re-evaluated periodically to make allowances for the adaptation of the system to 
the network load conditions. 

• Task sizes (vi) have to be captured when the master sends tasks to workers.  
• Result sizes (vm) have to be captured when the master receives results from work-

ers.  
• The time the workers spend on each task (tci) has to be measured in order to calcu-

late the total computing time (Tc). 

Now, we can describe the analysis performed in order to construct the performance 
functions associated to this kind of application. We should point out that these func-



98      Anna Morajko et al. 

tions are defined to enable the optimization of the execution time of the application 
(Tt). 

First, the master sends a set of tasks to each worker. If the communication protocol 
is asynchronous then the network overhead (tl) for one message overlaps with the 
communication time of the previous one ( iv*λ ), otherwise both times should be 

added.  
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This is the overhead of the first message plus the communication time of all mes-
sages. 

Then, as every worker spends the same time processing its tasks, we just have to 
add the processing time of one worker (the last one to receive a task); which is tci. 

At this point, processing has finished and we must evaluate what happens to the re-
sults sent back to the master. We only need to add the communication time for the last 
message, which is tl + λ*vm (communication time of one answer). This last statement 
only holds if the master has completed the data distribution before there is an answer 
from a worker, otherwise it will not be ready to receive messages when the last 
worker sends its results back. 

This never happens before the optimal number of workers if ivtl *λ≥ , but may 

not be true if ivtl *λ<  or when the communication protocol is synchronous. In the 
latter case, the following condition must also hold: the time spent by the master to 

distribute the tasks ( ∑
−

=

+
1

0

*
n

i
ivtl λ or ∑

−

=

+
1

0

**
n

i
ivtln λ ) must be greater than the response 

time of the first worker ( mii vtcvtl ***2 λλ +++ ).  

The expressions to calculate the total iteration time are formed by adding these 
quantities together, if the communication protocol is synchronous and 

∑
−

=

+++≥+
1

0

***2**
n

i
miii vtcvtlvtln λλλ  then we get: 

∑
−=

=

++++=
1

0

**)1(*
ni

i
mii vtcvtlnTt λλ

 
But, if the communication protocol is asynchronous we get: 

))***2*()*((

***2

1

0

1

0

∑

∑
−

=

−

=

+++>+≤

+++=

n

i
miiii

n

i
mii

vtcvtlvtlandvtlif

vtcvtlTt

λλλλ

λλ

 
Or 

)* (*     imii vtlifvtltcvtlnTt λλλ >∗++++∗=  



Automatic Tuning of Master/Worker Applications      99 

Considering that tci = Tc/n, vi = p*V/n (a portion p of the overall data volume 
which is distributed among the workers), and vm = (1-p)*V/n (the remaining portion 
of the overall data volume which are the results that workers return to the master) we 
could rewrite these expressions as: 
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If we calculate δTt/δn = 0 for expression (1) then we will obtain an expression to 
calculate the number of workers needed to minimize Tt when the communication 
protocol is synchronous, which is: 

tl
TcVNopt

)4*(
2
1 += λ  (4) 

And, if we calculate δTt/δn = 0 for expression (3) then we will obtain an expres-
sion to calculate the number of workers needed to minimize Tt when the communica-
tion protocol is asynchronous, which is: 

tl
TcVNopt )*( += λ

 
(5) 

We cannot do the same with expression (2) because it can easily be demonstrated 
that for this expression: 0lim =∞→ Ttn . But, if the number of workers (n) grows, then 

the message size (vi) decreases and, consequently: tl > λ*p*V/n when n > λ*V/(2*tl). 
This means that expression (5) can be also applied from the time this condition holds. 
With expressions (1), (2) and (3), we have a model of the behavior of an application, 
and we have expressions (4) and (5) to tune the number of workers of the application.  

Figure 1 shows the expected execution time for an example M/W application con-
sidering expression (2) and compares the results of predicted values to the real execu-
tion times. This figure presents also the optimal number of workers provided by ex-
pression (4). It can be observed that the predicted behavior matches well the real 
behavior.  

