TEMPORAL GRAPH PLACEMENT ON
MESH-BASED COARSE GRAIN

RECONFIGURABLE SYSTEMS USING
THE SPECTRAL METHOD

Florian Dittmann
Heinz Nizdorf Institute, University Paderborn
Fuerstenallee 11, 33102 Paderborn, Germany

roichen@upb.de

Christophe Bobda
University of Erlangen-Nuremberg
Am Weichselgarten 3, 91058 Erlangen, Germany

christophe.bobda®informatik.uni-erlangen.de

Abstract: Coarse grain architectures need domain specific place and route meth-
ods. The existence of such methods provided, algorithms can be exe-
cuted in time and space on the processing elements of coarse grain re-
configurable systems. Additionally, the short reconfiguration time and
reduced power requirements comparing to FPGA makes coarse grain
systems worth to be scrutinized as alternative execution platforms. By
help of spectral methods, which target quadratic distance optimization
of graphs, we can achieve short communication distances. This paper
shows how to use the spectral method for efficiently scheduling process-
ing elements of coarse grain reconfigurable devices by combining the
spectral method and ASAP scheduling.

Keywords: Coarse Grain Reconfigurable Computing, Temporal Placement

1. INTRODUCTION

The advent of multimedia into our life seems just to have started.
We are surrounded by multiple electronic devices in every situation and
independent of our location (sometimes referred to as nomadic comput-
ing). Presumably, the amount of services will even increase further. Yet,
more services also means an increase in the amount of requirements, i.e.,
different/new protocols, decoding and encoding methods, compression

302 Florian Dittmann and Christophe Bobda

techniques, etc. Due to often used advanced concepts, these require-
ments demand for special purpose hardware (e.g. ASICs), as general
purpose processors often cannot meet the speed requirements. Recon-
figurable systems, which facilitate the combination of the performance
of ASICs and the flexibility of general purpose processors, seem to be
worth to be scrutinized as an alternative.

Thereby, the realm of mobile devices often comprises power con-
straints. Power-intensive FPGAs as reconfigurable devices are only of
limited value as processing units for mobile devices. Coarse grain re-
configurable architectures seem to be an alternative. They comprise
path-widths greater than 1 bit, which enables more area-efficient opera-
tion. Additionally, they do not have such a huge routing area overhead
and poor routability compared to FPGAs (Hartenstein, 1997). Further,
coarse grained architectures provide operator level configurable function
blocks, word level datapaths, and powerful and very area-efficient data-
path routing switches. They are often used to speed up computational
intensive loops (Hartenstein, 2001).

The limited routing capabilities of coarse grained devices demands for
advanced compilation and mapping methods. Connections between ran-
dom processing elements often is impossible. However, local connection
facilities are often numerously available. In order to avoid additional
computation delays due to poor routing, mapping algorithms should
particularly target at short wire lengths. In this paper, we introduce
an approach how to find a placement for mesh-like coarse grain recon-
figurable architectures, which explicitly aims at nearby placement when
the communication is intensive. Therefore, we use the spectral method
as introduced by Hall, 1970. The quadratic objection of the spectral
method is capable to reduces long wires.

The rest of this paper is organized as follows. We review related work,
before we introduce our topology abstraction, including the modeling of
the problem. In Section 4, we introduce the spectral method for data
flow graphs. Section 5 shows how we combine the spectral method and
ASAP scheduling to temporally place data flow graphs on the processing
elements of coarse grain reconfigurable devices. Finally, we conclude.

2. RELATED WORK

Coarse grain reconfigurable devices are not widespread. Consequently,
their compilation, mapping and placement concepts are sparsely present
in the literature.

Recent work in the area was done by Bansal et al., 2004, performing
network topology exploration. The authors propose a consecutive place-

Temporal Graph Placement on Mesh-Based Coarse Grain Reconf. Sys. 303

le— ——»]
o n W o "
X .,)\ N\
4 .y
l—» > PRI
o/ 'y N ry
Yy ¥ Cu_v &
> - le—»]
P
D4 . P
? I N b N
rl— -]

Figure 1. Topology abstraction of mesh-based coarse grain reconfigurable devices.

ment (topology traversal). The concept abstracts from heterogenous
architectures and produces reasonable results. They do not focus on the
possibility to reuse processing elements in directly succeeding cycles.

Lee et al., 2003 present a generic reconfigurable architecture target-
ing coarse grain architectures. They describe a compilation approach to
manage the memory bottleneck that typically limits the performance of
many applications. Their mapping flow comprises three steps, the first
targets the processing elements mapping, the second operation group-
ing on processing element lines, and the third the arrangement of lines
including stacking and time multiplexing.

