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Abstract. We describe two new public key broadcast encryption sys-
tems for stateless receivers. Both systems are fully secure against any
number of colluders. In our first construction both ciphertexts and pri-
vate keys are of constant size (only two group elements), for any subset of
receivers. The public key size in this system is linear in the total number
of receivers. Our second system is a generalization of the first that pro-
vides a tradeoff between ciphertext size and public key size. For example,
we achieve a collusion resistant broadcast system for n users where both
ciphertexts and public keys are of size O(

√
n) for any subset of receivers.

We discuss several applications of these systems.

1 Introduction

In a broadcast encryption scheme [FN93] a broadcaster encrypts a message for
some subset S of users who are listening on a broadcast channel. Any user in
S can use his private key to decrypt the broadcast. However, even if all users
outside of S collude they can obtain no information about the contents of the
broadcast. Such systems are said to be collusion resistant. The broadcaster can
encrypt to any subset S of his choice. We use n to denote the total number of
users.

Broadcast encryption has several applications including access control in en-
crypted file systems, satellite TV subscription services, and DVD content protec-
tion. As we will see in Section 4 we distinguish between two types of applications:

– Applications where we broadcast to large sets, namely sets of size n − r
for r � n. The best systems [NNL01, HS02, GST04] achieve a broadcast
message containing O(r) ciphertexts where each user’s private key is of size
O(log n).

– Applications where we broadcast to small sets, namely sets of size t for
t � n. Until now, the best known solution was trivial, namely encrypt
the broadcast message under each recipient’s key. This broadcast message
contains t ciphertexts and each user’s private key is of size O(1).
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In this paper we construct fully collusion secure broadcast encryption sys-
tems with short ciphertexts and private keys for arbitrary receiver sets. Our
constructions use groups with an efficiently computable bilinear map. Our first
construction provides a system in which both the broadcast message and user
private keys are of constant size (a precise statement is given in the next sec-
tion). No matter what the receiver set is, our broadcast ciphertext contains only
two group elements. Each user’s private key is just a single group element. Thus,
when broadcasting to small sets our system generates far shorter ciphertexts
than the trivial solution discussed above. However, the public key size in this
system is linear in the number of recipients. This is not a large problem in ap-
plications such as encrypted file systems where the receivers have access to a
large shared storage medium in which the public key can be stored. For other
applications, such as content protection, we need to minimize both public key
and ciphertext size.

Our second system is a generalization of the first that enables us to tradeoff
public key size for ciphertext size. One interesting parametrization of our scheme
gives a system where both the public key and the ciphertext are of size O(

√
n).

This means that we can attach the public key to the encrypted broadcast and
still achieve ciphertext size of O(

√
n). Consequently, we obtain a fully collusion

secure broadcast encryption scheme with O(
√

n) ciphertext size (for any subset
of users) where the users have a constant size private key.

In Section 2 we define our security model and the complexity assumption we
use. In Section 3 we describe our systems and prove their semantic security. In
Section 4 we discuss in detail several applications for these systems. Finally, in
Section 5 we describe how to make our systems chosen-ciphertext secure.

1.1 Related Work

Fiat and Naor [FN93] were the first to formally explore broadcast encryption.
They presented a solution for n users that is secure against a collusion of t users
and has ciphertext size of O(t log2 t log n).

Naor et al. [NNL01] presented a fully collusion secure broadcast encryption
system that is efficient for broadcasting to all but a small set of revoked users.
Their scheme is useful for content protection where broadcasts will be sent to all
but a small set of receivers whose keys have been compromised. Their scheme
can be used to encrypt to n − r users with a header size of O(r) elements and
private keys of size O(log2 n). Further improvements [HS02, GST04] reduce the
private key size to O(log n). Dodis and Fazio [DF02] extend the NNL (subtree
difference) method into a public key broadcast system for a small size public
key.

Other broadcast encryption methods for large sets include Naor and Pinkas
[NP00] and Dodis and Fazio [DF03] as well as [AMM99, TT01]. For some fixed
t all these systems can revoke any r < t users where ciphertexts are always
of size O(t) and private keys are constant size. By running log n of these sys-
tems in parallel, where the revocation bound of the i’th system is ti = 2i (as
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in [YJCK04]), one obtains a broadcast encryption system with the same pa-
rameters as [GST04]. Private key size is O(log n) and, when revoking r users,
ciphertext size is proportional to 2�log2 r� = O(r). This simple extension to the
Naor and Pinkas system gives a broadcast system with similar parameters as
the latest NNL derivative.

