
Merkle-Damg̊ard Revisited: How to Construct a
Hash Function

Jean-Sébastien Coron1, Yevgeniy Dodis2,�, Cécile Malinaud3,
and Prashant Puniya2,��

1 University of Luxembourg
coron@clipper.ens.fr
2 New-York University

{dodis, puniya}@cs.nyu.edu
3 Gemplus Card International

cecile.malinaud@normalesup.org

Abstract. The most common way of constructing a hash function (e.g.,
SHA-1) is to iterate a compression function on the input message. The
compression function is usually designed from scratch or made out of
a block-cipher. In this paper, we introduce a new security notion for
hash-functions, stronger than collision-resistance. Under this notion, the
arbitrary length hash function H must behave as a random oracle when
the fixed-length building block is viewed as a random oracle or an ideal
block-cipher. The key property is that if a particular construction meets
this definition, then any cryptosystem proven secure assuming H is a
random oracle remains secure if one plugs in this construction (still as-
suming that the underlying fixed-length primitive is ideal). In this paper,
we show that the current design principle behind hash functions such as
SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard transformation
— does not satisfy this security notion. We provide several constructions
that provably satisfy this notion; those new constructions introduce min-
imal changes to the plain Merkle-Damg̊ard construction and are easily
implementable in practice.

1 Introduction

Random Oracle Methodology. The random oracle model has been intro-
duced by Bellare and Rogaway as a “paradigm for designing efficient protocols”
[4]. It assumes that all parties, including the adversary, have access to a public,
truly random hash function H . This model has been proven extremely useful
for designing simple, efficient and highly practical solutions for many problems.
From a theoretical perspective, it is clear that a security proof in the random
oracle model is only a heuristic indication of the security of the system when
instantiated with a particular hash function, such as SHA-1 [16] or MD5 [18].

� Supported by NSF CAREER Award CCR-0133806 and TC Grant No. CCR-0311095.
�� Supported by NSF Cybertrust/DARPA Grant No. CNS-0430425.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 430–448, 2005.
c© International Association for Cryptologic Research 2005

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 431

In fact, many recent “separation” results [11,26,19,2,12,15] illustrated various
cryptographic systems secure in the random oracle model but completely inse-
cure for any concrete instantiation of the random oracle (even by a family of
hash functions). Nevertheless, these important separation results do not seem to
directly attack any of the concrete, widely used cryptosystems (such as OAEP
[6] and PSS [5] as used in the PKCS #1 v2.1 standard [27]) which rely on “se-
cure hash functions”. Moreover, we hope that such particular systems are in
fact secure when instantiated with a “good” hash function. In the random oracle
model, instead of making a highly non-standard (and possibly unsubstantiated)
assumption that “my system is secure with this H” (e.g., H being SHA-1), one
proves that the system is at least secure with an “ideal” hash function H (under
standard assumptions). Such formal proof in the random oracle model is believed
to indicate that there are no structural flaws in the design of the system, and
thus one can heuristically hope that no such flaws will suddenly appear with a
particular, “well designed” function H . But can we say anything about the lack
of structural flaws in the design of H itself?

Building Random Oracles. On the first glance, it appears that nothing
theoretically meaningful can be said about this question. Namely, we know that
mathematically a concrete function H is not a random oracle, so to prove that
H is “good” we need to directly argue the security of our system with this
given H . And the latter task is usually unmanageable given our current tools
(e.g., “realizable” properties of H such as collision-resistance, pseudorandomness
or one-wayness are usually not enough to prove the security of the system).
However, we argue that there is a significant gap in this reasoning. Indeed, most
systems abstractly model H as a function from {0, 1}∗ to {0, 1}n (where n is
proportional to the security parameter), so that H can be used on some arbitrary
input domain. On the other hand, in practice such arbitrary-length hash functions
are built by first heuristically constructing a fixed-length building block, such
as a fixed-length compression function or a block cipher, and then iterating
this building block in some manner to extend the input domain arbitrarily. For
example, SHA-1, MD5, as well as all the other hash function we know of, are
constructed by applying some variant of the Merkle-Damg̊ard construction to
an underlying compression function f : {0, 1}n+κ → {0, 1}n (see Figure 5):

Function H(m1, . . . , m�) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to � do yi ← f(yi−1, mi)
return y�

When the number of κ-bit message blocks � is not fixed, one essentially appends
an extra block m�+1 containing the binary representation 〈|m|〉 of the length of
the message (prepended by 1 and a string of 0’s in order to make everything a
multiple of κ; the exact details will not matter for our discussion). The fixed-
length compression function f can either be constructed from scratch or made
out of a block-cipher E via the Davies-Meyer construction (see [31] and Figure 9):
f(x, y) = Ey(x)⊕x. For example, the SHA-1 compression function was designed

432 J.-S. Coron et al.

specifically for hashing, but a block-cipher can nevertheless be derived from it,
as illustrated in [20].

Our Main Question. Given such particular and “structured” design of our
hash function H ,— which is actually the design used in practice,— we argue
that there exists a missing link in the claim that no structural flaws exist in the
design of our system. Indeed, we only know that no such flaws exist when H was
modeled as a “monolithic” random oracle, and not as an iterated hash function
built from some smaller building block. As since the real implementation of H
as an iterated hash function has much more structure than a random monolithic
hash function would have, maybe this structure could somehow invalidate the
security proof in the random oracle model? To put this into a different perspec-
tive, all the ad-hoc (and hopefully “secure”) design effort for widely used hash
functions, such as SHA-1 and MD5, has been placed into the design of the fixed-
length building block f (or E). On the other hand, even if f (or E) were assumed
to be ideal, the current proofs in the random oracle model do not guarantee the
security of the resulting system when such iterated hash function H is used!

