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Abstract. Since bit and string oblivious transfer and commitment, two
primitives of paramount importance in secure two- and multi-party com-
putation, cannot be realized in an unconditionally secure way for both
parties from scratch, reductions to weak information-theoretic primi-
tives as well as between different variants of the functionalities are of
great interest. In this context, we introduce three independent mono-
tones—quantities that cannot be increased by any protocol—and use
them to derive lower bounds on the possibility and efficiency of such
reductions. An example is the transition between different versions of
oblivious transfer, for which we also propose a new protocol allowing to
increase the number of messages the receiver can choose from at the price
of a reduction of their length. Our scheme matches the new lower bound
and is, therefore, optimal.

1 Introduction, Motivation, and Main Results

The advantage of unconditional or information-theoretic security—as compared
to computational security—is that it does not depend on any assumption on
an adversary’s computing power or memory space, nor on the hardness of any
computational problem. Its disadvantage, on the other hand, is that it cannot
be realized simply from scratch. This is why reductions are of great interest
and importance in this context: Which functionality can be realized from which
other? If a reduction is possible in principle, what is the best efficiency, i.e., the
minimum number of instances of the initial primitive required per realization of
the target functionality?

Two tasks of particular importance in secure two-party computation are
oblivious transfer and bit commitment. Both primitives are known to be impos-
sible to realize from scratch in an unconditionally secure way for both parties
by any (classical or even quantum) protocol. On the other hand, they can be
realized from noisy channels [6], [7], weak versions of oblivious transfer [3], cor-
related pieces of information [18], or the assumption that one of the parties’
memory space is limited.

For the same reason, reductions between different variants of oblivious trans-
fer are of interest as well: chosen 1-out-of-2 oblivious transfer from Rabin oblivi-
ous transfer [5], string oblivious transfer from bit oblivious transfer [3], 1-out-of-n
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oblivious transfer from 1-out-of-2 oblivious transfer, oblivious transfer from A
to B from oblivious transfer from B to A [8], [19], and so forth. A number
of lower bounds in the context of such reductions have been given, based on
information-theoretic arguments [9], [13].

With respect to information-theoretic reductions between cryptographic and
information-theoretic functionalities, quantities which never increase during the
execution of a protocol—so-called monotones [4]—are of great importance. In key
agreement, for instance, two parties A and B can start with correlated pieces
of information X and Y , respectively, and try to generate a secret key S by
public communication such that an adversary E, who initially knows a third
random variable Z, is virtually ignorant about S. It has been shown in [16] that
the intrinsic information [14] of A’s and B’s entire knowledge, given E’s, is a
monotone, i.e., cannot increase. This immediately leads to the following bound
on the size of the generated key: H(S) ≤ I(X ; Y↓Z).

The main results of our paper are the following.

Three monotones of unconditional two-party computation.
In Section 3, we define three information-theoretic quantities (the underlying
notions are introduced in Section 2) and prove them to be monotones: No
protocol allows for increasing them.

Lower bounds for oblivious-transfer reductions.
In Section 4.1, we derive a new lower bound on the efficiency of reductions
from one variant of oblivious transfer to another, and of realizing oblivious
transfer from shared correlated pieces of information.

Optimally trading message length for choice in oblivious transfer.
In Section 4.2, we present a new protocol allowing for increasing the number
of messages from which the receiver can choose at the price of a reduction
of their length. Our lower bound shows that the protocol is optimal.

New error bounds for bit commitment.
In Section 5, we show new lower bounds on the probability of failure of any
protocol for bit commitment based on correlated pieces of information.

2 Preliminaries: Common and Dependent Parts

As a preparation, we introduce two notions, namely the common part X∧Y and
the dependent parts X ↘ Y and Y ↘ X of two random variables X and Y . In the
context of cryptography, the notions have first been used in [10], [12], [18]. Both
notions have appeared previously in other information-theoretic contexts [11],
the latter under the name of sufficient statistics.

