An Infrastructure-Based Approach to Support
Dynamic Networks with Mobile Agents

Arndt Déhler, Christian Erfurth, and Wilhelm Rossak

Computer Science Dept., Friedrich-Schiller-University,
Jena, 07743 Jena, Germany
{arndt.doehler, erfurth, rossak}@informatik.uni—jena.de
http://swt.informatik.uni-jena.de/

Abstract. With the growing size of distributed systems and the higher
number of available resources and services in networks dynamical aspects
become more and more important in systems engineering. We believe
that there is a real need for decentral, self-organizing structures to cope
with the upcoming challenges. In this paper we describe a framework
which provides a self-organizing infrastructure that allows to link other-
wise autonomous elements in a flexible way and adapts dynamically to
changes in the underlying network. This framework is implemented as
an extension of the mobile agent system Tracy, which is also a product
of our university. The Tracy Domain Management module is part of the
framework and provides the basis for segmenting the infrastructure. An-
other module we are going to discuss in this paper facilitates autonomous
and proactive routing of mobile agents. Agents form the application layer
of the system. Routing is triggered by the needs an agent inherits from
its owner and then matched to the resources and services available in
the network in an iterative fashion. We describe concepts, design issues
and first results of our work with Tracy and the use of these additional
Tracy modules.

Keywords: Distributed systems, self-organization, rule-based behavior,
proactive navigation of mobile agents, mobile agent systems.

1 Introduction

In the context of networked environments, mobile agents can be seen as a new
paradigm for the implementation of fully distributed software systems with a
balanced peer-to-peer concept [I]. During the last years at Friedrich-Schiller-
University Jena (FSU), we have developed our own mobile agent system (MAS)
Tracy [2,3]. Tracy is a Java2-based middle-ware that supports the efficient mi-
gration of mobile agents over several protocols and migration strategies. So called
agencies (Tracy agent servers) are the specialized execution environments for mo-
bile agents. In our approach, every Java-enabled device in the Internet can be
such a network node. Currently, we work on additional system components on top
of the basic middle-ware layer to network mobile agencies by a self-organizing

M. Smirnov (Ed.): WAC 2004, LNCS 3457, pp. 1{I2] 2005.
© IFIP International Federation for Information Processing 2005

http://swt.informatik.uni-jena.de/

2 A. Dohler, C. Erfurth, and W. Rossak

mechanism, to improve scalability and flexibility, and to provide an informa-
tion base for mobile agents that supports their pro-activity and adaptability.
Especially interesting is the case where the network provides a dynamical en-
vironment [], e.g. if mobile network nodes and services appear and disappear,
and where agents act as intelligent entities by determining their own path at
run-time dynamically in the continuously changing landscape.

The movement of mobile agents is based on a logical network view, i.e. mo-
bile agents discern agencies only. The cooperation of normally autonomous and
independent agencies is essential to network agencies on such a logical level. The
first part of this paper covers that issue and describes a self-organizing network
of agencies.

The second part of the paper addresses the routing service which improves the
movement of mobile agents in such networks and supports their autonomy. On an
agent’s journey, it visits only those agencies which provide a resource or service of
interest. Furthermore, the agent tries to use a fast path through a network based
on known infrastructure characteristics (as QoS). Finally, an agent optimizes its
transmissions between agencies with the help of several migration strategies
described by Braun [5]. All information necessary for the agent’s navigation in
the network and the related calculations are provided by the routing service
module.

2 Concepts of the Basic Infrastructure

2.1 A Logical Network

A node with an agency is the basic element of our infrastructure. All networked
agencies form a logical or virtual application-level network. Every agency offers
services managed by local stationary agents. Mobile user-task agents (application-
agents) can use these services by local message exchange with the stationary
agents. To use remote services on other agencies, a mobile agent must migrate
to the desired agencies for local communication with the stationary agents. This
approach is typical for a strictly defined MAS and has been described e.g. in
Braun [5].

In this context an autonomous decision of a mobile agent is based on a couple
of basic capabilities each agency must exhibit: Knowledge regarding the existence
of other agencies and theirs offered services is essential, the propagation of this
information through the network is desirable, and the infrastructure must be
enabled to handle network changes.

The problem is, that in the worst case every agency would have to hold
information regarding every other known agency and, thus, a fully intermeshed
virtual network comes into being. Since fully intermeshed networks aren’t a
scalable solution in industrial size networks, we decided to separate the network
into manageable and interrelated chunks.