Let us illustrate our point on a well known example. A common suggestion
to construct a MAC algorithm is to simply include a secret key k as part of
the input of the hash function, and take for example MAC(k, m) = H(k‖m). It
is easy to see that this construction is secure when H is modeled as a random
oracle [4], as no adversary can output a MAC forgery except with negligible
probability. However, this MAC scheme is completely insecure for any Merkle-
Damg̊ard construction considered so far (including Merkle-Damg̊ard strengthen-
ing used in current hash functions such as SHA-1, and any of the 64 block-cipher
based variants of iterative hash-functions considered in [29,9]), no matter which
(ideal) compression function f (or a block cipher E) is used. Namely, given
MAC(k, m) = H(k‖m), one can extend the message m with any single arbitrary
block y and deduce MAC(k, m‖y) = H(k‖m‖y) without knowing the secret key
k (even with Merkle-Damg̊ard strengthening, one could still forge the MAC by
more or less setting y = 〈|m|〉, where the actual block depends on the exact
details of the strengthening). This (well known) example illustrates that the
construction of a MAC from an iterated hash function requires a specific analy-
sis, and cannot be derived from the security of this MAC with a monolithic hash
function H . On the other hand, while the Merkle-Damg̊ard transformation and
its variants have been intensively studied for many “realizable” properties such as
collision-resistance [13,25,29,9], pseudorandomness [8], unforgeability [1,24] and
randomness extraction [14], it is clear that these analyses are insufficient to argue
its applicability for the purposes of building a hash function which can be mod-
eled as a random oracle, since the latter is a considerably stronger security no-
tion (in fact unrealizable in the standard model). For a simple concrete example,
the Merkle-Damg̊ard strengthening is easily seen to preserve collision-resistance
when instantiated with a collision-resistant compression function, while we just
saw that it does not work to yield a random oracle or even just a variable-length
MAC, and this holds even if the underlying compression function is modeled as
a random oracle.

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 433

Our Goals. Summarizing the above discussion, our goal is two-fold. First,
we would like to give a formal definition of what it means to implement an
arbitrary-length random oracle H from a fixed-length building block f or E.
The key property of this definition should be the fact that if a particular con-
struction of H from f (or E) meets this definition, then any application proven
secure assuming H is a random oracle would remain secure if we plug in our
construction (although still assuming that the underlying fixed-length primitive
f or E was ideal). In other words, we can safely use our implementation of H
as if we were using a monolithic random oracle H . We remark that this means
that our definition should not just preserve the pseudorandomness properties
of H , but also all the other “tricks” present in the random oracle model, such
as “programmability” and “extractability”. For example, we could try to set
H(x) = f(h(x)), where f is a fixed-length random oracle and h is a collision-
resistant hash function (not viewed as a random oracle). While pseudorandom,
this simple implementation is clearly not “extractable”: for example, given out-
put z = f(h(x)) for some unknown x, we can only “extract” the value h(x)
(by observing the random oracle queries made to f), but then have no way of
extracting x itself from h(x) (indeed, we will show a direct attack on this im-
plementation in Section 3.1). This shows that the security definition we need is
an interesting and non-trivial task of its own, especially if we also want it to be
simple, natural and easy to use.

Second, while the definition we seek should not be too specific to some variant
of the Merkle-Damg̊ard transformation, we would like to give secure construc-
tions which resemble what is done in practice as much as possible. Unfortunately,
we already argued that the current design principle behind hash functions such as
SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard transformation — will
not be secure for our ambitious goal. Therefore, instead of giving new and practi-
cally unmotivated constructions, our secondary goal is to come up with minimal
and easily implementable in practice changes to the plain Merkle-Damg̊ard con-
struction, which would satisfy our security definition.

Our results. First, we give a satisfactory definition of what it means to
implement an arbitrary-length random oracle H from a fixed length primitive
g (where g is either an ideal compression function f , or a an ideal block cipher
E). Our definition is based on the indifferentiability framework of Maurer et al.
[23]. This framework enjoys the desired closure property we seek, and is very
intuitive and easy to state.

Having a good security definition, we provide several provable construc-
tions. We start by giving three modifications to the (insecure) plain Merkle-
Damg̊ard construction which yield a secure random oracle H taking arbitrary-
length input, from a compression function viewed as a random oracle taking
fixed-length input. This result can be viewed as a secure domain extender for the
random oracle, which is an interesting result of independent interest. We remark
that domain extenders are well studied for such primitives as collision-resistant
hash functions [13,25], pseudorandom functions [8], MACs [1,24] and universal
one-way hash functions [7,30]. Although the above works also showed that some

434 J.-S. Coron et al.

variants of Merkle-Damg̊ard yield secure domain extenders for the corresponding
primitive in question, these results are not sufficient to claim a domain extender
for the random oracle.

