Towards Database Firewalls*

Kun Bai, Hai Wang, and Peng Liu

The School of Information Science and Technology,
Pennsylvania State University,
University Park 16802 PA
{kbai, haiwang, pliu}@ist.psu.edu

Abstract. Authentication based access control and integrity constraints
are the major approaches applied in commercial database systems to
guarantee information and data integrity. However, due to operational
mistakes, malicious intent of insiders or identity fraud exploited by out-
siders, data secured in a database can still be corrupted. Once attacked,
database systems using current survivability technologies cannot con-
tinue providing satisfactory services according to differentiated informa-
tion assurance requirements. In this paper, we present the innovative
idea of a database firewall, which can not only serve differentiated infor-
mation assurance requirements in the face of attacks, but also guarantee
the availability and the integrity of data objects based on user require-
ments. Our approach provides a new strategy of integrity-aware data
access based on an on-the-fly iterative estimation of the integrity level
of data objects. Accordingly, a policy of transaction filtering will be dy-
namically enforced to significantly slow down damage propagation with
minimum availability loss.

1 Introduction

Data integrity, availability and confidentiality are the three major issues that
have been paid much attention in database security research. To protect the data
integrity, multi-layer approaches are proposed, from hardware, OS, DBMS to
transaction level. Mainly, there are two research focuses. One is from-scratch, the
other is off-the-shelf. Approaches presented in [1],[2],[3] are to close the security
holes on hardware, OS and DBMS, respectively, from the from-scratch direction.
[4] and [5] propose techniques to deal with data corruption and storage jamming
effectively on OS-level intrusions. Unfortunately, these technologies can not be
applied to handle authorized but malicious transaction.

[6] introduces an intrusion-tolerant database (ITDB) system architecture on
the transaction-level. It is noticeable that ITDB architecture is complicated be-
cause of the specific database vulnerability known as damage spreading. That is,
the result of a transaction can affect the execution of some later transactions,
directly or indirectly, through read and write operations.

* This work was supported by NSF CCR-0233324, NSF ANI-0335241, and Department
of Energy Early Career PI Award.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 178-[I92] 2005.
© IFIP International Federation for Information Processing 2005

Towards Database Firewalls 179

Since infected data objects can cause more damage through read and write
operations, which, in turn, could lead to wrong decision and disastrous conse-
quences, data corruption becomes a severe security problem in critical data ap-
plications, such as air traffic control, banking and combat-field decision making
system. Furthermore, data corruption is not only an issue of data integrity issue,
but also a concern of data availability. For example, in some cases, the purpose
of an attack is just to deny the service. Generally, when the real-world database
application is under an attack, the services the system provides have to be shut
down to recover from the disaster. Thus, the system availability sacrificed in
order to maintain the data integrity. A vast majority of research has been done
on how to survive data corruption from malicious attacks and recover the data
integrity and availability in an off-line manner. However, limited attention has
been drawn to provide various database services in agreement with differentiated
information assurance requirements while the system is being healed.

In this paper, we present a novel idea of database firewall that, in contrast
to previous research, uses different strategies to prevent damage from spreading
to other territories of the database in terms of tables, records and columns.
The idea is to quickly estimate the integrity levels of data objects and use such
integrity levels to smartly filter off the transactions that would spread damage
according to a specific firewall policy upon the time a malicious transaction is
detected. A unique feature of our approach is that transaction filtering is not
universally enforced and the enforcement domain is dynamically adjusted so that
maximum availability can be provided without jeopardizing integrity. According
to a user requirement of quality of information assurance (QoIA), we not only
provide a significant improvement of data availability, but also guarantee the
integrity of data objects stored in the database. The database firewall framework
is illustrated in the context of the transaction level in ITDB architecture.

The rest of this paper is organized as follows. In section (), we review the
background and related work. In section (B]), we present the design issue of the
database firewall. In section (@), we propose our naive estimator model and
estimation algorithm. In section (&), we demonstrate some preliminary results.
In section (@), we conclude the paper and future work.