4   Tuning Number of Workers with MATE 

The performance model described in the previous section provides the optimal num-
ber of workers for a particular situation. However, in many cases the developer of an 
M/W application cannot know all of the details needed to provide such an optimal 
number. Moreover, in many cases the conditions change during the execution of the 
application (for example, systems with shared load) and the optimal number of work-
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ers is not fixed, but evolves during the execution of the application. In these cases, 
number must be adjusted on the fly during the execution of the application. 

 

Fig. 1. Real vs. expected execution time, showing the use of expressions (2) and (4) 

To provide dynamic automatic tuning of parallel/distributed applications we have 
developed an environment called MATE (Monitoring, Analysis and Tuning Environ-
ment) [8, 9]. MATE performs dynamic tuning in three basic and continuous phases: 
monitoring, performance analysis and modifications. This environment dynamically 
and automatically instruments a running application to gather information about the 
application’s behavior. The technique that fulfills these requirements is called dy-
namic instrumentation [10]. The analysis phase receives events, searches for bottle-
necks applying a performance model and determines solutions to overcome such 
performance bottlenecks. Finally, the application is dynamically tuned by applying 
the given solution. Moreover, while it is being tuned, the application does not need to 
be re-compiled, re-linked or  restarted. The knowledge to represent the performance 
model of each particular performance problem is specified in a component called a 
“tunlet”. Each tunlet includes the information about the measure points to insert in-
strumentation into the target application, the performance model to determine the 
behavior of the application and the required modifications, and finally, the tuning 
actions to improve the application’s performance. 

We have defined two main approaches to tuning: automatic and cooperative. In the 
automatic approach, an application is treated as a black-box, because no application-
specific knowledge is provided by the programmer. This approach attempts to tune 
any application and does not require the developer to prepare it for tuning (the source 
code does not need to be adapted). The cooperative approach assumes that the appli-
cation is tunable and adaptable. This means that developers must prepare the applica-
tion for the possible changes. 

We have conducted a variety of practical experiments on parallel/distributed appli-
cations to check whether our approach really works. We have proven that it is effec-
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tive, profitable, and can be used for a real improvement in program performance. 
Running applications under MATE control has allowed for adaptation of their behav-
ior to the existing conditions and improvements in their performance. 

To dynamically tune the number of workers, we determined conditions that a M/W 
application must fulfill (as this optimization belongs to the cooperative approach) and 
implemented a specific tunlet. The application must be based on iterations where all 
processes repeatedly perform all operations. During each iteration, the master distrib-
utes tasks to a specified number of workers and then waits for the results. It must 
synchronize the results before the next iteration. Tasks being distributed must be in-
dependent of each other. In addition, the task processing time cannot depend on the 
task content, but only on the task size. Finally, worker processes cannot exchange 
tasks with each other in order to calculate and provide results. The condition of the 
iteration-based application structure implies the existence of a significant number of 
iterations. If there is a small number of repetitions, the tuning overhead might be high 
and the improvement might not be seen.  

The tunlet that optimizes the number of workers requires run-time monitoring of 
the functions responsible for exchanging messages (send and receive), in particular: 
send entry/exit, receive entry/exit events in the master process, and receive entry/exit 
and send entry/exit in all worker processes. Instrumenting these functions we are able 
to perform all measurements required by the performance model presented in Section 
3 (expressions (4) and (5)). 

The model is evaluated after each iteration when all measurements gathered from 
that iteration are available. If the computed optimal number of workers differs from 
the current value, the associated tuning procedure is invoked. In this case, we require 
the application to be prepared by the developer for the potential changes. The applica-
tion must contain the specific variable that represents the number of workers. MATE 
will change this variable automatically. During execution, the application should be 
aware of the current number of workers and if it is different from the previous one, 
the new number must be used. This can only be done between two iterations because 
it is difficult to change the current work distribution that is already being processed. 
Once the number of workers has been adjusted, the work can be distributed ade-
quately to all running workers. 