Wallner et al. [WHA97] and Wong [WGL98] independently discovered the
logical-key-hierarchy scheme (LKH) for multicast group key management. Us-
ing these methods receivers maintain state and remain connected to receive
key-update messages. The parameters of these schemes are improved in later
work [CGI+99, CMN99, SM03]. Our broadcast system also gives a group key
management method with short key update messages.

The security of our broadcast encryption relies on computational assump-
tions. Several other works [Sti97, ST98, SW98, GSY99, GSW00] explore broad-
cast encryption and tracing from an information theoretic perspective.

Boneh and Silverberg [BS03] show that n-linear maps give the ultimate fully
collusion secure scheme with constant public key, private key, and ciphertext size.
However, there are currently no known implementations of cryptographically
useful n-linear maps for n > 2. Our results show that we can come fairly close
using bilinear maps alone.

2 Preliminaries

We begin by formally defining public-key broadcast encryption systems. For
simplicity we define broadcast encryption as a key encapsulation mechanism.
We then state the complexity assumption needed for our proof of security.

2.1 Broadcast Encryption Systems

A broadcast encryption system is made up of three randomized algorithms:

Setup(n). Takes as input the number of receivers n. It outputs n private keys
d1, . . . , dn and a public key PK.

Encrypt(S, PK). Takes as input a subset S ⊆ {1, . . . , n}, and a public key PK.
It outputs a pair (Hdr, K) where Hdr is called the header and K ∈ K is a
message encryption key chosen from a finite key set K. We will often refer
to Hdr as the broadcast ciphertext.
Let M be a message to be broadcast that should be decipherable precisely
by the receivers in S. Let CM be the encryption of M under the symmetric
key K. The broadcast consists of (S, Hdr, CM ). The pair (S, Hdr) is often
called the full header and CM is often called the broadcast body.

Decrypt(S, i, di, Hdr, PK). Takes as input a subset S ⊆ {1, . . . , n}, a user id
i ∈ {1, . . . , n} and the private key di for user i, a header Hdr, and the public
key PK. If i ∈ S, then the algorithm outputs a message encryption key
K ∈ K. Intuitively, user i can then use K to decrypt the broadcast body
CM and obtain the message body M .



Collusion Resistant Broadcast Encryption 261

As usual, we require that the system be correct, namely that for all subsets
S ⊆ {1, . . . , n} and all i ∈ S,

if (PK, (d1, . . . , dn)) R← Setup(n) and (Hdr, K) R← Encrypt(S, PK)
then Decrypt(S, i, di, Hdr, PK) = K.

We define chosen ciphertext security of a broadcast encryption system against
a static adversary. Security is defined using the following game between an attack
algorithm A and a challenger. Both the challenger and A are given n, the total
number of users, as input.

Init. Algorithm A begins by outputting a set S∗ ⊆ {1, . . . , n} of receivers
that it wants to attack.

Setup. The challenger runs Setup(n) to obtain a public key PK and private
keys d1, . . . , dn. It gives A the public key PK and all private keys dj for
which j �∈ S∗.

Query phase 1. Algorithm A issues decryption queries q1, . . . , qm adap-
tively where a decryption query consists of (u, S, Hdr) where S ⊆ S∗

and u ∈ S. The challenger responds with Decrypt(S, u, du, Hdr, PK).
Challenge. The challenger runs algorithm Encrypt to obtain (Hdr∗, K) R←

Encrypt(S, PK) where K ∈ K. Next, the challenger picks a random
b ∈ {0, 1}. It sets Kb = K and picks a random K1−b ∈ K. It then gives
(Hdr∗, K0, K1) to algorithm A.

Query phase 2. Algorithm A adaptively issues more decryption queries
qm+1, . . . , qqD where qi = (u, S, Hdr) with S ⊆ S∗ and u ∈ S. The only
constraint is that Hdr �= Hdr∗. The challenger responds as in phase 1.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

Let AdvBrA,n denote the probability that A wins the game when the challenger
and A are given n as input.

Definition 1. We say that a broadcast encryption system is (t, ε, n, qD) CCA
secure if for all t-time algorithms A that make a total of qD decryption queries,
we have that |AdvBrA,n − 1

2 | < ε.

The game above models an attack where all users not in the set S∗ collude
to try and expose a broadcast intended for users in S∗ only. The set S∗ is chosen
by the adversary. Note that the adversary is non-adaptive; it chooses S∗, and
obtains the keys for users outside of S∗, before it even sees the public key PK. An
adaptive adversary could request user keys adaptively. We only prove security of
our system in the non-adaptive settings described above. It is an open problem to
build a broadcast encryption system with the performance of our system which
is secure against adaptive adversaries. We note that similar formal definitions
for broadcast encryption security were given in [BS03, DF03].

