OBJECT ORIENTATION PROBLEMS WHEN
APPLIED TO THE EMBEDDED SYSTEMS
DOMAIN

Juilio C. B. Mattos', Emilena Spechtl, Bruno Neves', Luigi Carro'?

! Federal University of Rio Grande do Sul, Informatics Institute, Av. Bento Gongalves, 9500 -
Campus do Vale - Porto Alegre, Brasil

? Federal University of Rio Grande do Sul, Electrical Engineering Dept.
Av. Oswaldo Aranha 103 - Porto Alegre, Brasil

Abstract: Software is more and more becoming the major cost factor for embedded
devices. Nowadays, with the growing complexity of embedded systems, it is
necessary to use techniques and methodologies that in the same time increase
the software productivity and can manipulate the embedded systems
constraints like memory footprint, real-time behavior, power dissipation and
so on. Object-oriented modeling and design is a widely-know methodology in
software engineering. This paradigm may satisfy the software portability and
maintainability requirements, but it presents an overhead in terms of memory,
performance and code size. This paper presents some experimental results that
shown that, for some QO applications, more than 50% of the execution time is
taken just for the memory management. This is a huge overhead that cannot be
paid by many embedded systems. This way, this paper shows experimental
results and indicates a solution of this problem in order to reduce execution
time, while maintaining memory costs as low as possible.

Keywords: Embedded Systems, Embedded Software, Object Oriented

1. INTRODUCTION

The fast technological development in the last decades exposed a new
reality: the widespread use of embedded systems. Nowadays, one can find
these systems everywhere, in consumer electronics, entertainment,
communication systems and so on. In embedded applications, requirements

148 Jiilio C. B. Mattos, Emilena Specht, Bruno Neves, Luigi Carro

like performance, reduced power consumption and program size, among
others, must be considered. Many of these products today contain software
and probably in the future even more products will contain software. In
many cases software is preferred to a hardware solution because it is more
flexible, easier to update and can be reused. Software is more and more
becoming the major cost factor for embedded devices [1,2].

Over the years, embedded software coding is traditionally developed in
assembly language, since there are stringent memory and performance
limitations. [3]. The best software technologies use large amounts of
memory, layers of abstraction, elaborate algorithms, and other approaches
that are not directly applicable. However, the hardware capabilities have
improved, and the market demands more elaborate products, increasing
software complexity. But, the existing software methodologies are not
adequate for embedded software development. This development is very
different from the one used in the desktop environment. Embedded software
development should address constraints like memory footprint, real-time
behavior, power dissipation and so on. Thus, it is necessary to adapt the
available techniques and methodologies, or to create novel approaches that
can manipulate the embedded systems constraints.

Object-oriented modeling and design is a widely-know methodology in
software engineering. Object oriented analysis and design models include
various modeling abstractions and concepts such as objects, polymorphism,
and inheritance to model system structure and behavior. Using higher
modeling abstractions that are closer to the problem space make the design
process and implementation easier, and besides, these abstractions provide a
very short development time and a lot of code reuse. Nevertheless, the
object-oriented design paradigm presents an overhead in terms of memory,
performance and code size [4].

Using object-oriented design the developers need an object-oriented
language to do the implementation. Over the past few years the developers
have embraced Java, because this technology can provide high portability
and code reuse for their applications [5,6]. In addition, Java has features such
as efficient code size and small memory footprint, that stand out against
other programming languages, which makes Java an attractive choice as the
specification and implementation language of embedded systems. However,
developers should be free to use any object oriented coding style and the
whole package of advantages that this language usually provide. In any case,
one must also deal with the limited resources of an embedded.

The Java language deallocates objects by using garbage collection [7].
Garbage collectors have advantages freeing programmers from the need to
deallocate the objects when these objects lost their reference, and helping to

Object Orientation Problems when Applied to the ES Domain 149

avoid memory leaks. However, garbage collectors produce an overhead in
program execution and a non-deterministic execution.

