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Abstract: This paper outlines a strategy for automating the design of embedded systems
including their hardware and software components. We focus in the Hardware
Mediator construct, a portability artifact that was originally proposed to enable
the port of component-based operating systems to very distinct architectures.
Besides giving rise to a highly adaptable system-hardware interface, these me-
diators are approached as a new co-design artifact that can be used to enable
the generation of customized system-on-a-chip instances and the associated run-
time support systems considering the requirements of target applications.
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1. INTRODUCTION

Embedded systems are becoming more and more complex, yet, there is
no room for development strategies that incur in extended time-to-market in
this extremely competitive sector. In this context, the System-on-a-Chip (SoC)
define a compromise between system complexity and development costs {2].
Furthermore, the advances in programmable logic devices (PLD) are enabling
developers to instantiate and to evaluate complex SOC designs in a short pe-
riod of time. This can drastically decreases the time-to-market and turns PLDs
an important technologic alternative in the development of embedded systems.

Indeed, some embedded systems can be completely implemented in hard-
ware using the SOC approach. However, the more complex the application,
the greater is the probability it will need some kind of run-time support system
and an application program. This is, after all, the reason why so many groups
are concentrating efforts to develop processor soft cores such as Leon2 and
OpenRisc [11]. Nevertheless, run-time support systems are often neglected by
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currently available SOC development methodologies and tools, being mostly
restricted to simple processor scheduling routines and the definition of a hard-
ware abstraction layer. The gap between software and hardware gets even big-
ger when we recall that one of the primary goals of an operating system is to
grant the portability of applications, since ordinary operating systems cannot
go with the dynamism of SoCs.

In this paper we discuss the use of Hardware Mediators [16] to enable the
automatic generation of SoC-based embedded systems. The deployment of
Application-Oriented System Design (AOSD) [4] on the context where hard-
ware mediators were originally proposed—software-hardware interfacing—
fosters this portability artifact to a new perspective on the design of embedded
systems. Mediators are figured as pointers for generating a “machine descrip-
tion” that matches, in association with a run-time support system, the require-
ments of dedicated applications. The following sections describe the basics
of the AOSD method, the concepts of hardware mediators and how these me-
diators can be deployed on the generation of SoC-based embedded systems.
Subsequently, in a experimental case study, we consider the EPOS system [5],
an application-oriented operating system that relies on hardware mediators to
foster portability and also to enable automatic hardware generation. The paper
is closed with a discussion of related works and the author’s perspectives.

2. APPLICATION-ORIENTED SYSTEM DESIGN

Application-Oriented System Design (AOSD) [4] proposes some alterna-
tives to proceed the engineering of a domain towards software components. In
principle, an application-oriented decomposition of the problem domain can
be obtained following the guidelines of Object-Oriented Decomposition [3].
However, some subtle yet important differences must be considered. First,
object-oriented decomposition gathers objects with similar behavior in class
hierarchies by applying variability analysis to identify how one entity special-
izes the other. Besides leading to the famous “fragile base class” problem [12],
this policy assumes that specializations of an abstraction (i.e. subclasses) are
only deployed in presence of their more generic versions (i.e. superclasses).

Applying variability analysis in the sense of Family-Based Design [15] to
produce independently deployable abstractions, modeled as members of a fam-
ily, can avoid this restriction and improve on application-orientation. Certainly,
some family members will still be modeled as specializations of others, as in
Incremental System Design [7], but this is no longer an imperative rule. For
example, instead of modeling connection-oriented as a specialization of con-
nectionless communication (or vice-versa), what would misuse a network that
natively operates in the opposite mode, one could model both as autonomous
members of a family.
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A second important difference between application-oriented and object- ori-
ented decomposition concerns environmental dependencies. Variability analy-
sis, as carried out in object-oriented decomposition, does not emphasizes the
differentiation of variations that belong to the essence of an abstraction from
those that emanate from the execution scenarios being considered for it. Ab-
stractions that incorporate environmental dependencies have a smaller chance
of being reused in new scenarios, and, given that an application-oriented oper-
ating system will be confronted with a new scenario virtually every time a new
application is defined, allowing such dependencies could severely hamper the
system.