Nageldinger, 2001 differentiates the necessary design steps for coarse
grain reconfigurable architectures into technology mapping, placement
algorithm, and routing algorithm. He summarizes known approaches and
shows that some designers of coarse grain devices use manual placement
(e.g. Singh et al., 2000; Miyamori and Olukotun, 1998), while others use
heuristic methods like simulated annealing (e.g. Hartenstein and Kress,
1995; Ebeling et al., 1996). Most often, the place and route methods are
target specific and require a lot of work put into to adapt to different
reconfigurable devices. Seldom, topology abstraction is present.

3. TOPOLOGY ABSTRACTION

We consider coarse-grain reconfigurable architectures that consist of
processing elements (PEs) connected in a mesh-like network topology
(see Fig. 1). The PEs, which are represented as square boxes, are ar-
ranged in an equally spaced 2-D style. The double headed arrows denote
data communication links between the PEs. We call this style a grid fol-
lowing Bansal et al., 2004.

304 Florian Dittmann and Christophe Bobda

Figure 2. Data flow graph

In coarse grain reconfigurable systems, often the reconfiguration can
be done individually on every node, i.e., reconfiguration can take place
partially and during run-time. The temporal assignment of tasks to
nodes must be planned with respect to the whole period of this task
including the communicating processing elements. Concerning internode
communication, direct neighboring communication comprises the lowest
costs and thus is most desirable.

We assume that every PE can hold its result as long as there arrive no
new results. Thus, the storing of the results is independent of possible
reconfigurations of the node. Additional memory for intermediate results
is available externally. As the access of this memory is costly, we prefer
the local storage. In particular, results stored externally must be saved
to the memory bank as well as restored from this bank. We can avoid
external storing, if succeeding nodes execute in the neighboring regions.
The algorithm introduced below achieves this goal by using the spectral
method.

4. SPECTRAL METHOD

The spectral method as proposed by Hall, 1970 is originally suited
for the layout of VLSI chips. Its inherent quadratic objective functions
reduces wire lengths significantly. The result of placing elements on a
2-D area using the spectral method can be parameterized by weighting
the connections. It is possible to extend the initial 2-D result to a 3-
D version in order to introduce the temporal domain. Yet, the adding
of a third axis increases the complexity and may lead into results that
are difficult to handle. For example, we could derive a placement that
is communication optimized and place the nodes referring to these re-
sults, while ignoring precedence constraints that would enforce a differ-

Temporal Graph Placement on Mesh-Based Coarse Grain Reconf. Sys. 305

0B — T T T T T

[>] ‘\\\
N\

02

“b;
Q4
3

08

2. 1 L
"%.8 08 84 03 02 01] 01 02 03 04

Figure 3. Spectral placement of the data flow graph of Fig. 2

ent placement. Thus, we realize our placement strategy based on the
2-D version of the spectral method. The temporal domain is introduced
by ASAP scheduling (see below). There already exists investigations
of the spectral method for fine grained reconfigurable systems targeting
temporal placement (Bobda, 2003).

As input for our approach we need a graphical representation G of the
algorithm, as displayed in Fig. 2. The vertices V' of this graph G rep-
resent tasks that can be mapped on one processing element. The edges
E denote the connections, i.e., internode dependencies like precedence
constraints. The pure communication optimized spectral placement is
achieved without referring to additional parameters of the input graphs,
i.e., different execution times or precedence constraints can be consid-
ered later. Yet, there exist variants to include execution time similarities
into the spectral placement (Bobda, 2003). In this work, we use the basic
spectral method only.

Fig. 3 shows the results of the spectral placement of the data flow
graph G of Fig. 2. If our reconfigurable device is large enough, we can
place the whole graph by assigning the top left node to the top left PE
and so on. Yet, in most cases, the graph does not fit completely on
the device. Thus, the temporal functionality (dynamic reconfiguration)
must be used to execute the graph over time. We use this placement of
the input graph and derive an appropriate temporal placement method

306 Florian Dittmann and Christophe Bobda

©

J /T @
/A
0@ /e
U » U ®

Figure 4. ASAP schedule of the graph.

in the next section. Thereby, the results of the spectral method are
valuable information to keep wire lengths short.