2 Background and Related Work

Intrusion detection system (IDS) has attracted many researchers ([8],[9],[10]). In
general, IDSs monitor system activities to discover attempts to gain illicit ac-
cess to systems or corrupt data objects in systems. Roughly, the methodologies
of IDS are in two categories, statistical profile and known patterns of attacks.
However, intrusion detection systems have a few noticeable limitations: (1) In-
trusion detection makes the system attack-aware but not attack-resistant. (2)
Achieving accurate detection is usually difficult or expensive. (3) The average
detection latency in many cases is too long to effectively confine the damage. To
overcome these limitations, a broader perspective has been introduced, namely
an intrusion tolerance database system [6].

180 K. Bai, H. Wang, and P. Liu

Other than the ITDB approach, traditional recovery mechanisms execute
complete rollbacks to undo the work of benign transactions as well as malicious
ones when the malicious transactions are detected. Therefore, although rolling
back a database to a previous checkpoint can remove all the corrupted data,
the work of all the legitimate transactions which commit after the checkpoint is
lost. This kind of approach would further exacerbate the situation of denial of
service. [I1] provides a recovery algorithm that, given a specification of malicious,
unwinds not only the effects of each malicious transaction but also the effects
of any innocent transaction that is directly or indirectly affected by a malicious
transaction. A significant contribution of [II] is that the work of remaining
benign transactions is saved. However, the fact is that transaction execution
is much faster than detection and reparation. This indicates that the entire
process of recovery could both take a relatively long time to finish and also repeat
repairing certain data objects over and over again due to damage spreading.
Thus, the data availability could be significantly lost due to this long latency.

[12] present an innovative idea known as multiphase damage containment.
Upon the time a malicious transaction (denoted as B;) is detected, in contrast
to reactive damage containment, [I2] uses one containing phase (denoted as
initial containment) to proactively contain the data objects that might have been
corrupted. In addition to this first phase, one or more later uncontaining phases
(denoted as containment relaxation) will release the objects that are mistakenly
contained during the first phase. This approach can guarantee that no damage
caused by malicious transaction B; will spread to any new update. However, an
inherent limitation of multiphase containment is that this method could cost
substantial data availability loss. Because the initial containment phase needs
to instantly confine every data object possibly infected by B; within a time
window starting upon the commit of the malicious transaction B; and ending at
the detection of B;, there is no time for the confining phase to precisely pinpoint
the set of damaged data objects.

To overcome the limitations of the multiphase containment approach and to
provide more data availability, delivering services by taking QolA requirements
into account seems to be a solution. In order to keep services available during
attacks, it will be beneficial to continue allowing access to confined data ob-
jects during the repair time window. However, this needs to be conducted very
carefully since a confined data object could have been corrupted. Thus, certain
security rules and policies of access are required to achieve this original inten-
tion. [I3] has taken the first step towards this goal. In this paper, we extend
this topic and present database firewall technique as a solution to increase the
data availability without imposing risks to applications users and degrading the
system performance and data integrity.

3 Database Firewall Design

In this section, we first formalize several important concepts and the various
problems studied in this paper, and then present the framework of database

Towards Database Firewalls 181

firewall. The idea of a database firewall can be better described in the context
of an intrusion tolerant database system (ITDB) on the transaction level. Since
this framework is an extension of the ITDB architecture, it inherits the features
from ITDB that it could not directly defend against attacks from low level,
such as OS and DBMS level attacks. However, when most attacks come from
malicious transactions, our framework is effective. Moreover, the existing low
level mechanisms can be easily integrated into our database firewall framework.

3.1 Theoretical Model

A database system is a set of data objects, denoted as DB={01,09,...,0,}. A
transaction GG; is a partial order with ordering relation <;, where

1. G; C{(ri]oz], wiloz])]|osx is a data object} U(as, ¢;);
2. if r;[0.], wiloz] € Gy, then either 70| <; w;oz], or w;[oz] <; 7i[0s];
3. a; € Gy iff ¢ ¢ G;.

and r,w,a,c relate to the operation of read, write, abort, and commit, respec-
tively. The (usually concurrent) execution of a set of transactions is modeled
by a structure called a history. Formally, let G = {G1,G2,...,Gp} be a set
of transactions. A complete history H over G is a partial order with ordering
relation <y, where:

1. H= U?:IGi;
2. <yg2 U?:l <i-

Since aborted transactions have nothing to do with database firewalls, for
the sake of simplicity we assume every transaction commits. Two transactions
conflict if they both have an operation on the same object, and one of them
is write. Also, the correctness of a history is typically captured by the notion
of serializability[14]. One assumption is that strict two-phase locking (2PL) is
used to produce serializable histories where the commit order indicates the serial
order among transactions.