As usual, we define semantic security for a broadcast encryption scheme by
preventing the attacker from issuing decryption queries.
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Definition 2. We say that a broadcast encryption system is (t, ε, n) semanti-
cally secure if it is (t, ε, n, 0) CCA secure.

In Section 3 we first construct semantically secure systems with constant
ciphertext and private key size. We come back to chosen ciphertext security in
Section 5.

2.2 Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map
groups. We use the following standard notation [Jou00, JN03, BF01]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e : G×G→ G1 is a bilinear map.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G→ G1

with the following properties:

1. For all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab, and
2. The map is not degenerate, i.e., e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group G1 and an efficiently computable bilinear
map e : G × G → G1 as above. Note that e(, ) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

2.3 Complexity Assumptions

Security of our system is based on a complexity assumption called the bilinear
Diffie-Hellman Exponent assumption (BDHE). This assumption was previously
introduced in [BBG05].

Let G be a bilinear group of prime order p. The �-BDHE problem in G is
stated as follows: given a vector of 2� + 1 elements

(
h, g, gα, g(α2), . . . , g(α�), g(α�+2), . . . , g(α2�)

)
∈ G

2�+1

as input, output e(g, h)(α
�+1) ∈ G1. Note that the input vector is missing the

term g(α�+1) so that the bilinear map seems to be of little help in computing the
required e(g, h)(α

�+1).
As shorthand, once g and α are specified, we use gi to denote gi = g(αi) ∈ G.

An algorithm A has advantage ε in solving �-BDHE in G if

Pr [A (h, g, g1, . . . , g�, g�+2, . . . , g2�) = e(g�+1, h)] ≥ ε

where the probability is over the random choice of generator g in G, the random
choice of h in G, the random choice of α in Zp, and the random bits used by A.
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The decisional version of the �-BDHE problem in G is defined analogously.
Let yg,α,� = (g1, . . . , g�, g�+2, . . . , g2�). An algorithm B that outputs b ∈ {0, 1}
has advantage ε in solving decision �-BDHE in G if

∣∣∣∣Pr
[B(

g, h, yg,α,�, e(g�+1, h)
)

= 0
]− Pr

[B(
g, h, yg,α,�, T

)
= 0

] ∣∣∣∣ ≥ ε

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
consumed by B. We refer to the distribution on the left as PBDHE and the
distribution on the right as RBDHE .

Definition 3. We say that the (decision) (t, ε, �)-BDHE assumption holds in G

if no t-time algorithm has advantage at least ε in solving the (decision) �-BDHE
problem in G.

Occasionally we drop the t and ε and refer to the (decision) �-BDHE in G.
We note that the �-BDHE assumption is a natural extension of the bilinear-DHI
assumption previously used in [BB04, DY05]. Furthermore, Boneh et al. [BBG05]
show that the �-BDHE assumption holds in generic bilinear groups [Sho97].

3 Construction

We are now ready to present our broadcast encryption system. We first present
a special case system where ciphertexts and private keys are always constant
size. The public key grows linearly with the number of users. We then present a
generalization that allows us to balance the public key size and the ciphertext
size. Private keys are still constant size. We prove security of this general system.

3.1 A Special Case

We begin by describing a broadcast encryption system for n users where the
ciphertexts and private keys are constant size. The public key grows linearly in
the number of users.

Setup(n): Let G be a bilinear group of prime order p. The algorithm first picks
a random generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G

for i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets
v = gγ ∈ G. The public key is:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G
2n+1

The private key for user i ∈ {1, . . . , n} is set as: di = gγ
i ∈ G.

Note that di = v(αi). The algorithm outputs the public key PK and the n
private keys d1, . . . , dn.
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Encrypt(S, PK): Pick a random t in Zp and set K = e(gn+1, g)t ∈ G1.
The value e(gn+1, g) can be computed as e(gn, g1). Next, set

Hdr =

⎛
⎝gt, (v ·

∏
j∈S

gn+1−j)t

⎞
⎠ ∈ G

2

and output the pair (Hdr, K).
Decrypt(S, i, di, Hdr, PK): Let Hdr = (C0, C1) and recall that di ∈ G. Then,

output
K = e(gi, C1) / e(di ·

∏
j∈S
j �=i

gn+1−j+i, C0)

Note that a private key is only one group element in G and the ciphertext,
Hdr, is only two group elements. Furthermore, since e(gn+1, g) can be precom-
puted, encryption requires no pairings. Nevertheless, the system is able to broad-
cast to any subset of users and is fully collusion resistant. We prove security in
Section 3.3 where we discuss a more general system.