An Infrastructure-Based Approach to Support Dynamic Networks 3

2.2 Topology — The Domain Concept

The basic idea of our approach is to split the whole MAS network into domains
(see Figlll), which are limited to IP-subnetworks. All agencies within a domain
register at a single agency called domain manager. In our approach all agencies
have basically fully equal rights and basic capabilities since the DomainInfor-
mationAgent, the domain management component of Tracy, is present on each
agency. So we have a peer-to-peer system. By launching an agency as a domain
manager it takes on a specific role and offers the relevant domain management
services. From the network management view this role-based behavior can be
seen as a client-server behavior, where the domain manager plays the role of the

server.
Domain
Master,

P i T Domain
anagerg
Domain
Managep E Q ; Q
Domain Domain
el pry oy
Domain Domain
Node Node

Domain

Domain Domain
Domain Domain
Node Node

Domain

Fig. 1. Domain Concept: A structured network of agencies

The domain manager is responsible to manage all other agencies in a domain
called domain nodes and to hold connections to other domains. Every domain
node has its unique domain manager, and the domain manager knows all domain
nodes that are currently active in its domain. If an agency starts or stops, it has
to register respectively check out with the domain manager node.

The domain manager holds the complete information of its domain nodes and
of itself. It propagates this information to all domain nodes inside its domain,
but not beyond. Thus, all agencies within the domain know each other, and form
again a fully intermeshed network of a limited size. In practical applications we
have learned to expect not more than 60 agencies per domain.

To re-integrate the whole logical agent system network, domains have to
be linked together. For that reason domain managers contact a unique domain
master. The master is a specialized domain manager which manages only other
domain managers and interconnects them with each other. In future, we plan
some more domain masters to prevent the single point of failure problem. On
this level, only summarized information are exchanged.

Since it is possible to launch more than one domain, this approach is capable
of handling very large networks in a piece by piece fashion, while it allows for

4 A. Dohler, C. Erfurth, and W. Rossak

scalability at the same time. Only inside a domain information and resources
are fully intermeshed. In-between domains the mesh is broken. This makes it, of
course, necessary for a mobile agent to move into a domain before it can access
its resources.

2.3 Valency of a Node — Priority Concept

A Tracy domain is a self-organized basic cell of the infrastructure. When a Tracy
agency is launched, it checks the presence of other agencies by sending a UDP-
multicast first. If a domain manager answers, the agency must register with the
domain manager by sending a mobile agent. In the case of absence of a domain
manager the agency becomes domain manager itself. If several agencies were
launched simultaneously or a domain manager breaks down, agencies compete
to become the domain manager according to the first-come-first-serve principle.

To influence the role allocation according to importance of an agency, a pri-
ority value can be assigned to every agency [6]. The priority is modeled as a
byte value and ranges between —128 and +127. It should correspond to the per-
formance, the quality of the network connection, and the reliability of a node.
Currently the priority value has to be fixed before the agency starts. After the
launch it can’t be changed.

With the concept of priorities, the launching process of a domain information
agent changes slightly. When a domain manager receives registration messages
from other nodes, it now compares their priorities with its own value. If its own
priority is lower than one of a new node, that node becomes the new domain
manager.

The drawback of this solution is the fixed assignment of priority values. Fur-
thermore, the programmer has to know the absolute valency of his device or the
valency in ratio to the other agencies before its agency starts. This leads to an
arbitrary or appraised allocation of the priority value.

2.4 Valency of a Node — Dynamical Priority Assignment

Our new approach is, therefore, to dynamically assign proper priority values
during the runtime of an agency. Launching an agency happens as described
before, but after registration with the domain manager respectively become do-
main manager itself an agency performs performance measurements (computing
power, memory size and others) by some sensors. The performance measure-
ments reflect the performance of the node and form an abstract view on the
local capabilities of the system environment of the agency.

The Map Module which will be discussed in section Bl provides informa-
tion on known services and on network connection qualities. Together with the
performance measurement results as an information base (see Fig.) it is now
possible to calculate a proper priority value to support an automated and useful
choice of a domain’s manager.

Performance measurements can be regularly repeated and the time interval
can be dynamically adapted to the current network situation with the help of

An Infrastructure-Based Approach to Support Dynamic Networks 5

small statistics on the last measured values. If there are changes in the network
accessibility (e.g. by a more badly signal-noise-ratio of a 802.11 connection) or
the usage rate of a node (e.g. by a higher utilization by other applications) an
agency will take notice of it and the priority can be changed.

