DOMAIN-CROSSING SOFTWARE PRODUCT
LINES IN EMBEDDED, AUTOMOTIVE SYSTEMS

Stefan Kubica
Audi Electronics Venture GmbH

stefan.kubica @ audi.de

Wolfgang Friess

AUDI AG

wolfgang.friess @audi.de

Christian Allmann
Audi Electronics Venture GmbH

christian.alimann @audi.de

Thorsten Koelzow
Audi Electronics Venture GmbH

thorsten.koelzow @ audi.de

Abstract:

Keywords:

The development of software-functions in the automotive domain is subject to
multiple conditions. These conditions are for example the rising number of var-
ious functions in the car, the simultaneously increasing cost pressure and short-
ened development cycles. To come up with these conditions, an improvement of
reuse is very promising. In this paper the point of view is that a software-function
is separable in two domains, the application-domain and the standard-software-
domain. Looking at the reuse activities of both domains together provides more
generality and synergy-effects. A reuse approach that fits both domains is the ap-
proach of domain-crossing software product lines. This paper reports about an
ongoing research project about adapting of software product lines in the specific
domains and describes a concept for bringing them together. For proving the
concept an accompanying tool was implemented and is introduced afterwards.

Software Product Lines, Standard-Software, Application-Software, Reuse,
Cross-Domain

2 Stefan Kubica, Wolfgang Friess, Christian Allmann and Thorsten Koelzow

L. INTRODUCTION ‘

The demand of customers for new innovative functions in cars keeps on ris-
ing. Therefore, the car manufacturers equip their new types with a lot of new
software functions. Figure 1 points out the raising complexity of functions e.g.
in the infotainment sector. The manufacturer has to deal with multiple factors
influencing the development of functions. On the one hand there is increasing
cost pressure and shortened development cycles and on the other hand there is
a demand for more quality and personalisation of the functions by customers.

Figure 1. Increasing complexity, e.g. in the infotainment domain [Schleuter, 2002]

As described in [Endres and Rombach, 2003], reuse of software reduces cycle
time and increases productivity and quality. Therefore, getting the possibil-
ity of a more efficient reuse of software-functions could solve the described
problems. In this paper software reuse means, using parts of a function more
than once. The challenge is to decide the kind of reuse and what is required
to achieve it. A short introduction in the automotive development of functions
is given. By examination the whole domain more precisely it occurs that one
possible point of view is to share the whole domain of function development
into two domains to handle with, the application-domain and the standard-
software-domain. Figure 2 shows the two prevalent domains.

The application-domain contains the process of developing the functionality.
There are activities in the automotive domain to implement a model-based de-
velopment process. As described in [Langenwalter and Erkkinen, 2004] the
model-based development of functions has several advantages like e.g. itera-
tive development steps, early tests, the possibility of reuse and the generation
of production code from models.

Domain-Crossing Software Product Lines in Embedded, Automotive Systems 3

The standard-software-domain contains the system-components needed for the
ECU (Electronic Control Unit). These components are e.g. the operating sys-
tem, drivers and the network management. Figure 2 shows an overview of the
included components. The configuration of this components depends on the
requirements of the functions and on the given hardware-architecture.

Application | i
domain i RS ARG Anph:_:auon

OSEKCS

Diagnostic §
§ Event Handler 8
5 (DEH) 2

¥ Standard

i Network §

uo[oSI0IL Yau L

Standard- f Manage- ¥ ',-_ Diagnostic _:_
software | ment 8 RordloicBl
domain

§ Dispatcher § IfO Library

§ (kwP) H EEPROM
AR B D .' Library Driver
Network Layer (TP) # Management

CANIL

IN Driver

Driver

.......

Figure 2. Standard Software Core of the Volkswagen-Group

To come up with the mentioned more effective reuse, it is necessary to support
the development-process with additional software development techniques.
We propose not only a separate solution for each domain, but a cross-domain
solution. By combining reuse-techniques of each domain, it is possible to
reach more generality and to benfit from synergy-effects. The method of soft-
ware product lines offers some answers to the given problems. As described
in [Northrop, 1998] software product lines help to reach goals as for example
high quality, quick time to market, low cost production and low cost mainte-
nance. To reach these goals would give the development process the improved
efficiency and productivity demanded and also an instrument to handle the
raising variability. The literature offers several methods for implementing a
software product line, like FODA (Feature-Oriented Domain Analyse [Kang
et al., 1990]), FeatuRSEB (Feature Reuse-Driven Software Engineering Busi-
ness [Boellert, 2002]) and FAST (Family-Oriented Abstraction, Specification,
and Translation [Weiss and Lai, 1999]). The challenge is to develop an ade-
quate method useable for both described domains. In this paper, a concept of
a software product line-framework which combines the software product lines
of the application-domain with using model-parts and the standard-software-

4 Stefan Kubica, Wolfgang Friess, Christian Allmann and Thorsten Koelzow

domain with the possibility to configure the standard-software components.
Furthermore, the first ready steps and the resulting tool-chain are described.