It is widely known that design decisions taken at higher abstraction levels
can lead to substantially superior improvements. Software engineers
involved with software configuration of embedded platforms, however, do
not have enough experience to measure the impact of their algorithmic
decisions on issues such as performance and power.

In this way, this work proposes a pragmatic approach, transforming, as
many dynamic objects to static ones, in the goal to reduce execution time,
while maintaining memory costs as low as possible. This change should deal
with the objects after the programmer has coded the application, and before
the execution — when the memory management and garbage collector act.
This approach is also compliant with classical OO techniques and embedded
systems requirements.

This paper is organized as follows. Section 2 discusses related work in
the field of OO and procedural programming comparison and techniques to
improve the memory management system. Section 3 describes some Java
Object-Oriented applications analysis to make the problem characterization.
Section 4 presents our proposed approach based on a case study. Finally,
section 6 draws conclusions and introduces future work.

2. RELATED WORK

There are several works that present some optimizations and techniques to
produce better results in memory management. These works present
optimizations to reduce the memory and performance overhead, to be able
real-time applications and so on. In [8] a hardware mechanism (co-
processor) to support the runtime memory management providing real-time
capability for embedded Java devices is presented. This approach guarantee
predictable memory allocation time. Chen [9] presents management
strategies to reduce heap footprint of embedded Java applications that
execute under severe memory constraints and a new garbage collector.
Another work [10] of the same author focuses on tuning the GC to reduce
energy consumption in multibanked memory architecture.

In [4], the object oriented programming style is evaluated in terms of both
performance and power for embedded applications. A set of benchmark
kernels, written in C and C++, is compiled and executed on an embedded
processor simulator. The paper has been shown that oriented objected
programming can significantly increase both execution time and power
consumption.

150 Jiilio C. B. Mattos, Emilena Specht, Bruno Neves, Luigi Carro

Shaham [11] presents a heap-profiling tool for exploring the potential for
space savings in Java programs. The output of the tool is used to direct
rewriting of application source code in a way that allows more timely
garbage collection of objects, thus saving space. The rewriting can also
avoid allocating some objects that are never used making space savings and
in some cases also to improvements in program runtime. This approach is
based on three code rewriting techniques: assigning the null value to a
reference that is no longer in use, remove code that has no effect on the
result of the program and delay the allocation of an object until its first use.

Our proposed approach starts from a more radical point of view. Instead
of trying just to improve the code written by the programmer, we tries to
transform, as many dynamic objects to static ones, in the goal to reduce
execution time, while maintaining memory costs as low as possible. Thus, it
provides a large design space exploration for a given application.

3. PROBLEM CHARACTERIZATION

In this work, we have analyzed some Java Object-Oriented applications
that may run on embedded systems. It is well known that the object-oriented
programming paradigm significantly increases the dynamic memory used,
producing considerably overhead in terms of performance, memory and
power. The goal of this section is to characterize the exact amount of
overhead one has to pay to effectively use the OO paradigm.
In this work we analyzed some Java applications that can be found in
embedded systems. The applications we used as benchmarks are:
e MP3Player - is an MP3 decoder implementation. This algorithm
reads an MP3 file and translates it in an audio signal. This code is a
version based on a description available on [12].

e SymbolTest — is a simple application that displays Unicode char
ranges and different fonts types [13].

o Notepad - is a text editor with simple resources [14].

e Address Book - is an application used as electronic address book
that stores some data (like name, address, telephone number, etc.)
[15].

e Pacman - is the well-known game with a labyrinth and rewards [16].

It is important to mention that except for the MP3 application, none of
the above applications has been coded by the authors. A completely blind
analysis has been performed, in order to avoid influence of a particular code
style.