If the transfer rate decreases or the RTT to a node increases, or a node’s
computing power decreases and the memory utilization increases, the node is
less suitable to manage a domain because this leads to additional utilization in
computing power, memory and network load. So the priority of such a node has
to decrease (and vice versa) according to the relative changes of the values.

If a service is launched on a node, it must be checked if it is an administrative
service or an application service. In the first case the priority has to be decreased
because of direct, additional agency utilization. In the second case the service
may be performed by an application outside of the agency. From the performance
perspective this application does not directly increase the load the agency has
to handle. Therefore, the additional utilization of the host platform should be
measured by the sensors. Thus, the start of an application service means mostly
that the host platform is a stable and reliable computer with an excellent network
connection. This more logical hint can’t be measured or performed otherwise but
ought to be observed over time. If the reliability assumption is affirmed, priority
can be increased.

2.5 Dynamical Priority Assignment — Scenario

A typical scenario is shown in Fig. Pl and describes the usefulness of dynamical
priority assignment. On the left side the priorities of the domain nodes are
predefined, static and without any relation to the logical network’s real situation.
From the bottom upwards there are three layers which corresponds to three
logical views. A network quality view comes from the Map Module which is fed
by several network sensors. A view of the logical agency network and the roles of
the known agencies comes from the DomainInformationAgent itself. Several node
performance and utilization sensors feed the DomainInformationAgent directly.
Note, that the sensors are not shown in the Figure. The most abstract logical
view forms the top layer of this Figure: the service view.

After calculating the priority each node sends the value to the domain man-
ager. The most prioritized node becomes the new domain manager, shown on
the right side of the Figure.

2.6 Discussion

The dynamical priority assignment represents an abstract closed control loop.
The priorities are the control variables and the role allocation of the domain
manager is the controlled system. An inherent design problem of closed control
loops is to prevent unstable and instable states, which may caused by too strong
feedbacks of the controlled system or by disturbances. In our case an instable
state means a recurrent shift of the domain manager role. By the role changing
itself, the priority of the new domain manager will decrease due to the utilization

6 A. Dohler, C. Erfurth, and W. Rossak

Application Application Application Application Service
client client client server view
Map
Module
Domain .
manager Domain
manager
Logical
i network
view Domain
@ E > Information
Mobile device i i Agent
bad QoS :
! | Connection
quality
1 1 o
view
= = P M

Wired LAN ~ Wireless w41 AN Wired LAN
good QoS acess point g00d QoS good QoS

Fig. 2. Dynamical Priority Assignment

by its new domain management service. To prevent unstable states, we stabilize
the system by introducing a programmable threshold value that must be reached
by a new domain manager candidate. Currently we program a fixed threshold
value of 20%. Additionally we use small statistics on older priority values to get
a time-dependent change of the priority which stabilize the control loop as well.
A drawback of this solution is the relatively slow change of the domain manager
role in situations with high network dynamics.

3 Proactive Navigation

In modern computer networks services can be regarded as dynamical compo-
nents. To be able to use services, a mobile agent is in need of information about
service location and reachability. To answer this need, we have developed a
framework called ProNav. Its most important feature is to locate services and
information in the network and to offer this type of data to any mobile agent
currently planning its itinerary. This is achieved by integrating the data that
is locally acquired by each agent server into a so-called map that enables each
agent to recognize and analyze its virtual environment. Even more, an agent
is able to adapt to environmental changes without human intervention. These
mechanisms utilize the domain concept, as discussed above, as a basic feature
and extend it with additional functionality.

From an architectural perspective, ProNav extends any MAS by working as
an intermediate layer in-between the actual agent system and the application
layer that is formed by specialized mobile agents and their user and application
interfaces (see Fig. 3.

An Infrastructure-Based Approach to Support Dynamic Networks 7

Application .

Route Planner| | Migration
S . Optimizer
mobile

il

X \\
MAS Tracy @

Java VM

MAS Middleware

T
|
|
|
1
i
|
|
|
|
|
|
|
|
1
|
|
|
|
|
1
|
|
|
|
|
|

. Routing Service

Operating System

Network

Fig. 3. Architectural overview of ProNav and integration as middle-ware

In Figure 3l an architectural overview of the additionally introduced system
components is presented. These components are integrated into the MAS Tracy
using stationary agents. In general, such agents are not able to migrate but offer
local services. Mobile agents are able to use local services by employing agent to
agent communication within the local agency.