2. PRECONDITIONS FOR DOMAIN-CROSSING
PRODUCT LINES

For combining the two domains of application and standard-software, first
we consider the specific aspects of both.

2.1 Application Development with Software Product
Lines

The model-based development in the application-domain is a first step for
improving the possibility of reuse. Reasons for this are for example the in-
dependence of the model from the hardware because of using a generator for
getting the specific production code. Also the possibility of distributed devel-
opment by having modules and clear interfaces support reuseability. But to
develop the entire application as a model, for example as Matlab/Simulink-
model, does not inevitable ensure reuse. The development of various models
for various variants of an application contains several disadvantages. These
disadvantages are for example the number of possible model-variants of an
application is increasing very fast. The problem is, that basic changes of the
functionality of the application have to be made in all existing model-variants.
The introduction of an additionally functionality in the application can dou-
ble the number of possible variants and being able to reuse one of the existing
model-variants requires expert-knowledge to get the model that fits best.

As described in [Hein et al., 2000] the software product line-approach offers
some answers to the given problems. To split the functionality of an applica-
tion into separate features gives the possibility to generate different variants
from one common base. For getting an useable general approach, multiple
steps have to be defined. In Figure 3 these steps are shown. In [Bockle et al.,
2004] is described, that in general there are two parts inside the process of a
software product line development.

Domain engineering includes all activities connected with the development of
the software product line. These activities are:

1 Domain scoping: In this step the possible variants of the application
were traced.

2 Define features: Extraction of the features and decision if a feature is a
comimon or a variable one.

3 Deposit features with logic: The dependencies between the features
were deposit with a mathematical logic. This logic is implemented with
an adapted feature-tree notation.

Domain-Crossing Software Product Lines in Embedded, Automotive Systems 5

Figure 3. Concept for introducing the software product line for application-development

4 Depositing the features with model-parts. These model-parts have to
represent the requirements of the respective feature.

The first two steps are realised with an adapted approach of the Fraunhofer
IESE (Institut Experimentelles Software Engineering) called CaVE (Common
and Variable Extraction [John and Dérr, 2003]). Within a common project
the CaVE-approach was adapted and gives methods for extracting features
from function-specifications methodology. The realisation of the third step,
the common feature-notation for both domains, is described in a following
section. Step 4 is subject to future work.

Application engineering includes all activities connected with the use of
the developed software product line. These activities are:

1 = Configurator: Giving the possibility of choose features of the soft-
ware product line to match the several requirements of a new ap-
plication demanded.

m Composing-algorithm: Put together the model-parts connected
with the selected features to an entire model.

2 Test and Care: Methods for testing the chosen combinations and for
carrying the product line (e.g. adding new features to the product line)

The configurator is part of the tool-chain described in one of the following sec-
tions. The composing-algorithm is connected to the depositing of the features
with model-parts and is also future work.

6 Stefan Kubica, Wolfgang Friess, Christian Allmann and Thorsten Koelzow

2.2 Standard-Software Configuration with Software
Product Lines

The principle of reuse is a common way to shorten the development time, re-
duce costs and to increase quality also in the standard-software domain. There-
fore, the standard-software, as it is used in electronic control units nowadays, is
composed out of several moduls as Figure 2 shows. Only the modules needed
for the specific control unit are integrated into the standard-software system.
This adaption is necessary to reduce the memory consumption of the software
and therefore to reduce costs.

To increase the reusabiltiy of the standard-software modules, it is necessary
to set parameters of the moduls to the specific usage of the module. With
this mechanism of parametrisation it is possible to reuse standard-software
modules in several electronic control units. The challenge in the domain of
standard-software is not to enable different variants of the system, but to man-
age the complexity of the whole standard-software system and the dependen-
cies between the parameters of the modules.

The concept of modelling commonalities and variabilities of many, similar
software products with feature models can help to face this challenge. The
usability of a feature model-based configuration of an OSEK-conform operat-
ing system is already shown in [Czamecki et al., 2002]. OSEK is the german
abbreviation for 'Open Systems and the Corresponding Interfaces for Auto-
motive Electronics’ and stand for a joint project in the German automotive
industry aiming at an industry standard for an open-ended architecture for dis-
tributed control units in vehicles.

One result is the standard for automotive operating systems. Czarnecki and
collegues showed that the parameters of an OSEK operating system can rep-
resented with feature models and a configuration file can be generated with
techniques of template-based code generation. The usage of product line ap-
proaches in the embedded domain is also shown by [Beuche, 2003]. He intro-
duced an approach for composing embedded systems with feature models to
represent variabilities of similar systems.