To generate the application results representing the dynamic behavior of
the application, an instrumentation tool was developed. It is based on BIT

Object Orientation Problems when Applied to the ES Domain 151

(Bytecodes Instrumentation Tool) [17], which is a collection of Java classes
that allow the construction of customized tools to instrument Java byte-
codes. This instrumentation tool allows the dynamic analysis of Java Class
files, generating a list of objects information (objects allocated, object time
life, etc.), memory use and performance results.

Table 1 shows some object information like the total allocated objects for
some instance execution, and the number of allocation instructions. This
number of allocation instructions shows the instructions that perform the
memory allocation task. Each one of these instructions can create several
objects (objects with the same type) because it can be located in a method
that is called several times, or can be located in a loop, for example. The
table 1 shows that during MP3 execution 46,068 objects were created by
only 101 allocation instructions, and hence some allocation instructions
create more than one object. During the execution the Garbage Collector
collects from the memory the objects that have lost their reference. The table
also presents the results from the other applications.

Table 1. Object Results

Application Total allocated Number of allocation
objects instructions
MP3 46,068 101
SymbolTest 27 16
Notepad 184 66
AddressBook 28 14
Pacman 2,547 30

Table 2 shows some memory results. Two results are shown: total
memory allocated during the application execution and the maximum
memory used during the application. Using object-oriented programming the
total memory allocated should be larger, because there is an intensive
memory use. However, the memory necessary to run the application should
be enough to store just the objects used in the moment (it depends on GC
implementation, considering a GC implementation that all objects that lose
their reference are colleted immediately). It is clear from table 2 that there is
a huge waste on memory resources, since only a fraction of the allocated
memory is effectively used in a certain point of the algorithm.

The table 3 presents the results in terms of performance and the overhead
caused by garbage collector making the allocation and deallocation of the
objects. The performance results are shown as the number of executed
instruction. The overhead caused by GC was calculated based on a GC
implementation in software targeting the FemtoJava processor and Sashimi
Tool [18]. This implementation is based on the Reference Counting
algorithm that has a low memory overhead. At each object manipulation the

152 Jilio C. B. Mattos, Emilena Specht, Bruno Neves, Luigi Carro

garbage collector needs to make some changes in the respective object
counter, and as soon as a counter reaches zero, the corresponding memory
block becomes available to a new object. The cost of allocation and
deallocates is about 696 instructions on average.

Table 2. Memory results

Application Total memory Maximum Memory
allocated (bytes) utilization (bytes)
MP3 10,080,512 23,192
SymbolTest 1,509 625
Notepad 9,199 4,580
AddressBook 867 185
Pacman 216,080 456

The plot in figure 1 shows some statistics about the overhead that might
be expected by dynamic allocation and deallocation. The figure shows the
overhead caused in different applications considering a cost of 1 to 1000
instructions per allocation/deallocation.

As it can be seen from figure 1, for some applications the memory
allocation needed to support the OO paradigm can represent more than 50%
of the execution time is taken just for the memory management, thus the
CPU spends more time and energy just managing memory, instead of
actually executing the target application. This is a huge overhead that cannot
be paid by many embedded systems.

It is interesting to notice what happens when the cost of
allocation/deallocation is increased. In some application more than 80 % of
the execution time is used by memory management system. In the case of
the FemtoJava processor, its Garbage collector takes 696 instructions, and
the cost of each application can be easily seen to surpass 35% for most
applications.

Table 3. Performance results

Application Performance GC
(instructions) Overhead (%)
MP3 85,761,756 37.40
SymbolTest 67,342 27.91
Notepad 136,621 93.86
AddressBook 24,435 79.84
Pacman 2,091,684 84.85

Object Orientation Problems when Applied to the ES Domain 153

overhead (%)

o = , — . , . . .
O 100 200 300 400 500 600 700 800 900 1000

allocation/deallocation cost (instructions)

MP3 SymbolTest —a— Notepad —«— AddressBook —e— Pacman

Figure 1. Object-Oriented Overhead

4. THE PROPOSED APPROACH

When a programmer uses an object-oriented design paradigm, the
application objects can be statically or dynamically allocated. When the
programmer uses static allocation the memory footprint is known in
compilation time. Hence, in this approach, normally, the memory size is big,
but there is a lower execution overhead while dealing with the dynamic
allocation (produced by the memory manager). On the other hand, when the
programmer uses a dynamic allocation, there is an overhead in terms of
performance, but the memory size decreases because the garbage collector
removes the unreachable objects.