Our secure modifications to the plain Merkle-Damg̊ard construction are the
following. (1) Prefix-Free Encoding : we show that if the inputs to the plain MD
construction are guaranteed to be prefix-free, then the plain MD construction is
secure. (2) Dropping Some Output Bits : we show that by dropping a non-trivial
number of output bits from the plain MD chaining, we get a secure random or-
acle H even if the input is not encoded in the prefix-free manner. (3) Using
NMAC construction (see Figure 8a): we show that by applying an independent
hash function g to the output of the plain MD chaining (as in the NMAC con-
struction [8]), then once again we get a secure construction of an arbitrary-length
random oracle H , in the random oracle model for f and g. (4) Using HMAC
Construction (see Figure 8b): we show a slightly modified variant of the NMAC
construction allowing us to conveniently build the function g from the compres-
sion function f itself (as in [8] when going from NMAC to HMAC)! In this latter
variant, one implements a secure hash function H by making two black-box calls
to the plain Merkle-Damg̊ard construction (with the same fixed IV and a given
compression function f): first on (�+1)-block input 0κm1 . . . m�, getting an n-bit
output y, and then on one-block κ-bit input y′ (obtained by either truncating
or padding y depending on whether or not κ > n), getting the final output.

However, in practice most hash-function constructions are block-cipher
based, either explicitly as in [29] or implicitly as for SHA-1. Therefore, we con-
sider the question of designing an arbitrary-length random oracle H from an ideal
block cipher E, specifically concentrating on using the Merkle-Damg̊ard con-
struction with the Davies-Meyer compression function f(x, y) = Ey(x) ⊕ x,
since this is the most practically relevant construction. We show that all of
the four fixes to the plain MD chaining which worked when f was a fixed-length
random oracle, are still secure (in the ideal cipher model) when we plug in
f(x, y) = Ey(x) ⊕ x instead. Specifically, we can either use a prefix-free encod-
ing, or drop a non-trivial number of output bits (when possible), or apply an
independent random oracle g to the output of plain MD chaining, or use the
optimized HMAC construction which allows us to build this function g from the
ideal cipher itself.

2 Definitions

In this section, we introduce the main notations and definitions used throughout
the paper. Our security notion for secure hash-function is based on the notion
of indifferentiability of systems, introduced by Maurer et al. in [23]. This is an
extension of the classical notion of indistinguishability, when one or more oracles
are publicly available, such as random oracles or ideal ciphers. This notion is
based on ideas from the Universal Composition framework introduced by Canetti
in [10] and on the model of Pfitzmann and Waidner [28]. The indifferentiability
notion in [23] is given in the framework of random systems providing interfaces to

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 435

other systems, but equivalently we use this notion in the framework of Interactive
Turing Machines (as in [10]).

We define an ideal primitive as an algorithmic entity which receives inputs
from one of the parties and deliver its output immediately to the querying party.
The ideal primitives that we consider in this paper are random oracles and ideal
ciphers. A random oracle [4] is an ideal primitive which provides a random
output for each new query. Identical input queries are given the same answer.
An ideal cipher is an ideal primitive that models a random block-cipher E :
{0, 1}κ × {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}κ defines a random permutation
Ek = E(k, ·) on {0, 1}n. The ideal primitive provides oracle access to E and
E−1; that is, on query (0, k, m), the primitive answers c = Ek(m), and on query
(1, k, c), the primitive answers m such that c = Ek(m).

We now proceed to the definition of indifferentiability [23] :

Definition 1. A Turing machine C with oracle access to an ideal primitive G
is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive F if there exists
a simulator S, such that for any distinguisher D it holds that :

∣
∣Pr

[

DC,G = 1
]

− Pr
[

DF ,S = 1
]∣
∣ < ε

The simulator has oracle access to F and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, CG is
said to be (computationally) indifferentiable from F if ε is a negligible function
of the security parameter k (for polynomially bounded tD and tS).

As illustrated in Figure 1, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C and
G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that the simulator does
not see the distinguisher’s queries to F ; however, it can call F directly when
needed for the simulation.

C G F S

D

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algo-
rithm C and ideal primitive G, or with ideal primitive F and simulator S. Algorithm
C has oracle access to G, while simulator S has oracle access to F

In the rest of the paper, the algorithm C will represent the construction of
an iterative hash-function (such as the Merkle-Damg̊ard construction recalled in
the introduction). The ideal primitive G will represent the underlying primitive

436 J.-S. Coron et al.

used to build the hash-function. G will be either a random oracle (when the com-
pression function is modelled as a random oracle), or an ideal block-cipher (when
the compression function is based on a block-cipher). The ideal primitive F will
represent the random oracle that the construction C should emulate. Therefore,
one obtains the following setting : the distinguisher has oracle access to both the
block-cipher and the hash-function, and these oracles are implemented in one
of the following two ways: either the block-cipher E is chosen at random and
the hash-function C is constructed from it, or the hash-function H is chosen at
random and the block-cipher is implemented by a simulator S with oracle ac-
cess to H . Those two cases should be indistinguishable, that is the distinguisher
should not be able to tell whether the block-cipher was chosen at random and
the iterated hash-function constructed from it, or the hash-function was chosen
at random and the block-cipher then “tailored” to match that hash-function.

It is shown in [23] that if CG is indifferentiable from F , then CG can replace
F in any cryptosystem, and the resulting cryptosystem is at least as secure in the
G model as in the F model. For example, if a block-cipher based iterative hash
function is indifferentiable from a random oracle in the ideal cipher model, then
the iterative hash-function can replace the random oracle in any cryptosystem,
and the resulting cryptosystem remains secure in the ideal cipher model if the
original scheme was secure in the random oracle model.