First, how an object is damaged is defined in a conservative way. That is,
every object updated by a malicious transaction is damaged, and that if a good
transaction reads a damaged object, then every object updated by the good
transaction is damaged. Next, a transaction dependent relation is denoted as
follows. In a history composed of only committed transactions, a transaction G;
is dependent upon another transaction G; if there exists an object o, such that
G; reads o, after G; updates it, and there is no transaction that updates o,
between the time G; updates o, and G reads o,. Finally, it is assumed that
every data object modified by G; will be read by G; first. Thus, there is no blind
writes.

3.2 Motivation and Challenges

As networks enable more and more applications and are available to more and
more users, they become ever more vulnerable to a wider range of security

182 K. Bai, H. Wang, and P. Liu

threats. Thus, to combat those threats and ensure that applications are not
compromised, security technologies such as network firewalls play a critical role
in today’s networks. Likewise, a broad span of research from authorization, to
inference control, to multilevel secure database, and to multilevel secure trans-
action processing has addressed primarily on how to protect the security of a
database. However, a very important vulnerability of database security, known
as damage spreading, has been omitted by these researches. Database firewall
technique is needed not only because malicious transactions can compromise
data objects, but also because innocent transactions can accidentally spread the
damage. Formally, damage spreading occurs because any good transaction read-
ing a corrupted data object o, can spread the damage on o, to the data objects
it updates. In this way, the spreading can be exponential. Still, the effect caused
by a malicious transaction itself to a database is limited. Thus, it is the transac-
tions that spread the effect that matter. Efforts have been made in existing data
containment and damage assessment technologies to stop spreading and recover
systems. However, data containment and damage assessment take a substantial
amount of time. Thus, the loss of data availability is significant. Database fire-
wall technique takes a step further to reinforce the above approaches by filtering
the incoming transactions to simultaneously stop potential damage spreading at
the doorway and to improve the data availability according to a certain security
policy.

In sum, a database firewall should include at least three components: Integrity
Estimator, Firewall Manager and Access Policy Manager. One of the challenges
to guarantee the success of database firewalls is to design an efficient integrity
level estimation algorithm, which can quickly and accurately estimate the data
integrity without losing security. In this paper, a naive approach to achieve this
goal is presented.

3.3 Architecture of Database Firewall

To develop the database firewall framework that can provide more data avail-
ability, there are several fundamental issues needed to be addressed and solved.
First, how to formalize the integrity level model and estimate the data integrity
during attacks. Second, how to constitute the security policy and access rulesets
using estimated data integrity level. Third, how to manage the tradeoff between
performance and security.

Database Firewall Components. As shown in figure (), the database fire-
wall architecture is built upon the top of a traditional ”off-the-shelf” DBMS.
Within the framework, Intrusion Detector (ID) identifies malicious transactions
based on the operation records stored in the log. Damage Assessor (DA) locates
the damage caused by the detected malicious transactions. Damage Repairer
(DR) repairs the located damage using some specific cleaning transactions. In-
tegrity Estimator (IE) estimates the integrity level of data objects. Access Policy
Manager (APM) works as a prozy for decision making of data objects access.
Firewall Manager (FM) functions when Intrusion Detector detects malicious

Towards Database Firewalls 183

Database Applications

Database Firewall Components |

Integrity Estimator

t Access Policy Manager

|

‘i_, DB-Firewall Manager

Damage Repairer

Intrusion Detector ~ |=—

Damage Assessor |~}

H

A Traditional Database System

Fig. 1. Database Firewall Architecture

transactions. After the firewalls are built up, Firewall Manager triggers Integrity
Estimator to start estimating the integrity of data objects and consequently force
Access Policy Manager to set up access rulesets to restrict the access to the data
items that are confined in firewalls according to a new policy. At each step of in-
tegrity estimation, the firewalls update themselves in co-response to the changes
of data integrity level. Accordingly, any new transaction submitted by a user
will comply with the new policy. Through several steps, Integrity Estimator will
finally converge to the final solution, which has either a set of precise integrity
of data objects or a set of approximate integrity of date objects.