Nevertheless, one can reduce such dependencies by applying the key con-
cept of Aspect-Oriented Programming [8], i.e. aspect separation, to the de-
composition process. By doing so, one can tell variations that will shape new
family members from those that will yield scenario aspects. For example, in-
stead of modeling a new member for a family of communication mechanisms
that is able to operate in the presence of multiple threads, one could model
multithreading as a scenario aspect that, when activated, would lock the com-
munication mechanism (or some of its operations) in a critical section.

Based on these premises, Application-Oriented Systems Design guides a
domain engineering procedure (see Figure 1) that models software compo-
nents with the aid of three major constructs: families of scenario-independent
abstractions, scenario adapters and inflated interfaces.

2.1 Famiilies of scenario independent abstractions

During domain decomposition, abstractions are identified from domain enti-
ties and grouped in families according to their commonalities. Yet during this
phase, aspect separation is used to shape scenario-independent abstractions,
thus enabling them to be reused in a variety of scenarios. These abstractions
are subsequently implemented to give rise to the actual software components.

2.2 Scenario adapters

As explained earlier, AOSD dictates that scenario dependencies must be
factored out as aspects, thus keeping abstractions scenario-independent. How-
ever, for this strategy to work, means must be provided to apply factored
aspects to abstractions in a transparent way. The traditional approach to do
this would be deploying an aspect weaver, though the scenario adapter con-
struct [6] has the same potentialities without requiring an external tool. A
scenario adapter wraps an abstraction, intermediating its communication with
scenario-dependent clients to perform the necessary scenario adaptations.
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Figure 1.  Overview of application-oriented domain decomposition.

23 Inflated interfaces

Inflated interfaces summarize the features of all members of a family, creat-
ing a unique view of the family as a “super component”. It allows application
programmers to write their applications based on well-know, comprehensive
interfaces, postponing the decision about which member of the family shall
be used until enough configuration knowledge is acquired. The binding of
an inflated interface to one of the members of a family can thus be made by
automatic configuration tools that identify which features of the family were
used in order to choose the simplest realization that implements the requested
interface subset at compile-time.

3. HARDWARE MEDIATORS

An operating system designed according to the premises of Application-
Oriented System Design can be summarily viewed as sets of software com-
ponents that can be configured, adapted and integrated in order to give rise to
highly customized and scenario-specific instances of run-time support systems.
However, besides all the benefits claimed by software component engineering,
such a class of run-time support systems is prone to the same need for porta-
bility as their more conventional relatives.

Traditional portability strategies, mainly focused in hardware abstraction
layers (HAL) and virtual machines (VM), are not concerned with the AOSD’s
purposes. Being a product of a system engineering process (instead of a do-
main engineering process), these strategies usually build a monolithic abstrac-
tion layer that encapsulates all the resources available in the hardware plat-
form without properly regarding the application needs. Such modeling may



An Application-Oriented Approach for the Generation of SoC-based ES 59

be a problem when the platforms to be interfaced are based on SOCs. The
diversity of architectures and devices in these platforms lead us to diagnose
that the traditional specification techniques for sw-hw interfacing are still far
from the ideal “plug-and-play” [14]. In addition, whenever SOCs are built on
Programmable Logic Devices such as FPGAs, the hardware specifications can
be modified in a short period of time [17], and thus compromising much more
the portability of the system.

In order to deal with this dynamism and to foster the portability of sys-
tem abstractions to virtually any architecture, a system designed according
to the concepts of AOSD relies on the hardware mediator construct. As dis-
cussed in Hardware Mediators: a Portability Artifact for Component-Based
Systems [16], the main idea behind this portability artifact is not to build an
universal hardware abstraction layer or virtual machine, but sustaining an in-
terface contract between the operating system and the hardware. Each hard-
ware component is mediated via its own mediator, thus granting the portability
of abstractions that use it without creating unnecessary dependencies. Indeed,
hardware mediators are intended to be mostly static-metaprograms and thus
“dissolve” themselves in the system abstractions as soon as the interface con-
tract is met. In other words, a hardware mediator delivers the functionality of
the corresponding hardware component through a system-oriented interface.

An important element of hardware mediators are configurable features,
which designate features of mediators that can be switched on and off accord-
ing to the requirements dictated by abstractions. A configurable feature is not
restricted to a flag indicating whether a preexisting hardware feature must be
activated or not. Usually, it also incorporates a Generic Programmed [13] im-
plementation of the algorithms and data structures that are necessary to imple-
ment that feature when the hardware itself does not provide it. An example of
configurable feature is the generation of CRC codes in mediators that abstract
communication devices.