We verify that the system is correct — i.e., that the decryption algorithm
works correctly — by observing that, for any i ∈ S, the quotient of the terms

e(gi, C1) = e(g, g)αi·t(γ+
∑

j∈S αn+1−j) = e(g, g)t(γαi+
∑

j∈S αn+1−j+i) and

e(C0, di ·
∏
j∈S
j �=i

gn+1−j+i) = e(g, g)t·(γαi+
∑ j∈S

j �=i αn+1−j+i)

is K = e(gn+1, g)t = e(g, g)tαn+1
, as required.

Efficient Implementation. For any large number of receivers, decryption
time will be dominated by the |S| − 2 group operations needed to compute∏j∈S

j �=i gn+1−j+i. However, we observe that if the receiver had previously com-

puted the value w =
∏j∈S′

j �=i gn+1−j+i for some receiver set S′ that is similar to
S then, the receiver can compute

∏j∈S
j �=i gn+1−j+i with just δ group operations

using the cached value w, where δ is the size of the set difference between S and
S′.

This observation is especially useful when the broadcast system is intended
to broadcast to large sets, i.e. sets of size n − r for r � n. The private key di

could include the value
∏j∈[1,n]

j �=i gn+1−j+i ∈ G which would enable the receiver
to decrypt using only r group operations. Furthermore, user i would only need
r elements from the public key PK.

We note that computation time for encryption will similarly be dominated
by the |S|−1 group operations to compute

∏
j∈S gt

n+1−j
and similar performance

optimizations (e.g. precomputing
∏n

j=1 gn+1−j) apply. We also note that in the
secret key settings (where the encryptor is allowed to keep secret information)
the encryptor need only store (g, v, α) as opposed to storing the entire public
key vector.
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3.2 A General Construction

Next, we present a more general broadcast encryption system. The idea is to run
A parallel instances of the system in the previous section where each instance
can broadcast to at most B < n users. As a result we can handle as many
as n = AB users. However, we substantially improve performance by sharing
information between the A instances. In particular, all instances will share the
same public key values g, g1, . . . , gB, gB+2, . . . , g2B.

This generalized system enables us to tradeoff the public key size for cipher-
text size. Setting B = n gives the system of the previous section. However,
setting B = 	√n
 gives a system where both public key and ciphertext size are
about

√
n elements. Note that either way, the private key is always just one

group element.
For fixed positive integer B, the B-broadcast encryption system works as

follows:

SetupB(n): The algorithm will set up A = � n
B � instances of the scheme. Let

G be a bilinear group of prime order p. The algorithm first picks a random
generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , B, B + 2, . . . , 2B. Next, it picks random γ1, . . . , γA ∈ Zp and
sets v1 = gγ1 , . . . , vA = gγA ∈ G. The public key is:

PK = (g, g1, . . . , gB, gB+2, . . . , g2B, v1, . . . , vA) ∈ G
2B+A

The private key for user i ∈ {1, . . . , n} is defined as follows: write i as
i = (a − 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B (i.e. a = �i/B� and
b = i mod B). Set the private key for user i as:

di = gγa

b ∈ G (note that di = v(αb)
a )

The algorithm outputs the public key PK and the n private keys d1, . . . , dn.
Encrypt(S, PK): For each � = 1, . . . , A define the subsets Ŝ� and S� as

Ŝ� = S∩{(�−1)B+1, . . . , �B}, S� = {x−�B+B | x ∈ Ŝ�} ⊆ {1, . . . , B}
In other words, Ŝ� contains all users in S that fall in the �’th interval of
length B and S� contains the indices of those users relative to the beginning
of the interval. Pick a random t in Zp and set K = e(gB+1, g)t ∈ G1. Set

Hdr =

⎛
⎝gt, (v1 ·

∏
j∈S1

gB+1−j)t, . . . , (vA ·
∏

j∈SA

gB+1−j)t

⎞
⎠ ∈ G

A+1

Output the pair (Hdr, K). Note that Hdr contains A + 1 elements.
Decrypt(S, i, di, Hdr, PK): Let Hdr = (C0, C1, . . . , CA) and recall that di ∈ G.

Write i as i = (a− 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B. Then

K = e(gb, Ca) / e(di ·
∏

j∈Sa

j �=b

gB+1−j+b, C0)
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Verifying that the decryption algorithm works correctly is analogous to the
calculation in the previous section. We note that when B = n then A = 1 and
we obtain the system of the previous section.