3.4 Transaction Filtering Policies and Mechanism

In this section, an innovative mechanism for implementing security control which
guards the door of database systems and prevents potential damage spreading
from occurring is introduced. By conventional definition of firewall in network
domain, a firewall is a system or group of systems that enforce an access control
policy between two or more networks. Its operations are mainly based on three
technologies: packet filtering, proxy server and stateful packet filtering. Similarly,
in database security domain, particularly in our database firewall framework, a
firewall operates based on transaction filtering technique. In addition, unlike a
network firewall, which checks packet status, transaction filtering relies on the
integrity level of data objects.

Integrity Level Model. When a malicious transaction B; is detected, the data
objects in the database could be in several different situations. In this section,
an idea is presented to define the model illustrating the integrity of data objects.

184

1.

K. Bai, H. Wang, and P. Liu

Data objects Integrity. A data object could be either good or corrupted
after the database system is attacked. Thus, it is straightforward to denote
that the integrity of an object o; (1 <4 < n) is good at particular time ¢ as
I(0;,t) € {G, B}, where G is Good and B is Bad for short. It is apparent
that when a malicious transaction is captured, any transaction whose commit
time is out of a time window, starting from the time point when B; enters
the database to the moment of its committing, is not infected, and the data
objects belonging to the transaction are regarded as good objects.

However, the status of those data objects that belong to transactions which
commit within the time window are a little more complicated. It is difficult
to attain such knowledge that data integrity can be precisely calculated in
a short period of time. Methods, such as [I2], mentioned in previous sec-
tion (@), can precisely distinguish the integrity of each data object through
several phases. However, safety comes at the sacrifice of significant data avail-
ability. This contradicts the goal of database firewall framework. Therefore,
instead of deterministically marking the integrity of data objects, a practical
integrity model that uses probabilistic estimation is favored. This model is
applicable because the damage spreading is strongly related to the writeset
of the malicious transaction B;, denoted as Wp,, and also relies on the trans-
action arrival and dependency patterns. For this reason, previous histories
can be used to estimate the probability that a data object is good as the
data integrity during an attack.

Practical Integrity Model. In this model, a data object 0;’s integrity at
a particular time ¢ is shown in the equation.

1

I(o;,t) = (1 — m) x 100%, R(t) > 1 (1)
Where, R is the number of patterns matched with or similar to an attack pat-
tern. We call I(0;,t) the data object o;’s integrity level, and 0 < I(o;,t) < 1.
Integrity level of data object o; indicates that the probability of o; is good
when a specific attack pattern occurs. For example, when R(t) = 1, I(0;,t) =
0, it means the identical patterns are found, and the data object o; is cor-
rupted. Thus, the integrity of a data object o; could be in one of the following
three categories:

100% t ¢ [t&, %] estimated
I(0;,t) = ¢ 50% t € [th,t%] estimated (2)
0% te [t ty;] identified

Here, for the definition of tis, t., please refer to section 3.4l With the above
analysis about data integrity, in order to estimate the integrity of a data ob-
ject, our research becomes to find answers to following three questions: What
is an attack pattern? How does the integrity estimator use the patterns? How
do we match two attack patterns? These concerns will be addressed in a later
section ().

Towards Database Firewalls 185

Database Firewall Security Policy. A specific and strongly worded security
policy is vital to the pursuit of internal data integrity. This policy is a subset
of the database access contorl policy and never will rule over an access contorl
policy, such as authorization, but should govern everything from acceptance of
accessing data objects to response scenarios in the event a security incident
should occur, such as policy updating upon a new attack.

Ideally, a database firewall security policy dictates how transactions traffic
is handled and how filtering ruleset is managed and updated. Before a policy
is created, a risk analysis on the database system must be performed to gain
knowledge for the vulnerabilities associated with databases. For instance, we
know one of the vulnerabilities in database security is the damage spreading. It
is when a transaction, even if it is a legitimate one, accesses a corrupted data
object that the damage will be spread to any other data object this transaction
touches, directly or indirectly. Then, to limit the potential damage spreading,
firewall policy needs to create a ruleset to restrict the entrance of transactions
that could compromise other data objects while letting other transactions enter
to achieve maximum throughput.

For example, suppose a transaction Gi (¢, tp) = r1[0z]r1[oy]wi [oy] requires to
enter the database, where tp is transaction type. If it is known that the data ob-
ject o, has been corrupted at this momment, then our policy checker will screen
the transaction and be aware if the request can be granted using the ruleset.