C G F

P A P A'

ε ε

Fig. 2. The environment E interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C whereas A has oracle access to G. In the F
model, both P and A′ have oracle access to F

We use the definition of [23] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modelled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C whereas attacker A has oracle access to G. In the F model,
both P and A have oracle access to F . The definition is illustrated in Figure 2.

Definition 2. A cryptosystem is said to be at least as secure in the G model
with algorithm C as in the F model, if for any environment E and any attacker
A in the G model, there exists an attacker A′ in the F model, such that

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 437

∣
∣
∣Pr

[

E(PC , AG) = 1
]

− Pr
[

E(PF , A′F) = 1
]∣
∣
∣

is a negligible function of the security parameter k. Similarly, a cryptosystem is
said to be computationally at least as secure, etc., if E, A and A′ are polynomial-
time in k.

The following theorem from [23] shows that security is preserved when re-
placing an ideal primitive by an indifferentiable one :

Theorem 1. Let P be a cryptosystem with oracle access to an ideal primitive
F . Let C be an algorithm such that CG is indifferentiable from F . Then cryp-
tosystem P is at least as secure in the G model with algorithm C as in the F
model.

Proof. We only provide a proof sketch; see [23] for a full proof. Let P be any
cryptosystem, modelled as an Interactive Turing Machine. Let E be any environ-
ment, and A be any attacker in the G model. In the G model, P has oracle access
to C whereas A has oracle access to ideal primitive G; moreover environment E
interacts with both P and A. This is illustrated in Figure 3 (left part).

C G F S

P A P A

ε ε
D D

A'

Fig. 3. Construction of attacker A′ from attacker A and simulator S

Since CG is indifferentiable from F (see Figure 1), one can replace (C, G) by
(F , S) with only a negligible modification of the environment’s output distrib-
ution. As illustrated in Figure 3, by merging attacker A and simulator S, one
obtains an attacker A′ in the F model, and the difference in E ’s output distrib-
ution is negligible. �	

3 Domain Extension for Random Oracles
In this section, we show how to construct an iterative hash-function indifferen-
tiable from a random oracle, from a compression function viewed as a random
oracle. We start with two simple and intuitive constructions that do not work.

438 J.-S. Coron et al.

3.1 H(x) = f(h(x)) for Random Oracle f and Collision-Resistant
One-Way Hash-Function h

One could hope to emulate a random oracle (with arbitrary-length input) by
taking :

Cf (x) = f(h(x))

where f : {0, 1}n → {0, 1}n is modelled as a random oracle and h : {0, 1}∗ →
{0, 1}n is any collision-resistant one-way hash-function (not modelled as a ran-
dom oracle). However, we show that such Cf is not indifferentiable from a ran-
dom oracle; namely, we construct a distinguisher that can fool any simulator.

f H Sh
f

C(m) = f(h(m))

C

H(m) = S(h(m))

Fig. 4. The simulator cannot output H(m) since it only receives h(m) and cannot
recover m from h(m)

As illustrated in Figure 4, the distinguisher first generates an arbitrary m
and computes u = h(m). Then it queries v = f(u) to random oracle f and
queries z = Cf (m) to Cf . It then checks that z = v and outputs 1 in this
case, and 0 otherwise. It is easy to see that the distinguisher always output 1
when interacting with Cf and f , but outputs 0 with overwhelming probability
when interacting with H and any simulator S. Namely, when the distinguisher
interacts with H and S, the simulator only receives u = h(m); therefore, in order
to output v such that v = H(m), the simulator must either recover m from h(m)
(and then query H(m)) or guess the value of H(m), which can be done with
only negligible probability.

3.2 Plain Merkle-Damg̊ard Construction

We show that the plain Merkle-Damg̊ard construction (see Figure 5) fails to
emulate a random oracle (taking arbitrary-length input) when the compression
function f is viewed as a random oracle (taking fixed-length input). For simplic-
ity, we only consider the usual Merkle-Damg̊ard variant, although the discussion
easily extends to the strengthened variant which appends the message length
〈|m|〉 at the last block :

Function MDf (m1, . . . , m�) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to � do yi ← f(yi−1, mi)
return y� ∈ {0, 1}n.

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 439

IV

m1 m2

ff f
y1 y2

y�

m�

Fig. 5. The plain Merkle-Damg̊ard Construction

We have already mentioned in introduction a counter-example based on
MAC. Namely, we showed that MAC(k, m) = H(k‖m) provides a secure MAC
in the random oracle model for H , but is completely insecure when H is replaced
by the previous Merkle-Damg̊ard construction MDf , because of the message ex-
tension attack. In the following, we give a more direct refutation based on the
definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such mes-
sages, we have that MDf (m1) = f(0, m1) and MDf (m1, m2) = f(f(0, m1), m2).
We build a distinguisher that can fool any simulator as follows. The distinguisher
first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a
query for v = f(u, m2) to random oracle f . The distinguisher then makes a
MDf -query for (m1, m2) and eventually checks that v = MDf (m1, m2); in this
case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always
outputs 1 when interacting with MDf and f . However, when the distinguisher
interacts with H and S (who must simulate f), we observe that S has no informa-
tion about m1 (because S does not see the distinguisher’s H-queries). Therefore,
the simulator cannot answer v such that v = H(m1, m2), except with negligible
probability.