Efficiency. A user’s private key size again will only consist of one group element.
The ciphertext consists of A + 1 group elements and the public key is 2B + A
elements. Our choice of B depends on the application. As we will see, in some
cases we want B = n to obtain the smallest possible ciphertext. In other cases
we want B =

√
n to minimize the concatenation of the ciphertext and public

key.
The decryption time for user i = (a−1)B+b will be dominated by |Sa|−2 < B

group operations. Similar caching techniques to those described in the end of
Section 3.1 can be used to improve performance.

3.3 Security

We now prove the semantic security of the general system of Section 3.2.

Theorem 1. Let G be a bilinear group of prime order p. For any positive in-
tegers B, n (n > B) our B-broadcast encryption system is (t, ε, n) semantically
secure assuming the decision (t, ε, B)-BDHE assumption holds in G.

Proof. Suppose there exists a t-time adversary, A, such that AdvBrA,n > ε for
a system parameterized with a given B. We build an algorithm, B, that has
advantage ε in solving the decision B-BDHE problem in G. Algorithm B takes
as input a random decision B-BDHE challenge (g, h, yg,α,B , Z), where yg,α,B =
(g1, . . . , gB, gB+2, . . . , g2B) and Z is either e(gB+1, h) or a random element of G1

(recall that gi = g(αi) for all i). Algorithm B proceeds as follows.

Init. Algorithm B runs A and receives the set S of users that A wishes to be
challenged on.

Setup. B needs to generate a public key PK and private keys di for i �∈ S. The
crux of the proof is in the choice of v1, . . . , vA. Algorithm B chooses random
ui ∈ Zp for 1 ≤ i ≤ A. We again define the subsets Ŝi and Si as

Ŝi = S∩{(i−1)B +1, . . . , iB} and Si = {x− iB +B | x ∈ Ŝi} ⊆ {1, . . . , B}

For i = 1, . . . , A algorithm B sets vi = gui

(∏
j∈Si

gB+1−j

)−1

. It gives A
the public key

PK = (g, g1, . . . , gB, gB+2, . . . , g2B, v1, . . . , vA) ∈ G
2B+A

Note that since g, α and the ui values are chosen uniformly at random, this
public key has an identical distribution to that in the actual construction.
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Next, the adversary needs all private keys that are not in the target set S.
For all i �∈ S we write i as i = (a− 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B.
Algorithm B computes di as

di = gui

b ·
∏

j∈Sa

(gB+1−j+b)−1

Indeed, we have that di = (gui
∏

j∈Sa
(gB+1−j)−1)(α

b) = v
(αb)
a as required.

The main point is that since i /∈ S we know that b /∈ Sa and hence the product
defining di does not include the term gB+1. It follows that algorithm B has all
the necessary values to compute di.

Challenge. To generate the challenge, B computes Hdr as (h, hu1 , . . . , huA). It
then randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random
K1−b in G1. It gives (Hdr, K0, K1) as the challenge to A.

We claim that when Z = e(gB+1, h) (i.e. the input to B is a B-BDHE tuple
sampled from PBDHE) then (Hdr, K0, K1) is a valid challenge to A as in a real
attack. To see this, write h = gt for some (unknown) t ∈ Zp. Then, for all
i = 1, . . . , A we have

hui = (gui)t = (gui(
∏
j∈Si

gB+1−j)−1(
∏
j∈Si

gB+1−j))t = (vi

∏
j∈Si

gB+1−j)t

Therefore, by definition, (h, hu1 , . . . , huA) is a valid encryption of key e(gB+1, g)t.
Furthermore, e(gB+1, g)t = e(gB+1, h) = Z = Kb and hence (Hdr, K0, K1) is a
valid challenge to A.

On the other hand, when Z is random in G1 (i.e. the input to B is sampled
from RBDHE) then K0, K1 are just random independent elements of G1.

Guess. The adversary, A outputs a guess b′ of b. If b′ = b the algorithm B
outputs 0 (indicating that Z = e(gB+1, h)). Otherwise, it outputs 1 (indicating
that Z is random in G1).

We see that Pr[B(g, h, yg,α,B , Z) = 0] = 1
2 if (g, h, yg,α,B , Z) is sampled from

RBDHE . If (g, h, yg,α,B , Z) is sampled from PBDHE then |Pr[B(g, h, yg,α,B , Z)
= 0] − 1

2 | = AdvBrA,n ≥ ε. It follows that B has advantage at least ε in solving
decision B-BDHE in G. This concludes the proof of Theorem 1. ��

Note that the proof of Theorem 1 does not use the random oracle model.
The system can be proved secure using the weaker computational B-BDHE as-
sumption (as opposed to decision B-BDHE), using the random oracle model. In
that case the advantage of the simulator is at least ε/q, where q is the maximum
number of random oracle queries made by the adversary.