Definition 1 : Integrity Filtering List, I= {il(ogg1 , 0312, o Oilm),ig (o(ff1 , 0222, . ojfn),
..}, where i is a set with data objects on same integrity level, and o; is a data
object associated with the integrity level ¢. The ruleset is defined as follows:
Rule 1 :V transaction G, if 3 data object o, € Rg, and Rg () I # 0, and if Wg
(), DENY;

Rule 2 : V transaction G, if 3 data object o, € Rg, and Rg) I £, and if Wg
=, and if ¢ < @ then DENY, otherwise GRANT;

Rule 3 : V transaction G, if A data object 0, € Rg, and Rg () I =0, GRANT;
Here, @ is QolIA required by applications. Rg, W¢ is the readset, writeset of a
transaction, respectively. What we have presented here is a sample ruleset. We
should be aware that firewall rulesets tend to become increasingly complicated
with age.

Transaction Filtering Mechanism. In many cases when an attack is de-
tected, not every data object in database is corrupted. Thus, simply applying
the firewall ruleset to screen every incoming transactions is not wise. Here, we
introduce a novel concept called firewall time window.

In the database firewall framework, for each detected attack, Firewall Man-
ager has a life cycle with three different phases: Firewall Generation, Firewall
Mergence and Firewall Withdraw. During the first phase, upon the time when
a malicious transaction B; is detected, Firewall Manager is notified to generate
a firewall. A firewall time window [t&, t%;] is denoted as 20;. Here, the [t&, %] is
defined as follows:

186 K. Bai, H. Wang, and P. Liu

Definition 2 : Firewall Time Window 20; of B;, denoted as [tk t%;], is defined as
follows: t is the time when B; starts; t%; is the time when malicious transaction
B; is detected.

For example, suppose a transaction G1(t,tp) = r1[oz]r1[oy|wi[0s]wi]o0;] re-
quires to enter a database, if it is found that ¢; is within the scope of firewall
time window [tg,tg], the ruleset is further checked for security concerns. Oth-
erwise, the permission of entrance to the database can simply be granted. Here,
ty_ is the time when data object o, was updated.

Firewall Updating Mechanism. At phase two, if there are multiple malicious
transactions detected during a period of time, there might exist multiple fire-
walls, and Firewall Manager will force the multiple firewalls to merge together
according to certain rules. By doing this, Access Policy Manager can efficiently
manage multiple versions of access policy. A set of malicious transactions is de-
noted as Bj1, Bjo, ..., Bjr. For each firewall time window, the mergence rules are
defined as follows: o ‘
Mergence Rule 1 : Firewall time window [t%, t%;] is ahead of [t%, t}] if t% < t%.
Firewall time window 20; and 20; are overlap if no one is ahead of another. 20;
includes 20; if t% < ¢4 and t%; > t7,.
The rule of firewall mergence is defined as follows:
Mergence Rule 2 : A set of firewall time windows can be merged as one if for
any two time windows Wiy, and Wi, (m < n), there is a sequence of firewall
time windows 20j, , 20j,, ..., Wie, ..., Wiy, such that they are within the set where
Wim and Wi, overlap, Wie and W ey ,) overlap, and W,y and W overlap.
By applying this firewall mergence ruleset, the framework dynamically ad-
justs the security policies and rulesets corresponding to the changes of firewalls.
In the third phase, there is a condition when it is satisfied, the Firewall Man-
ager will stop restricting access to any data objects within the firewall time win-
dows (That is, when Damage Repairer finishes repairing the located corrupted
data objects). In response to the withdraw of firewall, Access Policy Manager
will reset the access policy to the lowest level of restriction of data access, and the
database system performs in the normal way until the next malicious transaction
is detected.

4 Integrity Level Estimation

One critical issue to guarantee success of Integrity Level Estimation success is
timing. The more time the estimation algorithm spends, the more accurate the
estimation result can be, but the less data availability the database system can
provide. Thus, instead of releasing a final solution of integrity estimation at the
conclusion, the algorithm gives out several versions iteratively along the process.
Now, we propose our integrity estimator model and the first naive estimation
algorithm () that balances the tradeoff between performance and security.