3.3 Prefix-Free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are
guaranteed to be prefix-free, then the plain MD construction is secure. Namely,
prefix-free encoding enables to eliminate the message expansion attack described
previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also
insecure in its plain form. Thus, the plain MD construction can be safely used
for any application of the random oracle H where the length of the inputs is
fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to differen-
tiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable in-
jective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x
= y, g(x) is not a
prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide
two examples of prefix-free encodings. The first one consists in prepending the

440 J.-S. Coron et al.

message size in bits as the first block. The last block is then padded with the
bit one followed by zeroes.

Function g1(m) :
let N be the message length of m in bits.
write m as (m1, . . . , m�) where for all i, |mi| = κ

and with the last block m� padded with 10r.
let g1(m) = (〈N〉, m1, . . . , m�) where 〈N〉 is a κ-bit binary encoding of N .

An important drawback of this encoding is that the message length must be
known in advance; this can be a problem for streaming applications in which a
large message must be processed on the fly. Our second encoding g2 does not
suffer from this drawback, but requires to waste one bit per block of the message :

Function g2(m) :
write m as (m1, . . . , m�) where for all i, |mi| = κ − 1

and with the last block m� padded with 10r.
let g2(m) = (0|m1, . . . , 0|m�−1, 1|m�).

Given any prefix-free encoding g, we consider the following construction
of the iterative hash-function pf-MDf

g : {0, 1}∗ → {0, 1}n, using the Merkle-
Damg̊ard hash-function MDf : ({0, 1}κ)∗ → {0, 1}n defined previously.

Function pf-MDf
g (m) :

let g(m) = (m1, . . . , m�)
y ← MDf (m1, . . . , m�)
return y

Theorem 2. The previous construction is (tD, tS , q, ε)-indifferentiable from a
random oracle, in the random oracle model for the compression function, for
any tD, with tS = � · O(q2) and ε = 2−n · �2 · O(q2), where � is the maximum
length of a query made by the distinguisher D.

Proof. Due to lack of space, we only provide a proof sketch for a particular prefix-
free encoding which has a simpler proof; the proof for any prefix-free encoding
will be provided in the full version of this paper.

The particular prefix-free encoding that we consider consists in adding the
message-length as part of the input of f ; moreover, the index of the current
block is also included as part of the input of f , so that f can be viewed as
an independent random oracle for each block mi. Specifically, we construct an
iterative hash-function Cf : ({0, 1}κ)∗ → {0, 1}n from a compression function
f : {0, 1}n+κ+2·t → {0, 1}n as follows :

Function Cf (m1, . . . , m�) :
let y0 = 0n

for i = 1 to � do yi ← f(yi−1, mi, 〈�〉, 〈i〉)
return y�

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 441

m1 m2 m�

fff
IV

〈1〉 〈2〉 〈�〉
〈�〉〈�〉〈�〉

Fig. 6. Merkle-Damg̊ard with a particular prefix-free encoding

where for all i, |mi| = κ. The string 〈�〉 is a t-bit binary encoding of the message
length �, and 〈i〉 is a t-bit encoding of the block index. The construction is shown
in Figure 6.

In the following, we show that Cf is indifferentiable from a random oracle, in
the random oracle model for f . Since the block-length � is part of the input of the
compression function f , we have that Cf behaves independently for messages of
different length. Therefore, we can restrict ourselves to messages of fixed length
�, i.e. it suffices to show that for all �, the construction Cf with message length
� is indifferentiable from random oracle H� : ({0, 1}κ)� → {0, 1}n.

We consider for all 1 ≤ j ≤ � the function Cf
j : ({0, 1}κ)j → {0, 1}n out-

putting the intermediate value yj in Cf . From the definition of Cf , we have for
all 2 ≤ j ≤ � :

Cf
j (m1, . . . , mj) = f(Cf

j−1(m1, . . . , mj−1), mj , 〈�〉, 〈j〉) (1)

We provide a recursive proof that for all j, the construction Cf
j is indifferentiable

from a random oracle. The result for Cf will follow for j = �. The property clearly
holds for j = 1. Assuming now that it holds for j − 1, we show that it holds for
j. We use the following lemma :

Lemma 1. Let h1 : {0, 1}a → {0, 1}n and h2 : {0, 1}n+κ → {0, 1}n. The con-
struction Rh1,h2 = h2(h1(x), y) is indifferentiable from a random oracle, in the
random oracle model for h1 and h2.

Replacing Cf
j−1 by h1 and f(·, 〈�〉, 〈j〉) by h2 in equation (1), one then obtains

that Cf
j is indifferentiable from a random oracle (see Figure 7 for an illustration).

We now proceed to the proof of lemma 1; due to lack of space, we only
provide a proof sketch. One must construct a simulator S such that interacting
with (R, (h1, h2)) is indistinguishable from interacting with (H, S), where H is
a random oracle. Our simulator is defined as follows:
Simulator S :
On h1-query x, return a random v ∈ {0, 1}n.
On h2-query (v′, y), check if v′ = h2(x′) for some previously queried x′.

In this case, query (x′, y) to H and output H(x′, y).
Otherwise return a random output.