4 Applications

We describe how our system can be used for a number of specific applications.
The first application, file sharing in encrypted file systems, is an example of
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broadcasts to small sets. The second application, encrypted email for large mail-
ing lists, shows that the majority of the public key can be shared by many
broadcast systems so that the public key for a new broadcast system is constant
size. The third application, DVD content protection, is an example of broadcasts
to large sets.

4.1 File Sharing in Encrypted File Systems

Encrypted file systems let users encrypt files on disk. For example, Windows
EFS encrypts the file contents using a file encryption key KF and then places an
encryption of KF in the file header. If n users have access to the file, EFS encrypts
KF under the public keys of all n users and places the resulting n ciphertexts
in the file header. Related designs can be found in the SiRiUS [GSMB03] and
Plutus [KRS+03] file systems.

Abstractly, access control in an encrypted file system can be viewed as a
broadcast encryption problem. The file system is the broadcast channel and the
key KF is broadcast (via the file header) to the subset of users that can access
file F . Many encrypted file systems implement the straightforward broadcast
system where the number of ciphertexts in the file header grows linearly in the
number of users that can access the file. As a result, there is often a hard limit
on the number of users that can access a file. For example, the following quote
is from Microsoft’s knowledge base:

“EFS has a limit of 256KB in the file header for the EFS metadata.
This limits the number of individual entries for file sharing that may be
added. On average, a maximum of 800 individual users may be added to
an encrypted file.”

A natural question is whether we can implement file sharing in an encrypted
file system without resorting to large headers. Remarkably, there is no known
combinatorial solution that performs better than the straightforward solution
used in EFS. The broadcast system of Section 3.1 performs far better and pro-
vides a system with the following parameters:

– The public key (whose size is linear in n) is stored on the file system. Even
for a large organization of 100,000 users this file is only 4MB long (using a
standard security parameter where each group element is 20 bytes).

– Each user is given a private key that contains only one group element.
– Each file header contains ([S], C) where [S] is a description of the set S of

users who can access F and C is a fixed size ciphertext consisting of only
two group elements.

Since S tends to be small relative to n, its shortest description is simply an
enumeration of the users in S. Assuming 32-bit user ID’s, a description of a set
S of size r takes 4r bytes. Hence, the file header grows with the size of S, but
only at a rate of 4 bytes per user. In EFS the header grows by one public key
ciphertext per user. For comparison, we can accommodate sharing among 800
users using a header of size 4 × 800 + 40 = 3240 bytes which is far less than
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EFS’s header size. Even if EFS were using short ElGamal ciphertexts on elliptic
curves, headers would grow by 44 bytes per user which would result in headers
that are 11 times bigger than headers in our system.

Our system has a few more properties that make it especially useful for cryp-
tographic access control. We describe these next.

1. Incremental sharing. Suppose a file header contains a ciphertext C =
(C0, C1) which is the encryption of KF for a certain set S of users. Let C0 = gt

and C1 = (v ·∏j∈S gn+1−j)t. Suppose the file owner wishes to add access rights
for some user u ∈ {1, . . . , n}. This is easy to do given t. Simply set C1 ←
C1 · gt

n+1−u. Similarly, to revoke access rights for user u set C1 ← C1/gt
n+1−u.

This incremental sharing mechanism requires the file owner to remember the
random value t ∈ Zp for every file. Alternatively, the file owner can embed a
short nonce TF in every file header and derive the value t for that file by setting
t ← PRFk(TF ) where k is a secret key known only to the file owner. Hence,
changing access permissions can be done efficiently with the file owner only hav-
ing to remember a single key k. Note that when access rights to a file F change
it is sometimes desirable to re-encrypt the file using a new key Knew

F . Modifying
the existing header to encrypt a new Knew

F for the updated access list is just as
easy.

2. Incremental growth of the number of users. In many cases a broadcast
encryption system must be able to handle the incremental addition of new users.
It is desirable to have a system that does not a-priori restrict the total number of
users it can handle. Our system supports this by slowly expanding the public key
as the number of users in the system grows. To do so, at system initialization the
setup algorithm picks a large value of n (say n = 264) that is much larger than the
maximum number of users that will ever use the system. At any one time if there
are j users in the system the public key will be gn−j+1, . . . , gn, gn+2, . . . , gn+j .
Whenever a new user joins the system we simply add two more elements to the
public key. Note that user i must also be given gi as part of the private key and
everything else remains the same.