2.1 Common Part

Let X and Y be two random variables with joint distribution PXY . Intuitively,
the common part X∧Y is the maximal element of the set of all random variables
that can be generated both from X and from Y .
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Definition 1. [18] Let X and Y be random variables with (disjoint) ranges X
and Y and distributed according to PXY . Then X ∧ Y , the common part of X
and Y , is constructed in the following way:

– Consider the bipartite graph G with vertex set X ∪Y, and where two vertices
x ∈ X and y ∈ Y are connected by an edge if PXY (x, y) > 0 holds.

– Let fX : X → 2X∪Y be the function that maps a vertex v ∈ X of G to the
set of vertices in the connected component of G containing v. Let fY : Y →
2X∪Y be the function that does the same for a vertex w ∈ Y of G.

– X ∧ Y := fX(X) = fY (Y ).

Note that X ∧Y is symmetric—i.e., X ∧Y ≡ Y ∧X 1. There exist functions
fX and fY with X ∧Y = fX(X) = fY (Y ). Hence, X ∧Y can be calculated both
from X and from Y .

Lemma 1. [18] For all X, Y , and C for which there exist functions fX and
fY such that C = fX(X) = fY (Y ) holds, there exists a function g with C =
g(X ∧ Y ).

2.2 Dependent Part

Intuitively, the dependent part of X from Y , denoted X ↘ Y , is the minimal
element of the set of all random variables K that can be generated from X and
are such that X ←→ K ←→ Y is a Markov chain.

Definition 2. [10] Let X and Y be two random variables, and let f(x) =
PY |X=x. The dependent part of X from Y is defined as X ↘ Y := f(X).

Lemma 2 shows that all of X that is dependent on Y is included in X ↘ Y ,
i.e., more formally, I(X ; Y |X ↘ Y ) = 0 holds or, equivalently, X , X ↘ Y , and
Y form a Markov chain.

Lemma 2. [10] For all X and Y , X ←→ (X ↘ Y )←→ Y is a Markov chain.

On the other hand, there does not exist a random variable with the same prop-
erties that is “smaller” than X ↘ Y .

Lemma 3. [18] Let X, Y , and K be random variables such that there exists a
function f such that K = f(X) and X ←→ K ←→ Y hold. Then there exists a
function g with X ↘ Y = g(K).

1 We say that two random variables A and B are equivalent, denoted by A ≡ B,
if there exists a bijective function g : A → B such that B = g(A) holds with
probability 1.
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3 Three Two-Party-Protocol Monotones

In this section we show that the following three quantities are monotones, i.e.,
cannot increase during the execution of any protocol based on (noiseless) com-
munication and (lossless) processing (where X ′ and Y ′ are the random variables
summarizing the entire information accessible to A and B, respectively):

H(Y ′ ↘ X ′|X ′) ,

H(X ′ ↘ Y ′|Y ′) ,

I(X ′; Y ′|X ′ ∧ Y ′) .

We first show that local randomness generation and data processing, and
second, that noiseless bi-directional communication do not allow for increasing
any of these quantities.

3.1 Invariance Under Randomness Generation and Data Processing

Lemma 4. Let X, Y , and Z be random variables such that X ←→ Y ←→ Z is
a Markov chain. Then we have

X ↘ [Y, Z] ≡ X ↘ Y .

Proof. We have PY Z|X=x = PY |X=xPZ|Y . Therefore, for all x, x′ ∈ X , the func-
tion PY Z|X=x is different from PY Z|X=x′ if and only if PY |X=x is different from
PY |X=x′ . 
�
Lemma 5. Let W , X, and Y be random variables such that W ←→ X ←→ Y
is a Markov chain. Then we have

[W, X ]↘ Y ≡ X ↘ Y .