To enable a feature model-based configuration for standard-software the
given concepts have to be extended to model not only the operating system, but
all standard-software modules. Beside the necessity of realizing a generation
for different configuration files another challenge has to be solved. By extend-
ing the concept to several moduls the importance of considering relations and
dependencies between different parameters is increasing. The possibilities of
current feature model notations to describe relations are rather limited and have
to be extended. An approach to formalize relations in feature models is shown
in [Streitferdt et al., 2003]. There, an adaption of OCL (Object Constraint
Language [OMG, 2003]) is used to describe relations and dependencies. The

Domain-Crossing Software Product Lines in Embedded, Automotive Systems 7

application of such concepts to the standard-software domain is still missing
and one aim of our ongoing research.

3. REALISATION

A common feature model notation, fitting the requirements of both domains
is the first step to bring them together. A concept for a common notation and a
tool are introduced in the following.

3.1 Concept

The previous sections have shown, that the two domains have many com-
monalities but also many differences. These commonalities and differences
must be addressed by a common feature model notation to enable a common
modelling of the two domains. For the application domain there are three main
specialities. Because of the model-based development in this domain, it must
be possible to establish a link between features and the corresponding model
fractal which implements the feature. Beside that, it must be possible to define
unique interfaces of the model. One way to realize this, is to model the inter-
face signals themselves as features. To integrate a model-based product line
for applications in a real world development process, it must furthermore be
possible to link process documents like requirements or test cases to the fea-
tures. The link of requirements is necessary to enable the automatic creation
of a product concept catalogue for the generated application.

As shown in section 2.2, the purpose of feature modelling in the standard-
software domain is to model the parameters of the different moduls. These
parameters often have to be defined as values. An example will illustrate
this problem. One parameter of a CAN driver modul could be the size of
the communication buffer. So to configure this modul, the parameter CAN-
BUFFERSIZE has to be defined with a value within a given range. Beside that,
there could be a higher level modul, for example a transport protocol, which
communicates with the can driver. Then the TP-BUFFERSIZE of the second
module has to have the same value as the first parameter for compatibility rea-
sons. This short example shows, that in the standard-software domain, there
are parameters and relations between parameters. This has to be addressed by
a feature model notation.

To enable a common modelling we combined several aspects of existing
feature model notations and extended them:

» The basis for our notation is the orignial FODA notation. Feature mod-
eling was proposed as part of the Feature-Oriented Domain Analysis
method (FODA). The idea of the FODA notation is to model optional
and mandatory features of a system in a hierarchical tree.

8 Stefan Kubica, Wolfgang Friess, Christian Allmann and Thorsten Koelzow

s The possibility of modelling feature parameters was added by Czarnecki
with the introduction of attributes [Czarnecki et al., 2002]. These at-
tributes are a way to represent a choice of values belonging to a feature.
For our notation, it is also possible to add parameters to the features.

m We also added the principle of feature cardinalities from Czarnecki
[Czamecki et al., 2004]. With cardinalities it is possible to model how
many instances of a feature must be implemented in the system.

m A possibility, which is not given by existing notations is to add refer-
ences to all kinds of files to a feature. This is necessary to add doc-
uments from the development process to the features, like mentioned
before. Also for feature relations it is possible to add references to files
in which the relation is described in a formal way.

This proposal of a common notation is integrated in an experimental tool
described in the following section. A common editor for feature modelling
of both domains and a common output file to store the selected features is also
part of a common method for a product-line based development of applications
and standard-software.

3.2 Cross-Domain SPL-Tool

An important point to ensure the usability of a product line-based approach
for the development of electronic control units is an adequate tool support.
On this account we have developed a tool to support the requirements of a
common notation for several domains like they are shown in the previous
section. Such a cross domain software product line tool (CDS-Tool) is
introduced in this section. An overview of the tool structure is shown in Figure
4.

The CPS-Tool has several features differentiating it from other tools, like
Consul [Beuche, 2003] or the FeaturePlugin for Eclipse [Antkiewicz and
Czarnecki, 2004]. First of all, the tool is integrated in the company software
process. This means, the tool is part of the development work flow. To avoid
isolated application relevant artefacts like specification documents, model
files or code fragments are included in the software product line approach.
The tool makes allowance for this requirement by applying such artefacts to
each single feature. During feature specification in the domain engineering for
each specified relation between single features (e.g require, exclude relation)
the basic development artefacts can be deposit. This preparation has the
advantage that feature dependencies and constraints can be verified by the
deposit specification documents. These documents are stored in the project
database. Any change in these documents is directly observable.