Integrity Estimator. Figure ([2)) illustrates the details of estimator compo-
nent. Basically, there are two subcomponents: One is offline processor; the other

Towards Database Firewalls 187

3 Offline Processor

Online Processor —=APM

DB-FM

Fig. 2. Integrity Estimator Component

is online processor. Offline processor usually is executed after Damage Repairer
finishes repairing and then triggers the Database Firewall Manager to withdraw
the firewalls. In general, to gather knowledge about previous attacks and to save
time for online processor to quickly and precisely estimate the data integrity,
offline processor deals with all kinds of information it can obtain from history
logs, IDS reports, customer profiles and database schemes. In this paper, it is
assumed that offline processor only process the histories stored in database and
subtracts valuable attributes from them, such as the transaction dependency
graphes, attacking time and statistic data (the number of corrupted data ob-
jects, frequency of a data object being corrupted, the number of distinct values
and transaction types, for example). The above information is called an Attack-
ing Pattern, or Fingerprint. Once an attacking is detected, online processor in
Integrity Estimator starts estimating data integrity based on both the knowledge
the offline processor has obtained and the information of new attacking history.
We define Attacking Pattern and Spreading Pattern as follows:

Definition 3 : Attacking Pattern p = (R;, Wj, ajl-, a?, e ,agnfl, aj’, ag’Hl, ce)e
Definition 4 : Spreading Pattern P is a dependency related sequence of trans-
actions, P; = {pB,,p1,D02,---sPn—1,Pn:Pn+1 --.}. Where, R;, W; is the readset,
writeset of a transaction, respectively; B; is a malicious transaction, and a; is a
valuable attribute that depicts a particular dimension of a transaction, such as
occurrence frequency of a special value or the number of distinct values. And,

Wn—l ﬂ Rn 7é @

Algorithm (Il) describes the naive approach of how to estimate data object
integrity. In general, this algorithm is a pattern-match based approach. A vec-
tor containing spreading patterns is created by offline processor based on the
histories it obtains. Basically, this algorithm scans the spreading patterns to
compare the attacking pattern from a newly detected attack with the one in
each spreading pattern in the vector. If a match is found, the R will be increased
by one; otherwise, the unmatched spreading pattern is trimmed off the vector.

188 K. Bai, H. Wang, and P. Liu

In addition, the confined data set C and the number of matched patterns R up-
date correspondingly. Since this is a pattern-matched approach, an unavoidable
problem is what to do in the absence of a matched pattern. From the mathe-
matics perspective, R in equation [1l can not be zero. But, in the algorithm if R
is equal to zero, it indicates the newly detected attacking pattern is one that
had never occurred before. In this scenario, the algorithm stops estimating and
notifies Firewall Manager to reset the firewall time window because damage had
probably already been spread out by this moment. A possible solution to this
problem is to apply a containment approach, such as multi-pahse containment
method, to precisely distinguish the integrity of each data object, invoke the
offline processor to consume the new attack and add this pattern to the vector.

Algorithm 1 Integrity Level Estimation Algorithm Pseudo Code

Require: V[k] : spreading pattern vector. Pew:mewly detected attack > S is the
corrupted data objects of spreading pattern i in V

1: function ILESTIMATOR(V, Prew)
2: C=0,R=0 > C — Confined data objects set
3: for i — 1,n do > Scan the pattern vector
4: D — Prewli]
5: for j — 1,k do > Compare each spreading pattern
6: pv — V]
7 if p, = p then
8: R(t) «— (R(t)+ 1)
9: C—Cu SVU]
10: else
11: V—V -V > Trim the unmatched pattern off the vector
12: C—Cn SVU]
13: end if
14: end for
15: if R(t) =0 then
16: break;
17: else
18: Yo, € C — (1 — ﬁ) > Set the integrity of data objects
19: end if > Mark the integrity of data objects
20: APM updates new policy

21: end for
22: end function

5 Experiments and Results

In this section, the experiment results are demonstrated . In order to measure
the effectiveness and performance of our proposed naive method, comprehensive
experiments have been conducted on synthetic data sets generated according to
a modified TPCC standard.