Proof. We have PY |W=w,X=x = PY |X=x. Therefore, for all w, w′ ∈ W and
x, x′ ∈ X , the function PY |W=w,X=x is different from PY |W=w′,X=x′ if and only
if PY |X=x is different from PY |X=x′ . 
�
Lemma 6. Let X, Y , and Z be random variables such that X ←→ Y ←→ Z is
a Markov chain. Then we have

X ∧ [Y, Z] ≡ X ∧ Y .

Proof. We have PXY Z = PXY PZ|Y . Let us look at the connection graph between
all the values x and (y, z) for which PX(x) > 0 and PY Z(y, z) > 0 hold. Then x
and (y, z) are connected if and only if PXY Z(x, y, z) > 0 holds. Since PZ|Y (z, y) >
0, this holds if and only if PXY (x, y) > 0 holds. Hence, X ∧ [Y, Z] ≡ X ∧ Y . 
�
Theorem 1 shows that local data processing does not increase any of the quan-
tities in question. It is a direct consequence of Lemmas 4, 5, and 6.
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Theorem 1. Let X, Y , and Z be random variables with X ←→ Y ←→ Z. Then
we have

H([Y, Z]↘ X |X) = H(Y ↘ X |X) ,

H(X ↘ [Y, Z]|[Y, Z]) = H(X ↘ Y |Y ) ,

I(X ; [Y, Z]|X ∧ [Y, Z]) = I(X ; Y |X ∧ Y ) .

3.2 No Increase by Communication

We now show that the same holds with respect to noise-free communication
between A and B. We first prove three lemmas.

Lemma 7. Let X and Y be random variables and f a function. Then

X ↘ [Y, f(X)] ≡ [X ↘ Y, f(X)] .

Proof. Let h1(X) := X ↘ [Y, f(X)] and h2(X) := [X ↘ Y, f(X)], and let F =
f(X). We have PY F |X = PY |XPF |X . For all x, x′ with h1(x) = h1(x′), we have
PY F |X=x = PY F |X=x′ , which holds exactly if PY |X=x = PY |X=x′ and f(x) =
f(x′) hold, which is equivalent to h2(x) = h2(x′). Hence, X ↘ [Y, f(X)] ≡ [X ↘
Y, f(X)]. 
�
Lemma 8. Let X and Y be random variables and f a function. Then there
exists a function g such that

[Y, f(X)]↘ X = g([Y ↘ X, f(X)]) .

Proof. Let h1(X, Y ) := [Y, f(X)]↘ X and h2(X, Y ) := [Y ↘ X, f(X)]. For all
x, x′, y, and y′ with h2(x, y) = h2(x′, y′), we have PX|Y =y = PX|Y =y′ and f(x) =
f(x′). It follows PX|Y =y,f(X)=f(x) = PX|Y =y′,f(X)=f(x), and, hence, h1(x, y) =
h1(x′, y′). Therefore, there must exist a function g with h1 = g ◦ h2. 
�
Lemma 9. Let X, Y , and Z be random variables. There exists a function f
such that

X ∧ Y = f([X, Z] ∧ Y ) .

Proof. X ∧ Y can be calculated from X , and, hence, also from [X, Z]. The
statement now follows from Lemma 1. 
�
Theorem 2 states that noiseless communication between the two parties cannot
increase any of the quantities in question.

Theorem 2. Let X and Y be two random variables and f a function. Then we
have

H([Y, f(X)]↘ X |X) ≤ H(Y ↘ X |X) ,

H(X ↘ [Y, f(X)]|Y, f(X)) ≤ H(X ↘ Y |Y ) ,

I(X ; [Y, f(X)|X ∧ [Y, f(X)]) ≤ I(X ; Y |X ∧ Y ) .
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Proof. Using Lemmas 7, 8, and 9, we obtain

H([Y, f(X)]↘ X |X) ≤ H([Y ↘ X, f(X)]|X)
= H(Y ↘ X |X)

H(X ↘ [f(X), Y ]|f(X), Y ) = H([X ↘ Y, f(X)]|f(X), Y )
= H(X ↘ Y |f(X), Y )
≤ H(X ↘ Y |Y )

I(X ; [f(X), Y ]|X ∧ [f(X), Y ]) ≤ I(X ; [f(X), Y ]|f(X), X ∧ Y )
= I(X ; Y |f(X), X ∧ Y )
≤ I(X ; Y |X ∧ Y )


�

Corollary 1 is a direct consequence of Theorems 1 and 2.