ProNav is divided into three major components: the Map Module, the Route
Planner, and the Migration Optimizer. In principle each component may be used
independently by any mobile agent. However, only by integrating their services
a mobile agent will achieve full autonomy and pro-activity for the itinerary
planning task.

The Map Module is used by a mobile agent to locate services and to access
information on network connection qualities. Connection qualities are especially
important for the Route Planner and the Migration Optimizer to achieve op-
timization. The Route Planner calculates a “short” path through the network.
The Migration Optimizer optimizes each single migration included in an agent’s
itinerary from a more technological, in our case Tracy-specific, efficiency per-
spective. This module is mainly designed to reduce network load by selecting
and transmitting only those code and data portions of the agent that are needed
at the upcoming remote agencies. This is, if necessary, done by a concept called
slicing [7]. Other options are to place code in advance in the network, to send
data home to carry less “luggage”, to change the transmission protocol, etc. The
Optimizer is not focus of this paper [§].

3.1 A Logical Network Map

Building on the Domain Service, ProNav collects information to generate a “net-
work map” offering information to mobile agents. To achieve this, we imple-

8 A. Dohler, C. Erfurth, and W. Rossak

mented a Map Module which consists of several network sensors and a map data
structure. In addition to information on application-level services provided by
the agencies, this module collects and distributes network status information.

The logical network of agencies needs to be subdivided using the Domain
Service described above to achieve scalable network maps. Basically, a map of
an agency consists of a partial network graph. The vertices of such a partial
graph are the visible agencies of the surrounding area such as all nodes in the
local domain including the domain manager and the neighbored remote domains
each represented by its domain manager. The edges of the graph represent the
end-to-end view transport layer connections between the vertices. Each edge is
characterized by the “full qualified domain name” of the remote agency and a
couple of network parameters that reflect the current performance of the end-to-
end connection. The Map Module uses network sensors with interfering measure-
ment methods on top of Java to get the characteristics of a connection. There
are sensors to measure availability, latency, transfer rate, and transmission time
of a standard agent.

As an example, we describe the function of the latency sensor which measures
round trip times of a minimal data packet. This means the sensor emulates a
PING over a TCP connection. The sensor opens a connection to a special port
of a remote agency. On this special port the remote sensor listens for mea-
surement requests. After establishing the connection, the sensor starts the time
measurement and sends a small packet. The answer of the remote agency is an
acknowledgment, the measurement stops and the connection is canceled. After
a definable duration a new measurement with the next agency will start.

We have made a set of evaluation measurements to get a feeling of the sensor’s
quality. In Fig. [the measured values of the latency sensor are compared with
values delivered by the PING of the OS in a wireless environment (IEEE 802.11b
WLAN) and an Ethernet environment (IEEE 802.3 10BASE-T 10 mbit/s half
duplex). The values of the sensor correspond to PING. Due to the application
level implementation of sensors the values are a little bit above the PING values.

To flatten peaks measured by sensors, we use forecast modules which generate
next expected values on basis of a small time series of measured values. The value
of the forecast module which has delivered the best forecast in the last run is
entered into the map.

The transfer rate sensor works in almost the same manner. However, for a
measurement larger data packets are needed. To transmit useful data thereby
these packets are used to exchange and propagate gathered map data (service
offers, QoS) between agencies. As a result, every agency has complete information
about connection qualities and service offers within its domain. A Domain Map
is created. The domain manager summarizes its Domain Map information and
propagates this compressed information to other known domains. So within a
domain, every agency has a network map with detailed information about the
local domain and relevant information about known remote domains (via the
domain master). Thus a mobile agent is able to locate services within a remote
domain. To utilize such a service, the agent has to migrate to the domain manager

An Infrastructure-Based Approach to Support Dynamic Networks 9

P R =}
-a
7 51 54 x B
=) g
5} o « * Cx
E 47 Sensor Ping (WLAN) _&-
& X 0S Ping (WLAN) x
£3t]
B
=
gol Sensor Ping (Ethernet) —— |
o OS Ping (Ethernet) +
g1
24 i\e—ef/@\ ¥ -
P
0 | | | | |
0 2 4 6 8 10 12

Network Traffic [Mbit/s]

Fig. 4. Round trip times: Latency sensor vs. OS-PING

of the remote domain, access the local Domain Map, which is different from the
current one, and finally migrate to the actual service location.