The mathematical background comprises the following: We repre-
sent the input graph as the Laplacian matrix B, derived from the con-
nection matrix C and the degree matrix D (B = D — C). The spec-
tral method minimizes the sum of squared distances between the nodes
R = X{BXl +X{BX2 + ...+X;£BX]€ subject to XlTXl = X;Xz =
. = X,?X,C = 1. To solve these equations, we apply the Lagrange
multiplier method with the k Lagrange multipliers Ay, Ag, ..., Ax. The
solution are the Eigenvectors associated to the k smallest non zero Eigen-
values. The Eigenvectors place the vertices in space.

5. TEMPORAL PLACEMENT

We show the concept by referring to the data flow graph of Fig. 2.
As processing platform, we assume a coarse grain reconfigurable device
consisting of homogenous processing elements. The network topology is
as displayed in Fig. 1. Without loss of generality, we reduce the amount
of PE to nine in this example.

Fig. 4 shows the data flow graph in some more detail. We have ar-
ranged the vertices in ASAP (as soon as possible) style, respecting dif-
ferent execution times, as we want to schedule and place such vertices
comprising different execution times. The ASAP scheduling introduces
the temporal dimensijon to the problem by defining execution levels for
each node. Due to the precedence constraints and different execution
times, we derive six levels in this example.

Temporal Graph Placement on Mesh-Based Coarse Grain Reconf. Sys. 307

Figure 5. Spectral placement and pro- Figure 6. Spectral placement and pro-
cessing element assignment of level 1. cessing element assignment of level 2.

In the following, we combine the results of the ASAP scheduling and
the spectral placement to efficiently place the nodes on the PE of the
reconfigurable device.

We select the vertices and their coordinates of level 1 in the spectral
placement of the data flow graph. Their distances respect their close-
ness in terms of input for later nodes of the graph. Thus, we use this
information to assign the vertices to the PEs. The placement is realized
by a consecutively assignment. We start with the node comprising the
smallest x and largest y values (top-left corner). This node is placed in
the top-left corner of the reconfigurable device. We continue with this
procedure until the node comprising the largest £ and smallest y values
is reached. Fig. 5 shows how the vertices of level 1 are assigned to the
processing elements.

When scheduling the next level, we have to take care of vertices that
have already started with their execution in the previous level. These
nodes must not be placed to different processing elements. Additionally,
their location acts as an indicator for placing close nodes of the ASAP
scheduling in proximity, as far distributed results would foil the intended
reduction of communication achieved by the spectral method.

Thus, the procedure is as follows: We extract the corresponding ver-
tices of the level 2 from the communication optimized spectral placement
of the data flow graph (refer to Fig. 6). We first lock the already placed
vertices to their location (node 1 and 7). Then, we fill the gaps (speak-
ing in terms of free PEs between locked PEs) by assigning the remaining
vertices of level 2. The selection of the PE is done as above, i.e., eval-
uating the z and y location of the vertices. Finally, we achieve a PE
assignment that respects the assignment of the previous level and serves

308 Florian Dittmann and Christophe Bobda

v

8
3 [3)
7
6 7| 6 N
X X X

Figure 7. Combination of micro level placement.

as solid basis for the next level due to the PE assignment referring to
the spectral placement of the whole graph.

If this PE assignment is continued, we achieve an amount of so called
micro levels, which comprise a valid placement each. The dependencies
due to the spectral method guarantees short communication distance
from one to the next level. When combining the placed levels, we derive
a complete schedule as displayed in Fig. 7. Thereby, different execution
times of the nodes result in different heights of the boxes (nodes) in
the final schedule. The results gained are valuable for a configuration
scheduler for the coarse grain device.

Due to using the spectral quadratic wire length optimized placement,
we achieve direct neighbor connections or connections to the same pro-
cessing element in the next micro level in majority. For the exemplary
data flow graph, Fig. 8 shows the connections. We have mapped all lev-
els into the figure, i. e., all vertices mapped to the same PE are displayed
in the corresponding square box. As an additional result, we derive PEs
that will not be used during execution of the data flow graph.

In this exemplary description, the amount of PEs is in the range of
the amount of vertices each level. In detail, there are always enough
PE to hold all possible nodes of each level and directly derive a valid
schedule. In order to overcome this limitation, we extend our placement
as follows:

If there are always twice as much PEs than vertices per level, we com-
bine two levels to be placed together. This aggregation can be continued
with all integer multiples of the amount of PEs. Thereby, we can often
increase the proximity of vertices comprising internode communication
resulting in more efficient execution.