Towards Database Firewalls 189

5.1 Generation of Experimental Data

For the experiment, synthetic data set has been used. All data are generated
based on a modified TPCC dependency relationship, as shown in figure ([3]). Also,
the data sets have 1M transactions history. 300 different patterns are summa-
rized out of this history. For each pattern, the number of transactions varies in
a range from 2000 to 3500. Furthermore, there are two possible consequences
regarding an approaching attack. One, a new attack is a duplicate of a previous
one, which implies that there is a previous version recorded in the history. Thus,
it becomes a question whether or not identical twins can be found out of the
previous patterns. Two, a new attack is a mutant of an existing version of attack.
Thus, it becomes whether or not the similar ones can be distinguished. In addi-
tion, in these experiments, it is assumed there is only one malicious transaction
B; at each time. So, firewall mergence is not taken into consideration at current
stage.

5.2 Experiment Results

Figure @ a,b,c].1) illustrates the results of the first possible attack pattern,
which is a copy of a previous attack, from three different perspectives, objects
integrity, system availability and estimation validation, respectively. Figure [k
a.1) presents the results of using our naive method. Obj_A, Obj_B and Obj_C
are the representatives of three sets of data objects. Along the estimation pro-
cess, data objects in set Obj_A are first marked as I = {1} because they are
those data objects that are not touched by transactions; thus, they do not be-
long to the patterns that are partials of or similar to the newly detected attack
pattern. Those data objects in set Obj_B are assigned to be I = {1} later than
Obj_A because the estimator distinguishes that these objects do not belong to
corrupted data set when more knowledge is obtained, and then remark their
integrity. Obj_C' is the data object set with all corrupted data objects, and it

T2

T7 T5

T6

Fig. 3. Example Transaction Dependency Graph

190 K. Bai, H. Wang, and P. Liu

shrinks because some objects are remarked and moved to Obj_A and Obj_B
along the estimation process. Figure ([@b.1) shows the system availability in
terms of the number of accessible data objects with a QOIA requirement of
100%. Corresponding to Figure ([@la.l), it can be seen the system availability
increases as the integrity of data objects are remarked and moved to Obj_A and
Obj_B. At step 11, the estimator finds the final solution of data integrity, and
the availability reaches its highest level. Finally, when the system recovers itself
from attacking, the availability goes back to normal level. In this experiment,
it is assumed that applications only access data objects with marked integrity
equal to I = {1}. For some applications that are aggressive and are willing to
accept multiple levels quality of information assurance (QolIA), the system avail-
ability will be even higher. Figure (@ c.1) illustrates the progress of estimation
validations. It can be seen that at the initial stage of estimation, because of
limited knowledge about the newly detected attack, estimation has a relatively
high estimation variance (normalized in the range of 0 to 1). However, it will
quickly converge to zero (the diagonal denotes the actual errors, which is zero)
as the procedure goes on.

Figure [@]a,b,c].2) demonstrates the results of the second consequence of
an attack from the same three aspects. Similarly, Figure ([@a.2) presents the
results of data integrity using the naive method. In contrast to Figure @a.l),
Obj_C does not drop down to zero because the estimator can only find out several
similar patterns instead of one, which indicates that a new type of attack is found.
Therefore, the estimator will be conservative and inform Firewall Manager to
reset firewall time window to contain data objects in Obj_C' in order to prevent
damage leakage. Beyond the last step, the database will not continue rely on
estimation. Instead, [12] can take over and continue the work. In Figure ([@b.2),
corresponding to the changes of integrity of data objects, the system availability
increases accordingly. Figure [}c.2) demonstrates from another perspective that,
unlike the convergence shown in Figure (@c.1), the estimation error does not
decline to zero beyond a certain time point when the estimator could not be
more accurate on data object integrity. However, even this is a case, we still
achieve the goal of improving the system availability.

6 Conclusion and Future Work

This paper presents an innovative idea of database firewall. Unlike the traditional
recovery mechanisms, which shutdown the entire system and recovery itself in
an offline manner, our framework can help a database system continue delivering
services even when an attack is detected. We have developed a naive but effective
approach to use histories and attacking patterns to probabilistically estimate the
integrity level of data objects in the face of an attack, instead of deterministically
finding the data integrity. However, this naive approach assumes a relative simple
attacking pattern. In real world applications, this might be the case. In addition,
efficient estimation of data object integrity is also a great challenge. A quick and
accurate estimation algorithm is critical to the success of database firewalls.