Corollary 1. Let X and Y be two parties’ entire knowledge before, and X ′ and
Y ′ after the execution of a protocol including local data processing and noiseless
communication. Then we have

H(X ′ ↘ Y ′|Y ′) ≤ H(X ↘ Y |Y ) ,

H(Y ′ ↘ X ′|X ′) ≤ H(Y ↘ X |X) ,

I(X ′; Y ′|X ′ ∧ Y ′) ≤ I(X ; Y |X ∧ Y ) .

4 Oblivious Transfer: Lower Bounds and an Optimal
Reduction

4.1 New Bounds on Oblivious-Transfer Reductions

In m-out-of-n k-string oblivious transfer, denoted
(

n
m

)
-OTk, the sender inputs

n k-bit messages out of which the receiver can choose to read m, but does not
obtain any further information about the messages; the sender, on the other
hand, does not obtain any information on the receiver’s choice.

In [1], it has been shown that
(
2
1

)
-OT1 is equivalent to pieces of informa-

tion with a certain distribution (in other words, oblivious transfer can be pre-
computed and stored). This result generalizes to

(
n
m

)
-OTk in a straight-forward

way. By determining the corresponding values of the three monotones derived in
Section 3 we can, thus, obtain lower bounds on the reducibility between different
variants of oblivious transfer. The bound of Theorem 4 is an improvement on an
earlier bound by Dodis and Micali [9].
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Theorem 3. Assume that there exists a protocol for realizing unconditionally
secure

(
N
M

)
-OTK from distributed random variables X and Y . Then we have

(N −M)K ≤ H(X ↘ Y |Y ) ,

log
(

N

M

)
≤ H(Y ↘ X |X) ,

MK ≤ I(X ; Y |X ∧ Y ) .

Proof. As mentioned,
(

N
M

)
-OTK can be stored. More specifically, the corre-

sponding random variables X ′ and Y ′ arise when
(

N
M

)
-OTK is executed with

random and independent inputs. We have H(X ′ ↘ Y ′|Y ′) = (N − M)K,
I(X ′; Y ′|X ′ ∧ Y ′) = MK, and H(Y ′ ↘ X ′|X ′) = log

(
N
M

)
. The assertion now

follows from Corollary 1. 
�

Theorem 4. Assume that there exists a protocol for realizing unconditionally
secure

(
N
M

)
-OTK from t instances of

(
n
m

)
-OTk. Then we have

t ≥ max

(
(N −M)K
(n−m)k

,
log

(
N
M

)

log
(

n
m

) ,
MK

mk

)

.

Proof. Since
(

n
m

)
-OTk is equivalent to the pieces of information obtained when

the primitive is used with random inputs, we can assume that A and B start the
protocol with such random variables Xi and Yi, respectively, for i = 1, . . . , t. (The
first step in this protocol can be to restore

(
n
m

)
-OTk from the shared information.)

We have H(Xi ↘ Yi|Yi) = (n − m)k, I(Xi; Yi|Xi ∧ Yi) = mk, and H(Yi ↘
Xi|Xi) = log

(
n
m

)
. For X = [X1, . . . , Xt] and Y = [Y1, . . . , Yt], we have H(X ↘

Y |Y ) = t(n −m)k, I(X ; Y |X ∧ Y ) = tmk, and H(Y ↘ X |X) = t log
(

n
m

)
. Now

we can apply Theorem 3, and the statement follows. 
�

For the special case where M = m = 1, the obtained bounds are shown in
Figure 1.

t ≥ . . . K ≥ k K < k

N ≥ n (N−1)K
(n−1)k

max
(

(N−1)K
(n−1)k

, log N
log n

)

N < n K
k

1

Fig. 1. The bounds for M = m = 1



474 S. Wolf and J. Wullschleger

4.2 Optimally Trading Message Length for Choice

We present a protocol allowing for increasing the number of messages sent in
oblivious transfer if, at the same time, their length is reduced. The number of
calls to the original oblivious transfer equals the lower bound of Theorem 4.