442 J.-S. Coron et al.

IV

H

f f f

m1 m2 m3

〈�〉 〈�〉 〈�〉
〈1〉 〈2〉 〈3〉

Fig. 7. The output of first two blocks is replaced by a random oracle using Lemma 1

The distinguisher either interacts with (R, (h1, h2)) or with (H, S). We denote
by F the event that a collision occurs for h1, that is h1(x) = h1(x′) for some
distinct queries x, x′. We denote by F ′ the event that the distinguisher makes
a h2-query (v′, y) such that v′ = h1(x) and (x, y) was previously queried to
R, but x was never queried directly to h1 by the distinguisher. We claim that
conditioned on the complement of F ∨F ′, the simulation of S is perfect (see the
full paper for a complete justification). The distinguishing probability is then at
most Pr[F ∨ F ′]; for a distinguisher making at most q queries, this gives:

Pr[F ∨ F ′] ≤ 2q2

2n

which shows a negligible distinguishing probability. �	

3.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the plain
Merkle-Damg̊ard construction MDf , one obtains a construction indifferentiable
from a random oracle. This “fix” is similar to the method used by Dodis et al. [14]
to overcome the problem of using plain MD chaining for randomness extraction
from high-entropy distributions, and to the suggestion of Lucks [22] to increase
the resilience of plain MD chaining to multi-collision attacks. It is also already
used in practice in the design of hash functions SHA-348 and SHA-224 [17] (both
obtained by dropping some output bits from SHA-512 and SHA-256). Here we
show that by dropping a non-trivial number of output bits from the plain MD
chaining, one gets a secure random oracle H even if the input is not encoded
in the prefix-free manner. For example, such dropping prevents the “extension”
attacks we saw in the MAC application, since the attacker cannot guess the value
of the dropped bits, and cannot extend the output of the MAC to a valid MAC
of a longer message.

Formally, given a compression function f : {0, 1}n+κ → {0, 1}n, the new
construction chop-MDf

s is defined as follows:

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 443

Function chop-MDf
s (m) :

let m = (m1, . . . , m�)
y ← MDf (m1, . . . , m�)
return the first n − s bits of y.

Theorem 3. The chop-MDf
s construction is (tD, tS , q, ε) indifferentiable from a

random oracle, for any tD, with tS = � · O(q2) and ε = 2−s · �2 · O(q2). Here �
is the maximum length of a query made by the distinguisher D.

While really simple, the drawback of this method is that its exact security
is proportional to q22−s, where s is the number of chopped bits and q is the
number of oracle queries. Thus, to achieve adequate security level the value of s
has to be relatively high, which means that short-output hash functions such as
SHA-1 and MD5 cannot be fixed using this method. However, functions such as
SHA-512 can naturally be fixed (say, by setting s = 256).

3.5 The NMAC and HMAC Constructions

The NMAC construction [8], which is the basis of the popular HMAC construc-
tion, applies an independent hash function g to the output of the plain MD
chaining. It has been shown very valuable in the design of MACs [8], and re-
cently also randomness extractors [14]. Here we show that if g is modelled as
another fixed-length random oracle independent from the random oracle f (used
for the compression function), then once again one gets a secure construction
of an arbitrary-length random oracle H , even if plain MD chaining is applied
without prefix-free encoding. Intuitively, applying g gives another way to hide
the output of the plain MD chaining, and thus prevent the “extension” attack
described earlier.

Formally, given f : {0, 1}n+κ → {0, 1}n and g : {0, 1}n → {0, 1}n′
, the

function NMACf,g is defined as (see Figure 8a):

Function NMACf,g(m) :
let m = (m1, . . . , m�)
y ← MDf(m1, . . . , m�)
Y ← g(y)
return Y

Theorem 4. The construction NMACf,g is (tD, tS , q, ε) indifferentiable from
a random oracle for any tD, tS = � · O(q2) and ε = 2−min(n,n′)�2O(q2), in
the random oracle model for f and g, where � is the maximum message length
queried by the distinguisher.

To practically instantiate this suggestion, we would like to implement f and
g from a single compression function. This problem is analogous to the prob-
lem in going from NMAC to HMAC in [8], although our solution is slightly
different. One simple way for achieving this is to use domain separation: e.g., by

444 J.-S. Coron et al.

prepending 0 for calls to f and 1 — for calls to g. However, with this mod-
eling we are effectively using the prefix-free encoding mapping m1m2 . . . m�

to 0m10m2 . . . 0m�10κ, which appears slightly wasteful. Additionally, this also
forces us to go into the lower-level implementation details for the compression
function, which we would like to avoid. Instead, our solution consists in apply-
ing two black-box calls to the plain Merkle-Damg̊ard construction MDf (with the
same f and IV) : first to the input 0κm1 . . . m�, getting an n-bit output y, and
again to κ-bit y′, where y′ is defined from y as follows (see Figure 8b):

Function HMACf (m) :
let m = (m1, . . . , m�)
let m0 = 0κ

y ← MDf (m0, m1, . . . , m�)
if n < κ then y′ ← y ‖ 0κ−n

else y′ ← y|κ
Y ← MDf (y′)
return Y

Intuitively, we are almost using the NMAC construction with g(y) = f(IV, y′)
(where y′ is obtained from y as above), except we prepend a fixed block m0 = 0κ

to our message. This latter tweak is done to ensure that there are no inter-
dependencies between using the same IV on y′ and the first message block
(which would have been under adversarial control had we not prepended m0).
Indeed, it is very unlikely that “high-entropy” y′ will ever be equal to m0 = 0κ,
so the analysis for NMAC can be easily extended for this optimization.

Theorem 5. The construction HMACf is (tD, tS , q, ε) indifferentiable from a
random oracle for any tD, tS = � · O(q2) and ε = 2−min(n,κ) · �2 · O(q2), in the
random oracle model for f , where � is the maximum message length queried by
the distinguisher.