Towards Database Firewalls 191

&

o

s
3

S
=

s o o
K SR L
AL I I L R L R L B
PRI B R

Data objects integrity level (*100%)
o

Data objects integrity level (*100%)

s

L IS B e o o o B

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 9 10 11 12 13
Estimation steps Estimation steps
a.1l. Objects Integrity a.2. Objects Integrity

v Data availability (QoIA 100%) v Data availability (QuIA 100%)

Data objects availability (*100%)
T T
Data objects availability (*100%)
BB ER RS EE L

I

5 6 71 8 9 10 11 12 13
Estimation steps

b.1. System Availability b.2. System Availability

¥~ Estimation errors
— Actual errors—Zero|

¥~ Estimation errors
— Actual errors—Zero|

Range of estimation error
Range of estimation error

0 0 L

Estimation steps Estimation steps
c.1. Estimation Validation c.2. Estimation Validation

Fig. 4. Two different kinds of attacks from three aspects: integrity, availability, vali-
dation: 1. When a newly detected attack is matched with previous attacks. 2. When a
newly detected attack is similar to the previous attacks

In future work, we plan to formalize the model of the attacking pattern and
damage propagation, as well as redesign the integrity level estimation algorithm.
A number of further SQL and DBMS enhancements are needed to fully exploit

192 K. Bai, H. Wang, and P. Liu

this interesting topic. We have found that the estimation approach we present
may not work efficiently when there are several similar attack patterns or when
a new type attack is detected. One possible solution to this problem could be,
for example, using a sampling and similarity search technique to find out the
final data object integrity solution.

References

1. S. Smith, E. Palmer, and S. Weingart, ” Using a high-performance, programmable
secure coprocessor,” in Proc. International Conference on Financial Cryptography,
Anguilla, British West Indies, 1998.

2. G. C. Necula, ”Proof-carrying code,”
of Programming Languages, 1997.

3. Z. Shao, B. Saha, and V. Trifonov, ” A type system for certified binaries,” in Proc.
29th ACM Symposium on Principles of Programming Languages, 2002.

4. D. Barbara, R. Goel, and S. Jajodia, ” Using checksums to detect data corruption,”
in Proceedings of the 2000 International Conference on Extending Data Base Tech-
nology, Mar 2000.

5. J. McDermott and D. Goldschlag, ” Towards a model of storage jamming,” in Pro-
ceedings of the IEEE Computer Security Foundations Workshop, Kenmare, Ire-
land, June 1996, pp. 176-185.

6. P. Liu, ” Architectures for intrusion tolerant database systems.” in ACSAC, 2002,
pp. 311-320.

7. P. W. P. J. Grefen and P. M. G. Apers, "Integrity control in relational database
systems: an overview,” Data Knowl. Eng., vol. 10, no. 2, pp. 187-223, 1993.

8. H. S. Javitz and A. Valdes, ” The sri ides statistical anomaly detector,” in Proceed-
ings IEEE Computer Society Symposium on Security and Privacy, Oakland, CA,
May 1991.

9. T. Garvey and T. Lunt, "Model-based intrusion detection,” in Proceedings of the
14th National Computer Security Conference, Baltimore, MD, October 1991.

10. K. Ilgun, R. Kemmerer, and P. Porras, ”State transition analysis: A rule-based
intrusion detection approach,” IEEE Transactions on Software Engineering, vol.
21, no. 3, pp. 181-199, 1995.

11. P. Ammann, S. Jajodia, and P. Liu, ”Recovery from malicious transactions,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp. 1167-1185,
2002.

12. P. Liu and S. Jajodia, ”Multi-phase damage confinement in database systems for
intrusion tolerance,” in Proc. 14th IEEE Computer Security Foundations Work-
shop, Nova Scotia, Canada, June 2001.

13. J. Zhang and P. Liu, ”Delivering services with integrity guarantees in survivable
database systems,” in IFIP WG 11.3 16th International Conference on Data and
Applications Security, Cambridge, UK, vol. 256, July 28-31.

14. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, Reading, MA, 1987.

in Proc. 24th ACM Symposium on Principles

	Introduction
	Background and Related Work
	Database Firewall Design
	Theoretical Model
	Motivation and Challenges
	Architecture of Database Firewall
	Transaction Filtering Policies and Mechanism

	Integrity Level Estimation
	Experiments and Results
	Generation of Experimental Data
	Experiment Results

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