Let n, k, t ∈ N, t > 1, N = nt, and K ≤ k/nt−1. Protocol 1 reduces
(

N
1

)
-OTK

to t instances of
(
n
1

)
-OTk.

Protocol 1. Let A’s inputs be x0, . . . , xN−1 ∈ {0, 1}K, whereas B’s choice is
c ∈ {0, . . . , N − 1}. Let c =

∑t−1
i=0 cin

i, ci ∈ {0, . . . , n− 1}.
1. A chooses R0

0, R
0
1, . . . , R

0
n−1, R

1
0, . . . , R

t−1
n−1 ∈R {0, 1}k.

2. A and B run
(
n
1

)
-OTk t times. In round i ∈ {0, . . . , t− 1}, A inputs Ri

0, . . . ,
Ri

n−1, and B inputs ci. B receives Yi.
3. A and B subdivide each string Ri

j and Yi into nt−1 pieces of length K =
k/nt−1: Ri

j = Ri
j(0)|| · · · ||Ri

j(n
t−1 − 1), Yi = Yi(0)|| · · · ||Yi(nt−1 − 1).

4. For every j ∈ {0, . . . , N − 1}, let j =
∑t−1

i=0 jin
i and dj =

∑t−2
i=0(ji + jt−1

mod n)ni. A sends mj = xj ⊕R0
j0(dj)⊕ · · · ⊕Rt−1

jt−1
(dj) to B.

5. B calculates dc =
∑t−1

i=0(ci + ct−1 mod n)ni and outputs y = mc⊕Y0(dc)⊕
· · · ⊕ Yt−1(dc) .

Theorem 5. Protocol 1 is a perfect reduction of
(
N
1

)
-OTK to

(
n
1

)
-OTk for N =

nt, t > 1, and K ≤ k/nt−1.

Proof. If both players are honest, we have Yi = Ri
ci

for all i ∈ {0, . . . , t − 1}.
Therefore,

y = mc ⊕ Y0(dc)⊕ · · · ⊕ Yt−1(dc)
= xc ⊕mc ⊕R0

c0
(dc)⊕ · · · ⊕Rt−1

ct−1
(dc)⊕ Y0(dc)⊕ · · · ⊕ Yt−1(dc)

= xc .

A does not receive any messages, so she does not get any information about c.
It remains to be proven that B only gets information about one value sent

by A, even if he is given all the other values. First of all, note that if two
different j and j′ take the same value d, then ji + jt−1 ≡ j′i + j′t−1 (mod n)
holds for all i ∈ {0, . . . , t− 1}. It follows jt−1 �= j′t−1, and, hence, ji �= j′i for all
i ∈ {0, . . . , t− 1}. Therefore, every Ri

j(d) is used at most once in Step 4. B has
to choose a value ci in every round, so he will always be able to reconstruct xc

for c =
∑t

i=0 cin
i. But for every other value xc′ , c′ �= c, he is missing at least one

of the Ri
c′i

(dc′) for i ∈ {0, . . . , t− 1}. This value is a one-time pad on xc′ since it
is not used anywhere else. Therefore, B does not get any information about any
xc′ for c′ �= c, even if he is given all the other values xc′′ for c′′ �= c′. 
�

5 Bit and String Commitment: Tight Lower Bounds

Unlike oblivious transfer, bit commitment that is perfectly secure for both parties
is impossible to achieve even when they share correlated pieces of information
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X and Y initially. Intuitively speaking, the reason is that if the commitment
is perfectly hiding, there must exist, after the “commit message,” an “open
message” to be accepted by the receiver for any possible value one can commit
to. Theorems 6 and 7 make this precise and explicit by giving lower bounds on
the success probability of such cheating by the committer, depending on the
distribution PXY . Our bounds are improvements on similar bounds presented
in [2] and [15].