4.2 Sending Encrypted Email to Mailing Lists

One interesting aspect of our broadcast encryption system is that the public
values yg,α,n = (g1, . . . gn, gn+2, . . . , g2n) can be shared among many broadcast
systems and α can be erased. Suppose this yg,α,n is distributed globally to a large
group of users (for example, imagine yg,α,n is pre-installed on every computer).
Then creating a new broadcast system is done by simply choosing a random
γ ∈ Zp, setting v = gγ , and assigning private keys as di = gγ

i . Since all broadcast
systems use the same pre-distributed yg,α,n, the actual public key for this new
broadcast system is just one element, v. Theorem 1 shows that using the same
yg,α,n for many broadcast systems is secure.

We illustrate this property with an example of secure mailing lists. Sending
out encrypted email to all members of a mailing list is an example of a broadcast
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encryption system. Suppose the global public vector yg,α,n is shipped with the
operating system and installed on every computer. We arbitrarily set n = 50, 000
in which case the size of yg,α,n is about 2MB.

For every secure mailing list, the administrator creates a separate broadcast
encryption system. Thus, every mailing list is identified by its public key v = gγ .
We assume the maximum number of members in a mailing list is less than
n = 50, 000 (larger lists can be partitioned into multiple smaller lists). Each
time a new user is added onto the list, the user is assigned a previously unused
index i ∈ {1, . . . , n} and given the secret key di = gγ

i . The broadcast set S is
updated to include i and all mailing list members are notified of the change in
S. Similarly, if a user with index j is removed from the list, then j is removed
from the set S and all members are notified. We note that any member, i,
does not need to actually store S. Instead, member i need only store the value∏

j∈Sj �=i gn+1−j+i needed for decryption. The member updates this value every
time a membership update message is sent. To send email to a mailing list with
public key v the server simply does a broadcast encryption to the current set of
members S using (yg,α,n, v) as the public key.

In this mail system, the header of an email message sent to the list is con-
stant size. Similarly, membership update messages are constant size. A mailing
list member only needs to store two group elements for each list he belongs to
(although we have to keep in mind the cost of storing yg,α,n which is amortized
over all mailing lists). It is interesting to compare our solution to one using an
LKH scheme [WHA97, WGL98]. In LKH email messages are encrypted under a
group key. Using this type of a system each update message contains O(log(m))
ciphertexts, and private keys are of size O(log(m)) (per system), where m is the
current group size. In our system, update messages and private user storage are
much smaller.

4.3 Content Protection

Broadcast encryption applies naturally to protecting DVD content, where the
goal is to revoke compromised DVD players. Recall that the public key in our
system is needed for decryption and hence it must be embedded in the header of
every DVD disk. Consequently, we are interested in minimizing the total length
of the header and public key, namely minimize |Hdr|+ |PK|.

Let n be the total number of DVD players (e.g. n = 232) and let r be the
number of revoked players. Let �id = log2 n (e.g. �id = 32) and let k̄ be the size
of a group element (e.g. k̄ = 160 bits). Then using our

√
n-broadcast system

(B =
√

n) we can broadcast to sets of size n− r using the following parameters:

priv-key-size = 4k̄, and |Hdr|+ |PK|+ |S| = 4k̄�√n�+ r�id

In comparison, the NNL system [NNL01] and its derivatives [HS02, GST04] can
broadcast to sets of size n− r using:

priv-key-size = O(k log n), and header-size = O((k + �id) · r)



Collusion Resistant Broadcast Encryption 271

where k is the length of a symmetric key (e.g. k = 128 bits). Note that the
broadcast header grows by O(k + �id) bits per revoked player. With our system
the broadcast header only grows by �id bits per revoked player.

Example. Plugging in real numbers we obtain the following. When n = 232, k̄ =
20 bytes, and �id = 4 bytes, header size in our system is 5.12mb and each
revocation adds 4 bytes to the header. In NNL-like systems, using k = 128-bit
symmetric keys, each revocation adds about 40 bytes to the header, but there is
no upfront 5mb fixed cost.

The best system is obtained by combining NNL with our system (using NNL
when r <

√
n and our system when r >

√
n). Thus, as long as things are stable,

DVD disk distributors use NNL. In case of a disaster where, say, a DVD player
manufacturer loses a large number of player keys, DVD disk distributors can
switch to our system where the header size grows slowly beyond O(

√
n).

5 Chosen Ciphertext Secure Broadcast Encryption

We show how to extend the system of Section 3.1 to obtain chosen ciphertext
security. The basic idea is to compose the system with the IBE system of [BB04]
and then apply the ideas of [CHK04]. The resulting system is chosen ciphertext
secure without using random oracles.

We need a signature scheme (SigKeyGen,Sign,Verify). We also need a colli-
sion resistant hash function that maps verification keys to Zp. Alternatively, we
can simply assume (as we do below) that signature verification keys are encoded
as elements of Zp. This greatly simplifies the notation.