3.2 Route Planning

The Route Planner organizes an agent’s trip through the network of agencies.
The route planning process itself is basically the Traveling Salesman Problem
(TSP) [9] which is a NP-complete type of problem. As a consequence, getting
an optimal solution in practical application is ruled out. But there are heuristic
algorithms (such as local search, genetic, simulated annealing, neural network al-
gorithms etc.) that have been applied extensively for solving such problems [I0].
The comparative performance of the algorithms depends on the problem and
the given detailed circumstances.

The calculation of an itinerary is based on the map data. We calculate a kind
of distance matrix simply by using the reciprocal values of measured transfer
rate. This matrix has to be updated at regular time intervals to fit the environ-
ment’s dynamical behavior. Then, a path finder algorithm is applied in order to
get a distance matrix with shortest paths between places (without short cuts).
In some experiments, we figured out that our distance matrix is not symmet-
rically in general. This is caused by oscillating transfer rates values and non
symmetrical connections like DSL. For TSP, there are algorithms for asymmet-
rical (ATSP) [11] and for symmetrical matrices (STSP) [12].

In our case, local optimization algorithms are a good choice. Hence, our route
planning process starts with a nearest neighbor search algorithm to generate an
initial path through the net. This path is input for further optimizations with
an adapted version of the iterated 3-Opt algorithm (I30pt). In Figure [l the
result of the nearest neighbor algorithm is about 36% above optimum (optimum
means minimum in this case) but is calculated within 0.7 ms (Pentium IT 333
with Java). This route planning is done on a generated matrix of the problem

10 A. Dohler, C. Erfurth, and W. Rossak

space tmat (triangulated random matrices) with 100 places [I3]. Such a matrix
is an asymmetrical one where an entry is the shortest path between two places.

40

T T T T
Iterated 3—Opt with Nearest Neighbor start tour ——

[3%)
w
T

Triangulated random matrices with 100 places

% above optimum
—_— — [*) (3] 4953
o w [=) W S
.
L L L L L

W
T
I

(=)

Il Il Il Il Il
0 500 1000 1500 2000 2500 3000

Calculation time [ms]

Fig. 5. Route planning with tmat100

To avoid unnecessary calculation, we compare the so far calculated migration
time with the path improvement during the last steps. If the time benefit of the
last 20 ms calculation is not greater than the path improvement the calculation
stops. Thereby it takes also the calculation power into account.

The result of the calculation is an agent’s initial itinerary. During an agent’s
journey it might be useful, or even necessary, to modify this itinerary (changed
network status, new services, etc.). This can be done by the agent itself without
any human-agent interaction.

3.3 A Sample Scenario

The following scenario describes the application of ProNav in a network of agen-
cies. Thereby a mobile agent visits a set of agencies while migrating through the
network to fulfill its task.

A user (the owner) hands over a task to an agent. Normally, such a task should
not contain information on HOW to fulfill. Hence, the agent has to organize the
journey through the network by itself. Therefore, the agent searches for suitable
services in the map provided by the local agency. This map contains information
on services within the domain and some network characteristics. The search
result is a set of agencies that should be visited. Now the agent may trigger the
Route Planner to use the available map’s information on connection topology
and qualities to identify a possible trip through the network. The result is a first
travel plan — the itinerary. Before the agent begins the trip, it might use the
Migration Optimizer to optimize the trip from an efficiency perspective. Now
the agent “executes the itinerary” and starts the migration. During the trip the
agent visits service points and communicates and cooperates with other agents.

An Infrastructure-Based Approach to Support Dynamic Networks 11

Fig. 6. Proactive navigation of a mobile agent in a dynamical environment

At any point in time, but at least when migrating to further away agencies
(the map’s information is more blurred for further away agencies), the agent
may fine-tune and re-adapt its itinerary. This is achieved by taking advantage of
information now available in different domains. Finally, after its trip, the agent
hands over the results to its principal. This might include a description of the
visited agencies, a kind of travel report.

As indicated, we want to provide an infrastructure that enables agents to be
more autonomous. A user should concentrate on WHAT the agent has to do
and not on HOW.

4 Conclusion

We see mobile agent systems as one of the more promising alternatives to develop
truly distributed systems in large and dynamic networking environments. For a
mobile agent the opportunity for a proactive and autonomous planning of its
itinerary is essential in this context. This feature is offered by ProNav as part
of a generic infrastructure framework. The agent’s programmer and user do no
longer have to plan the itinerary for the agent. The agent is enabled to fulfill
this task itself and independently of its owners. ProNav also provides enough
information and flexibility to abandon the notion of a fixed route through the
network and allows for regular updates and changes in the itinerary during its
execution. This helps to react immediately and in an autonomous fashion to
changes in the environment.