If there are any new workers to be added, the new machines (processors) are re-
quired for them. There is no sense in running a new worker on the same machine 
where another worker is already running. In such a situation we would not gain any-
thing since the CPU time is divided between both workers. 

5   Experimental Results 

In this section, the experimental results obtained by applying the tuning environment 
to a real Master/Worker application are presented. To conduct the experiments, we 
selected an intensive computing Forest Fire Propagation application called Xfire [11]. 
The Xfire application is a Master/Worker PVM based implementation of the simula-
tion of the fireline propagation. It calculates the next position of the fireline consider-
ing the current fireline position and different aspects such as weather, wind, vegeta-
tion, etc. Experiments were conducted on a cluster of homogenous Pentium 4, 1.8 
Ghz, (SuSE Linux 8.0) connected by a 100Mb/sec network. 
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Since we need to control the load in the system to reproduce the experiments sev-
eral times, we created certain load patterns, so that we can introduce and modify cer-
tain external loads to simulate the system’s time-sharing. We defined load patterns 
and executed the application with several fixed number of workers (2, 4, 6, and suc-
cessively until 26) and also under the control of the MATE tuning environment where 
the number of workers is adapted dynamically. In every scenario one worker was 
executed in the same machine as master.  

We have conducted our experiments in two scenarios: 

•  In the first scenario, Xfire was executed on different number of workers, without 
any tuning.  

• In the second scenario Xfire was executed under MATE applying the tuning of the 
number of workers. The application started with one worker and then during the 
execution the number is changed according to the model described in Section 3. In 
this scenario one machine of the cluster was dedicated to run the analyzer, so that 
the analysis does not introduce additional overhead in the application. 

Table 1 summarizes the experimental results. These results are also presented in 
Figure 2. 

Table 1. Execution time of Xfire (in seconds) considering different number of workers, and 
Xfire under MATE 

#workers 1 2 4 6 8 10 12 14 16 18 20 22 24 26 
Execution 

Time 
1209 624 345 249 206 181 166 156 144 137 130 129 122 125 

Xfire + MATE 
Execution Time 

Starting with 1 worker                   141 

Figure 2 shows the execution time of Xfire application considering different num-
ber of workers and in the last column the execution time of Xfire under MATE. As it 
is indicated before, Xfire while executed under control of MATE starts with only one 
worker. When MATE receives all data from the first iteration, it evaluates the per-
formance model and immediately detects the need of adding workers to reach the 
optimal number related to the initial total work. Then during the execution of the 
application the load is changed and the number of workers is adapted to the optimal 
number provided by the performance model.  

It can be observed that execution time of  Xfire under MATE is close to the best 
execution times obtained by different fixed number of workers. However, the re-

 

Fig. 2. Execution time of Xfire considering different number of workers and Xfire under
MATE 
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sources devoted to the application using the MATE tuning environment are taken 
considering the actual requirements of the application and are used when they are 
really needed. 

6   Conclusions 

Parallel and distributed programming offer high computing capabilities to users in 
many scientific research fields. The performance of applications written for such 
environments is one of the crucial issues. Master/Worker is one of the most signifi-
cant paradigms in these environments. The number of workers is a key issue in con-
sidering the performance of the application.  

A performance model to evaluate the optimal number of workers has been pre-
sented. This performance model has been incorporated into the MATE automatic 
tuning environment by the corresponding “tunlet”. The presented optimization sce-
nario adapts the number of workers assigned to perform a specified amount of work 
to changing environment conditions. It requires the application to be prepared for the 
possible changes, i.e. adding or removing worker processes. MATE is able to estimate 
the application’s performance by means of the analytical model, and to calculate and 
apply the optimal number of workers. The tuning action changes the number of work-
ers by updating the variable value in the master process.  

The experimental results show that the dynamic tuning approach significantly im-
proves the execution times without consuming unnecessary resources when the appli-
cation is executed under dynamic conditions (changes in the system load). 
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