Theorem 6. Assume that a commitment protocol exists where the committer
initially knows a random variable X and the receiver knows Y . If the protocol
is perfectly hiding and the committer has committed to a value v ∈ V, then the
probability ps that she succeeds in opening the commitment to a different value
v′ �= v is at least

ps ≥ 2−H(Y ↘X|X) .

Proof. Note first that under the given assumptions, there must also exist a com-
mitment protocol with the same security properties if the parties are given X
and Y ↘ X , respectively, since the part of Y that is independent of X can be
simulated by B because X ←→ Y ↘ X ←→ Y is a Markov chain. As the pro-
tocol is perfectly hiding, there must exist, for every value v′, an opening of the
commitment to v′ that B accepts. Let y′ be the value maximizing PY |X=x. A
then opens the commitment for v′ in such a way that B accepts if his value y is
equal to y′, and this is successful if y = y′ indeed holds. The expected probability
of this event is

EX

[
2−H∞(Y ↘X|X=x)

]
≥ 2−EX [H∞(Y ↘X|X=x)]

≥ 2−EX [H(Y ↘X|X=x)]

= 2−H(Y ↘X|X) .

In the first step, we have used Jensen’s inequality. 
�
Theorem 7. Assume that a commitment protocol exists where the committer
initially knows a random variable X and the receiver knows Y . If the protocol
is perfectly hiding and the committer has committed to a value v ∈ V, then the
probability ps that she succeeds in opening the commitment to a different value
v′ �= v is at least

ps ≥ 2−H(X↘Y )+log(|V|−1) .

Proof. We can assume without loss of generality that the pieces of information
known to the parties are X ↘ Y and Y . Let the committer hold x and commit
to v ∈ V , and let v′ �= v. Since the protocol is perfectly hiding, there must
exist x′ ∈ X such that the commit message sent corresponds to the correct
commitment for v′. The probability of correctly guessing this value x′, maximized
over all v′, is at least

2−H∞(X↘Y )(|V|−1) ≥ 2−H(X↘Y )+log(|V|−1) . �
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Corollary 2. Assume that a commitment protocol exists where the committer
initially knows a random variable X and the receiver knows Y . If the protocol
is perfectly hiding and the committer has committed to a value v ∈ V, then the
probability ps that she succeeds in opening the commitment to a different value
v′ �= v is at least

ps ≥ max
(
2−H(Y ↘X|X) , 2−H(X↘Y )+log(|V|−1)

)
.

The commitment protocol of [17] achieves this bound: Given a prime number
q, we have H(X ↘ Y ) = 2 log q, H(Y ↘ X |X) = log q, and |V| = q. It is
perfectly hiding, and the “binding error probability” ps is

ps = 1/q = 2−H(Y ↘X|X) .

6 Concluding Remarks

We have presented three information-theoretic quantities with the property that
no two-party protocol can increase them—so-called monotones. Based on these,
we have derived new lower bounds on the possibility and efficiency of realizing
oblivious transfer and bit commitment from pieces of correlated information, as
well as on reductions between different versions of oblivious transfer. Finally, we
have proposed a new protocol for such a reduction of the latter kind which is
optimal.

We suggest as an open problem to find a general reduction of
(

N
M

)
-OTK to(

n
m

)
-OTk which attains the given lower bound for any choice of the parameters.

Furthermore, it would be interesting and useful to find similar monotones for
multi-party protocols.
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5. C. Crépeau. Correct and private reductions among oblivious transfers. Ph. D.
thesis, MIT, 1990.
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