As we will see, security of the CCA-secure broadcast system for n users is
based on the (n+1)-BDHE assumption (as opposed to the n-BDHE assumption
for the system of Section 3.1). Hence, to keep the notation consistent with Sec-
tion 3.1 we will describe the CCA-secure system for n− 1 users so that security
will depend on the n-BDHE assumption as before. The system works as follows:

Setup(n− 1): Public key PK is generated as in Section 3.1. The private key
for user i ∈ {1, . . . , n− 1} is set as: di = gγ

i ∈ G. The algorithm outputs
the public key PK and the n− 1 private keys d1, . . . , dn−1.

Encrypt(S, PK): Run the SigKeyGen algorithm to obtain a signature signing
key KSIG and a verification key VSIG. Recall that for simplicity we assume
VSIG ∈ Zp. Next, pick a random t in Zp and set K = e(gn+1, g)t ∈ G1. Set

C =
(

gt,
(
v · gVSIG

1 ·
∏
j∈S

gn+1−j

)t
)
∈ G

2, Hdr =
(
C,Sign(C, KSIG), VSIG

)

and output the pair (Hdr, K). Note that the only change to the ciphertext
from Section 3.1 is the term gVSIG

1 and the additional signature data.
Decrypt(S, i, di, Hdr, PK): Let Hdr =

(
(C0, C1), σ, VSIG

)
.

1. Verify that σ is a valid signature of (C0, C1) under the key VSIG. If invalid,
output ‘?’.



272 D. Boneh, C. Gentry, and B. Waters

2. Otherwise, pick a random w ∈ Zp and compute

d̂0 =
(

di·gVSIG
i+1 ·

∏
j∈S
j �=i

gn+1−j+i

)
·
(

v·gVSIG
1 ·

∏
j∈S

gn+1−j

)w

and d̂1 = gig
w

3. Output K = e(d̂1, C1)/e(d̂0, C0).

Correctness can be shown with a similar calculation to the one in Section 3.1.
Note that private key size and ciphertext size are unchanged.

Unlike the system of Section 3.1, decryption requires a randomization value
w ∈ Zp. This randomization ensures that for any i ∈ S the pair (d̂0, d̂1) is chosen
from the following distribution

(
g−1

n+1 ·
(
v · gVSIG

1 ·
∏
j∈S

gn+1−j

)r
, gr

)

where r is uniform in Zp. Note that this distribution is independent of i implying
that all members of S generate a sample from the same distribution. Although
this randomization slows down decryption by a factor of two, it is necessary for
the proof of security.

We briefly recall that a signature scheme (SigKeyGen,Sign,Verify) is (t, ε, qS)
strongly existentially unforgeable if no t-time adversary who makes at most qS

signature queries is able to produce some new (message,signature) pair with
probability at least ε. A complete definition is given in, e.g., [CHK04]. The
following theorem proves chosen ciphertext security.

Theorem 2. Let G be a bilinear group of prime order p. For any positive integer
n, the broadcast encryption system above is (t, ε1 + ε2, n − 1, qD) CCA-secure
assuming the decision (t, ε1, n)-BDHE assumption holds in G and the signature
scheme is (t, ε2, 1) strongly existentially unforgeable.

We give the proof of Theorem 2 in the full version of the paper [BGW05].
The proof does not use the random oracle model implying that the system is
chosen-ciphertext secure in the standard model.

We also note that instead of the signature-based method of [CHK04] we
could have used the more efficient MAC-based method of [BK05]. We chose to
present the construction using the signature method to simplify the proof. The
MAC-based method would also work.

6 Conclusions and Open Problems

We presented a fully collusion resistant broadcast encryption scheme with con-
stant size ciphertexts and private keys for arbitrary receiver sets. In Section 5
we built a chosen-ciphertext secure broadcast system with the same parameters.
A generalization of our basic scheme gave us a tradeoff between public key size
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and ciphertext size. With the appropriate parametrization we achieve a broad-
cast encryption scheme with O(

√
n) ciphertext and public key size. We discussed

several applications such as encrypted file systems and content protection.
We leave as an open problem the question of building a public-key broadcast

encryption system with the same parameters as ours which is secure against
adaptive adversaries. We note that any non-adaptive scheme that is (t, ε, n)
secure is also (t, ε/2n, n) secure against adaptive adversaries. However, in practice
this reduction is only meaningful for small values of n.

Another problem is to build a tracing traitors system [CFN94] with the
same parameters as our system. Ideally, one could combine the two systems to
obtain an efficient trace-and-revoke system. Finally, it is interesting to explore
alternative systems with similar performance that can be proved secure under a
weaker assumption.
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