Likewise abstractions in AOSD (Figure 1), hardware mediators are orga-
nized in families whose members represent significant entities in the hardware
domain. Such modeling enables the generation of object-code only for those
mediators that are necessary to support the application. Non-functional as-
pects and cross-cutting properties are factored out as scenario aspects that can
be applied to family members as required. For instance, families like UART and
NIC (Network Interface Card) must often operate in exclusive-access mode.
This could be achieved by applying a share-control aspect to the families.

4. CO-DESIGNING WITH HARDWARE MEDIATORS

Although originally devised to give rise to highly adaptable system- hard-
ware interface, hardware mediators can be also used for generating application-
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oriented hardware instances. More specifically, in the context of programmable
logic, where hardware components, namely soft-IPs, are described using hard-
ware description languages (e.g. VHDL, VERILOG) in order to implement the
elements of the underling hardware technology. Hence, by associating hard-
ware mediators with those descriptions one can infer which hardware compo-
nents are necessary to support the application.

A component-based system can thus rely on hardware mediators not only to
interface its system abstractions to the hardware, but also to dictate which com-
ponents will build-up the target hardware. As soon as a hardware mediator is
selected to interface a hardware component, the associated IP is selected from
a repository in order to integrate a hardware description that will be synthe-
sized in a PLD device. Such a description in the form of a SOC would embed
only the hardware components necessary to support the run-time system and,
in turn, the application.

For instance, consider a family of NIC mediators and a family of NIC hard-
ware components whose members are associated to the members of the me-
diator’s family. From a given application that uses a system abstraction to
implement an Ethernet network one can infer that a member of the family NIC
will be instantiated. However, the decision of which specific member will be
instantiated, since all members are functionally equivalent, is up to the appli-
cation’s programmer. This situation characterizes what we named a combined
IP-selection. The hardware devices are inferred considering an application re-
quirement and a specific decision of the application’s programmer.

Another scenario, named discreet IP-selection, is related to the selection of
hardware components considering only the application’s requirements — no
explicit programmer decision must be taken. A good example for this scenario
is related to the memory management scheme that will be implemented by
the run-time support system. Once the application programmer uses system
abstractions that rely on a paging scheme (e.g. multitasking), the MMU mediator
is automatically inferred and, consequently, a memory management unit will
be selected for synthesis. Conversely, when a flat memory scheme is adopted
Nno memory management unit is synthesized.

A third scenario, named explicit IP-selection, represents the chance of the
programmer to choose the hardware components that will be instantiated in the
system. Even if the respective mediators are “hidden” by system abstractions,
the programmer explicitly selects the hardware components that he is intending
to embed in the SOC. Indeed, this selection strategy is always taken when the
programmer initially specifies which architecture model (e.g. SPARCV8, O0R32)
the system will follow.

Furthermore, the approach is not restricted to the specification of which IPs
will be instantiated in a PLD device. The element configurable feature ex-
plained earlier can be also deployed on hardware components. They can be
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used to configure IPs in order to properly support the application and also to
switch on and off some functionalities that can be implemented in hardware
or in software. As exemplified earlier with CRC codes, a configurable feature
can be used to enable the generation of these codes in a UART mediator for data
transmitted over a serial communication line. Such codes, otherwise, could be
generated by the hardware itself instead of the software. In this case, since the
IP that implements the UART device supports generation of CRC codes, a hard-
ware configurable feature would be activated in order to enable the synthesis
of these functionalities in the SOC.

5. CASE STUDY: SOCS IN EPOS

The Embedded Parallel Operating System (EPOS) aims at delivering ad-
equate run-time support for dedicated computing applications. Relying on
the Application-Oriented System Design method, EPOS consists of families of
software components that can be adapted to fulfill the requirements of particu-
lar applications. In order to maintain the portability of its systems abstractions
and to enable the generation of application-oriented SOCs, the EPOS system
relies on the hardware mediator construct.

An application written on EPOS can be submitted to a tool that scans it
searching for references to the inflated interfaces, thus rendering the features
of each family that are necessary to support the application at run-time. This
task is accomplished by a tool, the analyzer, that outputs an specification of
requirements in the form of partial component interface declarations, including
methods, types and constants that were used by the application.