4 Constructions Using Ideal Cipher

In practice, most hash-function constructions are block-cipher based, either ex-
plicitly as in [29] or implicitly as for SHA-1. Therefore, we consider the question
of designing an arbitrary-length random oracle H from an ideal block cipher
E : {0, 1}κ × {0, 1}n → {0, 1}n, specifically concentrating on using the Merkle-
Damg̊ard construction with the Davies-Meyer compression function f(x, y) =
Ey(x)⊕x (see Figure 9), since this is the most practically relevant construction.
We notice that the question of designing a collision-resistant hash function H
from an ideal block cipher was explicitly considered by Preneel, Govaerts and
Vandewalle in [29], and latter formalized and extended by Black, Rogaway and
Shrimpton [9]. Specifically, the authors of [9] actually considered 64 block-cipher
variants of the Merkle-Damg̊ard transform (which included the Davies-Meyer
variant among them), and formally showed that exactly 20 of these variations

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 445

m�

m1 m2 m�

y0 y1

y�

f f f f

f f f g
y1 y2 y�

Y

Y

m1

b. HMAC construction

a. NMAC construction

IV

IV

0κ

Fig. 8. The NMAC and HMAC constructions

f
x

y

x

y

E

Fig. 9. The Davies-Meyer Compression function

(including the Davies-Meyer variant) are collision-resistant when the block ci-
pher E is modeled as an ideal cipher. However, while our work will also model E
as an ideal cipher, our security goal is considerably stronger than mere collision-
resistance. Indeed, we already pointed out that none of the 64 variants above
can withstand the “extension” attack on the MAC application, even with the
Merkle-Damg̊ard strengthening. And even when restricting to a fixed number
of blocks � (which invalidates the “extension” attack), collision-resistance is
completely insufficient for our purposes. For example, the authors of [9] show
the collision-resistance when using the plain MD chaining with fixed IV and
compression function f(x, y) = Ey(x). On the other hand, it is easy to see
that this method does not provide a secure random oracle H according to our
definition.

From a different direction, if we could show that the Davies-Meyer compres-
sion function f(x, y) = Ey(x) ⊕ x is a secure random oracle when E is an ideal
block-cipher, then we could directly apply any of the three fixes discussed above.
Unfortunately, this is again not the case: intuitively, the above construction al-

446 J.-S. Coron et al.

lows anybody to compute x from f(x, y)⊕x and y (since x = E−1
y (f(x, y)⊕x)),

which should not be the case if f was a true random oracle. Thus, we need
a direct proof to argue the security of the Davies-Meyer construction. Luckily,
using such direct proofs we indeed argue that all of the fixes to the plain MD
chaining which worked when f was a fixed-length random oracle, are still secure
when f(x, y) = Ey(x)⊕x is used instead. Namely, we can either use a prefix-free
encoding, or drop a non-trivial number of output bits, or apply an independent
random oracle g to the output of plain MD chaining. With respect to this lat-
ter fix, we also show that we can implement this independent g using the ideal
cipher itself, similarly to the case with an ideal compression function f .

Formally, given a block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n, the plain
Merkle-Damg̊ard hash-function with Davies-Meyer’s compression function is de-
fined as :

Function MDE(m1, . . . , m�) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to � do yi ← Emi(yi−1) ⊕ yi−1
return y� ∈ {0, 1}n.

where for all i, |mi| = κ. The block-cipher based iterative hash-functions
pf-MDE

g , chop-MDE
s , NMACE

g and HMACE are then defined as in section 3,
using MDE instead of MDf . The proof of the following theorem is given in the
full version of this paper.

Theorem 6. The block-cipher based constructions pf-MDE
g , chop-MDE

s ,
NMACE

g and HMACE are (tD, tS , q, ε)-indifferentiable from a random oracle, in
the ideal cipher model for E, for any tD and tS = �·O(q2), with ε = 2−n·�2 ·O(q2)
for pf-MDE

g , ε = 2−s · �2 · O(q2) for chop-MDE
s , ε = 2−min(n,n′) · �2 · O(q2) for

NMACE
g and ε = 2−min(κ,n) · �2 · O(q2) for HMACE. Here � is the maximum

message length queried by the distinguisher.

5 Conclusion

In this paper, we pointed the attention of the cryptographic community to the
gap between assuming an arbitrary-length random oracle H and assuming a
fixed-length ideal building block for H such as a fixed-length compression func-
tion or a block cipher. We then provided a formal definition which suffices to
eliminate this gap, noticed that the current iterative hash functions like SHA-
1 and MD5 do not satisfy our security notion, and showed several practically
motivated, easily implementable and provably secure fixes to the plain Merkle-
Damg̊ard transformation. Specifically, one can either ensure that all the inputs
appear in the prefix-free form, or drop a nontrivial number of the output bits (if
the output of the hash function is long enough to allow it), or, — when the above
methods are not applicable — apply an independent fixed-length hash function
to the output, which, as we illustrated, can be conveniently implemented using
the corresponding building block itself.

Merkle-Damg̊ard Revisited: How to Construct a Hash Function 447

An interesting open problem is to provide a construction in the opposite
direction, that is, a construction that securely realizes an ideal block-cipher (or
a random permutation) from a random oracle. One could use the Luby-Rackoff
construction of a pseudo-random permutation from a pseudo-random function
[21], but the major difference is that here the adversary has oracle access to the
inner functions. One can show that at least six rounds are required to securely
realize a random permutation from a random oracle (which should be contrasted
with the secret-key case where four rounds are necessary and sufficient [21]), but
we were not able to find a proof that six or more rounds would be sufficient.