The experimental results in section 3 have shown that, for some OO
applications the largest part of the execution time is taken just for the
memory management. However, if the designer allocates memory in a static
fashion, the price to be paid is a memory much larger than actually needed,
with obvious problems in cost, area and power dissipation.

In section 3, table 1 shows that during MP3 execution 46,068 objects
were created by only 101 allocation instructions, and hence some allocation
instructions create more than one object. The main idea of the proposed
approach is transforming, as many dynamic objects to static ones.

154 Jiilio C. B. Mattos, Emilena Specht, Bruno Neves, Luigi Carro

According the table 3, there are 101 possible objects transformation in
MP3 application. Table 4 presents 7 different allocation instructions in terms
of the number of objects that each instruction allocates and the size of the
object. The comparison between the number of total allocated objects by the
application with the number of allocated objects by the first instruction
allocation (first row) shows that just one allocation instruction is responsible
by 62.51 % of allocations. Transforming this allocation instruction in a static
way, the results in terms of GC overhead can be extremely improved. The
table 4 also presents that other allocation instructions can improve the results
too. But when a static transformation occurs, this transformation implies in a
memory increase.

Table 4. MP3 Allocation instruction

Allocation instruction | Number of allocated objects Object Size
(bytes)

#1 28,800 64

#2 1,728 144

#3 1,728 36

#6 1,600 72

#8 1,536 144
#11 900 2,048
#36 25 4,608

Table 5 shows the results after the static transformations with the same
allocation instructions of the table 4. These results show the performance in
terms of instruction, the percentage reduction in relationship on original code
(total OO code) and the memory increase necessary to make the static
transformation. It is interesting to notice that the static transformation in only
one allocation instruction can improve the performance results in 23.47 %
paying only 0.28 % of memory increase.

Table 5. MP3 results after static transformation

Allocation instruction Performance Reduction Memory
(instructions) (%) Increase (%)

#1 65,636,556 23.47 0.28

#2 84,559,884 1.41 0.62

#3 84,559,890 1.41 0.16

#6 84,649,356 1.30 0.31

#8 84,694,092 1.25 0.62

#11 53,700,828 0,73 8,83
#36 85,750,231 0.02 19.87
#1+#2 53,612,844 24.88 0.90
#1+#2+#11 53,609,244 25.61 9.73

The other allocation instructions present different results in terms of

performance gain and memory

increase.

These values can

seem

Object Orientation Problems when Applied to the ES Domain 155

insignificantly, but these transformations can be grouped taking more
advantages. The two last rows show the results of the combination of the
allocation instruction 1 and 2, and the combination of the 1, 2 and 11. These
combinations show, as example, that grouping different static
transformations can be obtained a great number of possibilities with different
characterization in terms of performance and memory overhead. Thus, the
process of search the best combination according the systems requirements
is a hard task.

The table 6 also presents that the total memory allocated can be reduced
taking more advantages in terms power saving. Table 2 shows that the MP3
application uses 10,080,512 bytes and when the proposed approach is
applied the reduction can be excellent.

Table 6. MP3 total memory allocated results

Allocation instruction Total memory Reduction
allocated (bytes) (%)
#1 8,237,320 18.28
#2 9,831,880 2.47
#3 10,018,504 0.62
#6 9,965,512 1.14
#8 9,859,524 2.19
#11 8,237,320 18.28
#36 9,965,316 1.14
#1+#2 7,988,688 20.75
#1+#2+#11 6,145,496 39.04

S. CONCLUSIONS AND FUTURE WORK

This paper shows that in the same time oriented-object programming
increases the software productivity satisfying the software reusability and
maintainability requirements, it presents a critical overhead in terms of
performance and memory.