In order to overcome the opposite limitation, where the amount of
nodes each level is larger than the amount of available PEs, we can split
each level into sub-levels, which each encloses the maximum amount
of nodes. Depending on the individual cases, the intermediate results

Temporal Graph Placement on Mesh-Based Coarse Grain Reconf. Sys. 309

B [ONIC D=
® O

e ol

§1L

WA\

Figure 8. Internode connection.

PE (3,3)

might have to be stored externally, increasing the costs. We prefer an-
other option, where we form subproblems, which comprise each a cluster
of nodes that are strongly connected. The clusters can be formed inde-
pendent of the levels by referring to the spectral placement and applying
a cluster growth method (Alpert and Kahng, 1994). Then, we start the
temporal PE assignment on the nodes of these clusters separately using
the method described above.

6. CONCLUSION

In this paper, we have presented how to use the spectral method for
placement on coarse grain reconfigurable systems. The method suits the
limited routing capabilities of the devices very well. Using as soon as pos-
sible scheduling allows us to effectively introduce the temporal domain
into spectral method based placement. The ASAP scheduling thereby
enables us to select a sub-amount of the spectral placed vertices. The
PE assignment takes place with respect to previously scheduled nodes.
Thus, the flexibility, i.e., temporal adaptation of the processing ele-
ments of coarse grain reconfigurable devices is achieved with optimized
wire length. Finally, we yield a schedule that can reduce the execution
time, which otherwise often is negatively impacted by poor routing, i.e.,
routing that must traverse several processing elements before reaching
the data sink.

In the future, we plan to extend the placement in order to reduce
waiting cycles due to complicated memory access of coarse grain recon-
figurable systems.

310 Florian Dittmann and Christophe Bobda

Acknowledgements

This work was partly funded by the Deutsche Forschungsgemeinschaft
(SPP 1148).

REFERENCES

Alpert, C. J. and Kahng, A. B. (1994). Multi-way partitioning via spacefilling curves
and dynamic programming. In DAC ’94: Proceedings of the 31st annual conference
on Design automation, pages 652-657. ACM Press.

Bansal, Nikhil, Gupta, Sumit, Dutt, Nikil, Nicolau, Alex, and Gupta, Rajesh (2004).
Network Topology Exploration of Mesh-Based Coarse-Grain Reconfigurable Ar-
chitectures. In Proceedings of the DATE, Paris, France.

Bobda, Christophe (2003). Synthesis of Dataflow Graphs for Reconfigurable Systems
using Temporal Partitioning and Temporal Placement. PhD thesis, University Pader-
born, Heinz Nixdorf Institute.

Ebeling, Carl, Cronquist, Darren C., and Franklin, Paul (1996). RaPiD - Recon-
figurable Pipelined Datapath. In FPL ’96: Proceedings of the 6th International
Workshop on Field-Programmable Logic, Smart Applications, New Paradigms and
Compilers, pages 126-135. Springer-Verlag.

Hall, Kenneth M. (1970). An r-dimensional Quadratic Placement Algorithm. Manag-
ment Science, 17(3):219-229.

Hartenstein, Reiner (2001). A Decade of Reconfigurable Computing: a Visionary Ret-
rospective. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 01).

Hartenstein, Reiner W. (1997). The Microprocessor is no more General Purpose:
why Future Reconfigurable Platforms will win. In Proceedings of the International
Conference on Innovative Systems in Silicon, ISIS’97, Austin, Texas, USA. IEEE
Computer Society. Invited Paper.

Hartenstein, Reiner W. and Kress, Rainer (1995). A datapath synthesis system for
the reconfigurable datapath architecture. In Proceedings of the 1995 conference on
Asta Pacific design automation (ASP-DAC’95), page 77, Makuhari, Chiba, Japan.
ACM Press.

Lee, Jong-eun, Choi, Kiyoung, and Dutt, Nikil D. (2003). Compilation Approach for
Coarse-Grained Reconfigurable Architectures. IEEE Design € Test of Computers,
20(1):26-33.

Miyamori, Takashi and Olukotun, Kunle (1998). REMARC: Reconfigurable Multime-
dia Array Coprocessor (Abstract). In FPGA, page 261.

Nageldinger, Ulrich (2001). Coarse-Grained Reconfigurable Architecture Design Space
Ezploration. PhD thesis, University of Kaiserslautern, CS department (Informatik).

Singh, Hartej, Lee, Ming-Hau, Lu, Guangming, Bagherzadeh, Nader, Kurdahi, Fadi J.,
and Filho, Eliseu M. Chaves (2000). MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and Computation-Intensive Applications. JEEE Trans.
Comput., 49(5):465-481.