Acknowledgments. We would like to deeply thank Victor Shoup for his in-
valuable contribution to all aspects of this work. We also thank the anonymous
referees for many useful comments.

References

1. J. H. An, M. Bellare, Constructing VIL-MACs from FIL-MACs: Message Authen-
tication under Weakened Assumptions, CRYPTO 1999, pages 252-269.

2. Mihir Bellare, Alexandra Boldyreva and Adriana Palacio. An Uninstantiable
Random-Oracle-Model Scheme for a Hybrid-Encryption Problem. Proccedings of
Eurocrypt 2004.

3. M. Bellare, J. Kilian, and P. Rogaway. The Security of Cipher Block Chaining. In
Crypto ’94, pages 341–358, 1994. LNCS No. 839.

4. M. Bellare and P. Rogaway, Random oracles are practical : a paradigm for designing
efficient protocols. Proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

5. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

6. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eu-
rocrypt’94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92–111.

7. M. Bellare and P. Rogaway, Collision-Resistant Hashing: Towards Making
UOWHFs Practical, In Crypto ’97, LNCS Vol. 1294.

8. M. Bellare, R. Canetti, and H. Krawczyk, Pseudorandom Functions Re-visited:
The Cascade Construction and Its Concrete Security, In Proc. 37th FOCS, pages
514-523. IEEE, 1996.

9. J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV, in Advances in Cryptology - CRYPTO
2002, California, USA.

10. R. Canetti, Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols, proceedings of the 42nd Symposium on Foundations of Com-
puter Science (FOCS), 2001. Cryptology ePrint Archive, Report 2000/067,
http://eprint.iacr.org/.

11. R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited,
STOC’ 98, ACM, 1998.

12. Ran Canetti, Oded Goldreich and Shai Halevi. On the random oracle methodology
as applied to Length-Restricted Signature Schemes. In Proceedings of Theory of
Cryptology Conference, pp. 40–57, 2004.

448 J.-S. Coron et al.

13. I. Damg̊ard, A Design Principle for Hash Functions, In Crypto ’89, pages 416-427,
1989. LNCS No. 435.

14. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin, Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes, Advances
in Cryptology - CRYPTO, August 2004.

15. Y. Dodis, R. Oliveira, K. Pietrzak, On the Generic Insecurity of the Full Domain
Hash, Advances in Cryptology - CRYPTO, August 2005.

16. FIPS 180-1, Secure hash standard, Federal Information Processing Standards Pub-
lication 180-1, U.S. Department of Commerce/N.I.S.T., National Technical Infor-
mation Service, Springfield, Virginia, April 17 1995 (supersedes FIPS PUB 180).

17. National Institute of Standards and Technology (NIST). Secure hash standard.
FIPS 180-2. August 2002.

18. RFC 1321, The MD5 message-digest algorithm, Internet Request for Comments
1321, R.L. Rivest, April 1992.

19. Shafi Goldwasser and Yael Tauman. On the (In)security of the Fiat-Shamir Par-
adigm. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (2003), 102-114.

20. H. Handschuh and D. Naccache, SHACAL, In B. Preneel, Ed., First Open NESSIE
Workshop, Leuven, Belgium, November 13-14, 2000

21. M. Luby and C. Rackoff, How to construct pseudo-random permutations from
pseudo-random functions, SIAM J. Comput., Vol. 17, No. 2, April 1988.

22. Stefan Lucks. Design Principles for Iterated Hash Functions, available at E-Print
Archive, http://eprint.iacr.org/2004/253.

23. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology, Theory of
Cryptography - TCC 2004, Lecture Notes in Computer Science, Springer-Verlag,
vol. 2951, pp. 21-39, Feb 2004.

24. Ueli Maurer and Johan Sjodin. Single-key AIL-MACs from any FIL-MAC, In
ICALP 2005, July 2005.

25. R. Merkle, One way hash functions and DES, Advances in Cryptology, Proc.
Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428-446.

26. Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case. In Advances in Cryptology - Crypto
2002 Proceedings (2002), 111 -126

27. PKCS #1 v2.1, RSA Cryptography Standard (draft), document available at
www.rsa security.com/rsalabs/pkcs.

28. B. Pfitzmann and M. Waidner, A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Security and
Privacy, pages 184-200. IEEE Computer Society Press, 2001.

29. B. Preneel, R. Govaerts and J. Vandewalle, Hash Functions Based on Block Ci-
phers: A Synthetic Approach, in Advances in Cryptology - CRYPTO ’93,, Santa
Barbara, California, USA.

30. V. Shoup, A composition theorem for universal one-way hash functions, In Euro-
crypt ’00, pp. 445–452, LNCS Vol. 1807.

31. R. Winternitz, A secure one-way hash function built from DES, in Proceedings
of the IEEE Symposium on Information Security and Privacy, pages 88-90. IEEE
Press, 1984.

	Introduction
	Definitions
	Domain Extension for Random Oracles
	$H(x)=f(h(x))$ for Random Oracle f and Collision-Resistant One-Way Hash-Function h
	Plain Merkle-Damgård Construction
	Prefix-Free Merkle-Damgård
	The Chop Solution
	The NMAC and HMAC Constructions

	Constructions Using Ideal Cipher
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