The paper proposes a technique to management this problem,
transforming as many as possible dynamic objects to static ones, as reducing
execution time, while maintaining memory costs as low as possible. Thus, it
provides a large design space exploration for a given application.

As a future work, we plan to implement a tool making possible the
transformation of dynamic objects to static ones in automatic way.
Furthermore, this tool can be able to allow an automatic selection of the best
object organization (combinations of static and dynamically objects) for
given application based on systems requirements. We also plan to evaluate
the amount of power savings obtained.

156 Jiilio C. B. Mattos, Emilena Specht, Bruno Neves, Luigi Carro
REFERENCES

1. Graaf, B., Lormans, M., Toetenel, H. Embedded Software Engineering: The State of the
Practice. IEEE Software, (Nov./Dec. 2003), 61-69.

2. Embedded Systems Roadmap 2002. . http://www.stw.nl/progress/Esroadmap/
/ESRversion1.pdf.

3. Lee, E. What's Ahead for Embedded Software ?. IEEE Computer, New York, Sept. 2000,
18-26.

4. Chatzigeorgiou, A.; Stephanides, G. Evaluating Performance and Power of Object-
Oriented Vs. Procedural Programming in Embedded Processors. In Proceedings of 7th
Ada-Europe International Conference on Reliable Sofware Technologies. LNCS 2361.
Springer-Verlag Berling Heidelberg, 2002.65-75.

5. Mulchandani, D. Java for Embedded Systems. Internet Computing, 31(10), May 1998, 30—
39.

6. Lawton, G. Moving Java into Mobile Phones, IEEE Computer, vol. 35, n. 6, 2002, 17-20.

7. Richard. Jones; Rafael D. Lins. Garbage Collection: algorithms for automatic dynamic
memory management. Chichester: John Wiley, 1996.

8. Lin, C.; Chen, T. Dynamic memory management for real-time embedded Java chips. In
Proceedings of Seventh International Conference on Real-Time Computing Systems and
Applications, 2000.

9. Chen, G. et al. Heap compression for memory-constrained Java environments. In
Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, Anaheim, California (2003), 282-
301.

10.Chen, G. et al.Tuning Garbage Collection for Reducing Memory System Energy in an
Embedded Java Environment. ACM Transactions on Embedded Computing Systems,
vol. 1, n. 1, November 2002, 27-55.

11.Shaham, R.; Kolodner, E.; Sagiv, M. Heap profiling for space-efficient Java. In
Proceedings SIGPLAN Conf. on Prog. Lang. Design and Impl., ACM Press, 2001. 104-
113.

12.Javalayer. Java MP3 Player. Available at http://www.javazoom.net/javalayer/
/sources.htmi(2004).

13.Sun Microsystems. SymbolTest. Available at http://java.sun.com/j2se/1.3/docs/
/guide/awt/demos/
symboltest/actual/index.html

14.Sun Microsystems. Notepad. Available at http://java.sun.com/j2se/1.3/docs/
Irelnotes/demos.html

15. Brenneman, Todd R. Java Address Book (ver. 1.1.1). Available at
www.geocities.com/SiliconValley/2272.

16. Pacman Silver Edition. Available at http://www.netconplus.com/antstuff/pacman. php

17.Lee, H.B.; Zom, B.G. BIT: A Tool for Instrumenting Java Bytecodes, USITS’97 -
USENIX Symposium on Internet Technologies and Systems, Dec. 1997.

18.Ito, S. A.; Carro, L.; Jacobi, R. Making Java Work for Microcontroller Applications, IEEE
Design & Test, vol. 18, no. 5, Sep-Oct, pp. 100-110.