A basic robust infrastructure organization is important for ProNav to func-
tion as described. However, logical or virtual networks exhibit a high level of
internal dynamics: Agencies and services are added, deleted, or modified, con-
nection quality changes over time, etc. Therefore, the Domain Concept was in-
troduced and enhanced with new priority functionalities to better react to the
dynamics of the system and to provide a basis for the ProNav module.

The introduced approaches, the Domain Concept and ProNav, are in general
not limited to MASs. They can be used to enable the self-organization of any

12 A. Dohler, C. Erfurth, and W. Rossak

autonomous distributed system that supports a minimum of communication and
autonomy.

As a next step we plan to model the dynamic behavior of the system formally.
We also plan to use control loop approaches, well known in electrical engineering,
to analyze the effects of dynamical priority assignment. We also look at other
infrastructures for distributed systems to go beyond the current MAS-based
implementation.

References

1. Vigna, G.: Mobile Code Technologies, Paradigms, and Applications. PhD thesis,
Politecnico di Milano (1998)

2. Friedrich-Schiller-Universitat Jena, Software Engineering Group: Tracy — The Mo-
bile Agent System. URL: http://tracy.informatik.uni-jena.de| (2004)

3. Braun, P., Erfurth, C., Rossak, W.: An Introduction to the Tracy Mobile Agent
System. Technical Report Math/Inf/00/24, Friedrich-Schiller-Universitiat Jena,
Institut fiir Informatik (2000)

4. Erfurth, C., Rossak, W.: Characterization and Management of Dynamical Be-
haviour in a System With Mobile Agents. In Unger, H., Bohme, T., Mikler, A.,
eds.: Innovative Internet Computing System - Second International Workshop,
IICS 2002, Kithlungsborn (Germany), June 2002. Volume 2346 of Lecture Notes
in Computer Science., Kithlungsborn (Germany), Springer Verlag (2002) 109-119

5. Braun, P.: The Migration Process of Mobile Agents - Implementation, Classifica-
tion, and Optimization. PhD thesis, Friedrich-Schiller-Universitat Jena, Institut
fiir Informatik (2003)

6. Braun, P., Eismann, J., Rossak, W.: A Multi-Agent Approach To Manage a
Network of Mobile Agent Servers. Technical Report 12/01, Friedrich-Schiller-
Universitat Jena, Institut fiir Informatik (2001)

7. Fensch, C.: Class Splitting as a Method to Reduce Network Traffic in a Mobile
Agent System. Master’s thesis, Friedrich-Schiller-Universitdt Jena, Institut fir
Informatik (2001)

8. Schaaf, M.: Entwicklung und Implementierung einer Komponente zur Mi-
grationsoptimierung fiir Mobile Agenten. Master’s thesis, Friedrich-Schiller-
Universitat Jena, Institut fiir Informatik (2003)

9. Lin, S.: Computer Solutions of the Traveling Salesman Problem. Bell System
Technical Journal 44 (1965) 2245-2269

10. Johnson, D.S.; McGeoch, L.A.: The Traveling Salesman Problem: A Case Study
in Local Optimization. In E.H.L.Aarts, J.K.Lenstra, eds.: Local Search in Combi-
natorical Optimization. John Wiley and Sons, Ltd. (1997) 215-310

11. Johnson, D.S.; Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovitch, A.:
Experimental analysis of heuristics for the atsp. [14] 445-487

12. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the stsp.
[14] 369-444

13. Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The Asymmetric Traveling
Salesman Problem: Algorithms, Instance Generators, and Tests. In: Proceedings
of ALENEX. (2001)

14. Gutin, G., Punnen, A.P., eds.: The Traveling Salesman Problem and its Variations.
Kluwer Academic Publishers (2002)

http://tracy.informatik.uni-jena.de

	Introduction
	Concepts of the Basic Infrastructure
	A Logical Network
	Topology -- The Domain Concept
	Valency of a Node -- Priority Concept
	Valency of a Node -- Dynamical Priority Assignment
	Dynamical Priority Assignment -- Scenario
	Discussion

	Proactive Navigation
	A Logical Network Map
	Route Planning
	A Sample Scenario

	Conclusion
	References