The deposit artefacts advise the engineer if his reached decisions are conform

Domain-Crossing Software Product Lines in Embedded, Automotive Systems 9

Figure 4. Overview of the structure of the CDS-Tool

to the specification documents. Currently this step must be executed by hand;
in the future a constraint checker will automate this step. Beneath the deposit
conditions for feature relations it is possible to supplement feature parameters
with documents (as file references or simple logical terms). All these addi-
tional feature specifications (condition, implementation, description files) help
to ensure traceability in the software development process. Figure 5 shows
the editor to add references to several files in the tool. They help to facilitate
project version management and support product maintainability. To increase
the acceptance of the tool from developers, it is moreover possible to view a
feature model in a graphical tree-view. With all of this, the requirements from
section 3.1 are addressed by the CDS-Tool.

10 Stefan Kubica, Wolfgang Friess, Christian Allmann and Thorsten Koelzow

Fie Viewsr Appication

ot |

g
;
3
i
i
T
L

:
|
|
d

%
|
H
b

pank_blrking e [Gespterpani =] o | wew |

P [erebhambueod cx 2 e | wew |

Figure 5. Treeview and Dialog of the Domain-Engineering-Part of the CDS-Tool

4. CONCLUSION AND OUTLOOK

This paper presented an ongoing research out of the field of adapting soft-
ware product lines to the automotive domain. After an introduction to the
different domains in this area, we showed that a common feature model nota-
tion is the first step to bring different domains together and gave a proposal for
such a notation.

The next step of our work is to complete the tool chain for the whole genera-
tion process. For this, we have solve the problem of composing model fractals
of a model-based application family to different family-members. In the do-
main of standard-software, we have to generate configuration files out of the
feature model to use existing standard-software.

In parallel we will go on with case studies to gain more experience in com-
bining models of different domains. Especially interactions between the two
domains are of special importance to get the biggest benefit of the synergy
effects mentioned in the introduction. The standard-software offers its fea-
tures, modelled in the feature model, to the application. So on the other side,
the application features have to express their requirements to the features of
the standard-software to enable a semi-automatic preselection of standard-
software features. Beside that, there must be a mapping of these requirements
to the features of the standard-software. The concept of such a cross-domain
middleware will be part of our future work.

Domain-Crossing Software Product Lines in Embedded, Automotive Systems 11

REFERENCES

Antkiewicz, Michal and Czarnecki, Krzysztof (2004). FeaturePlugin: Feature Modeling Plug-In
for Eclipse. http://www.swen.uwaterloo.ca/ kczarnec/etx04.pdf.

Buckle, G., Knauber, P, Pohl, K., and Schmied, K. (2004). Software Produkilinien - Methoden,
Einfiihrung und Praxis. dpunkt.verlag GmbH, Heidelberg.

Beuche, Danilo (2003). Composition and Construction of Embedded Software Families. PhD
thesis, Otto-von-Guericke Universitit Magdeburg.

Boellert, K. (2002). Objektorientierte Entwicklung von Software-Produktlinien zur Serienferti-
gung von Saftware-Systemen. Technical University of Illmenau, Hlmenau.

Czarnecki, Krzysztof, Bednasch, Thomas, Unger, Peter, and Eisenecker, Ulrich W. (2002). Gen-
erative Programming for Embedded Software: An Industrial Experience Report. In GPCE,
pages 156-172.

Czamecki, Krzysztof, Helsen, Simon, and Eisenecker, Ulrich W. (2004). Staged Configuration
Using Feature Models. In SPLC, pages 266-283.

Endres, A. and Rombach, D. (2003). A Handbook of Software and System Engineering. Pearson
Addison Wesley, England, Harlow.

Hein, A., Schlick, M., and Vinga-Martins, R. (2000). Applying Feature Models in Industrial
Settings. P. Donohoe, Software Product Lines - Experience and Research Directions, Kluwer
Academic Publishers.

John, I. and Dérr, J. (06/2003). Elicitation of Requirements from User Documentation. Proceed-
ings of REFSQ’03, Klagenfurt.

Kang, Kyo C., Cohen, Sholom G., Hess, James A., Novak, William E., and Peterson, A. Spencer
(1990). Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report,
Carnegie Mellon University, Software Engineering Institute.

Langenwalter, J. and Erkkinen, T. (02/2004). Entwicklung von Embedded Systemen fuer Auto-
mobile. auto & elektronik, Heidelberg.

Northrop, L. (1998). Essentials of successful product line practise. Ground System Architecture
Workshop, California.

OMG (2003). UML 2.0 OCL Specification. http://www.omg.org/docs/ptc/03-10-14.pdf.

Schleuter, W. (01/2002). Herausforderungen der Automobil-Elektronik. Kdln: IKB Un-
ternehmerforum, Kéln.

Streitferdt, Detlef, Riebisch, Matthias, and Philippow, Ilka (2003). Details of Formalized Rela-
tions in Feature Models Using OCL. In ECBS, pages 297-304.

Weiss, D. M. and Lai, C. T. R. (12/1999). Software Product-Line Engineering: A FamilyBased
Software Development Process. Addison-Wesley Pub Co.