The primary specification produced by the analyzer is subsequently fed into
a second tool, the configurator, that consults a build-up database to create the
description of the system’s configuration. This database holds information
about each component in the repository, as well as dependencies and com-
position rules that are used by the configurator to build a dependency three.
The output of the configurator consists of a set of keys that define the binding
of inflated interfaces to abstractions and activate the scenario aspects even-
tually identified as necessary to satisfy the constraints dictated by the target
application or by the configured execution scenario. On the side of the hard-
ware components, the configurator produces a list of instantiated mediators and
specifies which of these mediators promote IP synthesis.

The last step in the generation process is accomplished by the generator.
This tool translates the keys produced by the configurator into parameters for
a statically metaprogramed component framework and causes the compilation
of a tailored operating system instance. In addition, whenever a SOC needs to
be tailored, the generator, based on the IP configurable features, produces a
synthesis configuration file. This file, as well as the selected IPs, are passed to
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Figure 2. An overview of the tools involved in the automatic generation of run-time support
and hardware instances.

a third-party tool, which in turn performs the synthesis of a SOC. An overview
of the whole procedure is depicted in Figure 2.

51 Sample Instance: Leon SoCs in EPOS

In order to evaluate our approach for automating the design of SoC-based
embedded systems we used the Leon2 Processor. This “processor” was created
in order to enable the development of customized SoCs based on the SPARCV8
CPU core. The “modular” design of LEON2 enable us to specify which of its
IPs will be synthesized in the SOC. The logic necessary to glue the IPs is
implicitly defined in the source-code through a set of programming asserts,
which are, in turn, used to properly configure and plug-in the IPs in a AMBA
bus framework [1]. The Figure 3(a) shows the block diagram of LEON2. Be-
sides the CPU core, LEON2 includes a set of peripherals that can be plugged in
as soon as the user selects them.

The experiments were performed on a Xilinx Virtex2 FPGA development
kit and consisted of evaluating an application for which a run-time support
system and a SOC should be generated. The application implemented two
threads, 7X and RX, which were executed in a cooperative environment in order
to send and receive data through an UART. Aiming at signaling the RX thread
to deal with new data in the UART buffer the mechanism of interrupts was
used. Consequently, the mediator and the IP of the interrupt controller (IC)
were selected to be instantiated. As regards the memory management scheme,
it was based on a flar address-space and therefore, no MM U components were
instantiated in the system. The Figure 3(b) depicts the block diagram of the
SoC that was generated after submit the application to the sequence of tools
presented in section 5.
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Figure 3. Block diagram of Leon?2 (a) and the SoC that was experimentally customized (b).

Aiming at clarifying the expressiveness of this sample instance, it is im-
portant to compare the obtained results to the numbers of ordinary operating
system that were ported to the LEON2 platform. Usually these systems are
generated to compromise all the features that the SOC is able to provide. The
absence of a component-based engineering and the lack of modern software
engineering techniques affects not only the size and performance of the fi-
nal system, but also effectively increase NRE costs and time-to-market. For
instance, the EPOS instance generated to support the experimental application
was 2.94 Kbytes and the associated SOC (Figure 3(b)) took 29% of the Virtex2
FPGA area. Traditional ports of UCLINUX [9] and EC0s [10] to the Leon2
platform have, respectively, 2,740 and 432.94 Kbytes each and the both were
ported to a SoC instance with 13,261 LUTSs (Look-up-Table), which represents
60% of the Virtex2 area.

6. CONCLUSION AND FUTURE WORK

In this article we conjectured about the the use of hardware mediators as
a new co-design artifact. The deployment of AOSD in the context where
mediators were originally proposed leaded us to use this portability artifact
for the automatic generation of SoC-based embedded systems. The presented
results are quite simple and just showed the viability of generating run-time
support systems and system-on-chip instances considering the application’s
requirements. However, as exemplified in the section 4, we are not only able to
identify which devices shall be instantiated in the SOC but, in fact, to configure
each system component in order to better fits the application’s requirements.
In this sense a large gamma of new experiments started to be evaluated, such as
processor scalability, memory hierarchy exploration and power management.
The results obtained so far are encouraging and we hope present them soon.
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