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Abstract. We introduce a new decision procedure for Equality Logic.
The procedure improves on Bryant and Velev’s SPARSE method [4] from
CAV’00, in which each equality predicate is encoded with a Boolean vari-
able, and then a set of transitivity constraints are added to compensate
for the loss of transitivity of equality. We suggest the Reduced Tran-
sitivity Constraints (RTC) algorithm, that unlike the SPARSE method,
considers the polarity of each equality predicate, i.e. whether it is an
equality or disequality when the given equality formula ¢ is in Nega-
tion Normal Form (NNF). Given this information, we build the Equality
Graph corresponding to ¢ with two types of edges, one for each po-
larity. We then define the notion of Contradictory Cycles to be cycles
in that graph that the variables corresponding to their edges cannot be
simultaneously satisfied due to transitivity of equality. We prove that it
is sufficient to add transitivity constraints that only constrain Contradic-
tory Cycles, which results in only a small subset of the constraints added
by the SPARSE method. The formulas we generate are smaller and define
a larger solution set, hence are expected to be easier to solve, as indeed
our experiments show. Our new decision procedure is now implemented
in the UCLID verification system.

1 Introduction

Equality Logic with Uninterpreted Functions is a major decidable theory used
in verification of infinite-state systems. Well-formed expressions in this logic are
Boolean combinations of Equality predicates, where the equalities are defined be-
tween term-variables (variables with some infinite domain) and Uninterpreted
Functions. The Uninterpreted Functions can be reduced to equalities via either
Ackermann’s [1] or Bryant et al.’s reduction [2] (from now on we will say Bryant’s
reduction), hence the underling theory that is left to solve is that of Equality Logic.

There are many examples of using Equality Logic and Uninterpreted Func-
tions in the literature. Proving equivalence of circuits after custom-design or
retiming (a process in which the layout of the circuit is changed in order to im-
prove computation speed) is a prominent example [3,6]. Translation Validation
[15], a process in which the input and output of a compiler are proven to be se-
mantically equivalent is another example of using this logic. Almost all theorem
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provers that we are aware of support this logic, either explicitly or as part of
their support of more expressive logics.

Related work. The importance of this logic led to several suggestions for de-
cision procedures in the last few years [17,9,13,2,4,16], almost all of which are
surveyed in detail in the full version of this article [11]. Due to space limitations
here we will only mention the most relevant prior work by Bryant and Velev [4],
called the SPARSE method. In the SPARSE method, each equality predicate is
replaced with a new Boolean variable, which results in a purely propositional
formula that we denote by B (B for Boolean). Transitivity constraints over these
Boolean variables are then conjoined with B, to recover the transitivity of equal-
ity that is lost in the Boolean encoding. So, for example, given the equality
formula: v; = vy A vy = v3 A =(v] = v3) the SPARSE method reduces it to the
Boolean formula B = e; 2 A ez 3 A me; 3 and conjoins B with the transitivity
constraints €1,2 A €23 — €1,3,€1,2 A €1,3 — €23 and €1,3 A €23 — €12. The
conjoined formula is satisfiable if and only if the original formula is satisfiable.

In order to decide which constraints are needed, following the SPARSE method
one needs to build a graph in which each equality predicate is an edge and
each variable is a vertex. With a simple analysis of this graph the necessary
constraints are derived. This is where our method is different from the SPARSE
method: unlike the graph considered by the SPARSE method, the graph we build
has two kinds of edges: one for equalities and one for disequalities, assuming the
Equality formula is given to us in Negation Normal Form (NNF) . Given this
extra information, about the polarity of each equality predicate, we are able to
find a small subset of the constraints that are generated by the SPARSE method,
that are still sufficient to preserve correctness. This results in a much simpler
formula that is easier for SAT to solve, at least in theory.

We base our procedure on a theorem that we state and prove in Section
4. The theorem refers to what we call Simple Contradictory Cycles, which are
simple cycles that have exactly one disequality edge. In such cycles, the theorem
claims, we need to prevent an assignment that assigns FALSE to the disequality
edge and TRUE to the rest. And, most importantly, these are the only kind of
constraints necessary. The proof of this theorem relies on a certain property of
NNF formulas called monotonicity with respect to satisfiability that we present in
Section 3. In Section 5 we show an algorithm that computes in polynomial time
a set of constraints that satisfy the requirements of our theorem. In Section 6 we
present experimental results. Our new procedure is now embedded in the UCLID
[5] verification tool and is hence available for usage. In Section 7 we conclude
the paper and present directions for future research.

2 Reducing Equality Logic to Propositional Logic

We consider the problem of deciding whether an Equality Logic formula ¢® is
satisfiable. The following framework is used by both [4] and the current work to
reduce this decision problem to the problem of deciding a propositional formula:
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1. Let E denote the set of equality predicates appearing in ¢*. Derive a Boolean
formula B by replacing each equality predicate (v; = v;) € E with a new
Boolean variable e; ;. Encode disequality predicates with negations, e.g.,
encode ¢ # j with —e; ;.

2. Recover the lost transitivity of equality by conjoining B with explicit tran-
sitiity constraints jointly denoted by 7 (7 for Transitivity). 7 is a formula
over B’s variables and, possibly, auxiliary variables.

The Boolean formula B A 7 should be satisfiable if and only if ¢® is satisfiable.
Further, we should be able to construct a satisfying assignment to ¢® from
an assignment to the e; ; variables. A straightforward method to build 7 in a
way that will satisfy these requirements is to add a constraint for every cyclic
comparison between variables, which disallow TRUE assignment to exactly k& — 1
predicates in a k-long simple cycle.

In [4] three different methods to build 7 are suggested, all of which are better
than this straightforward approach, and are described in some detail also in [11].
We need to define Non-Polar Equality Graph in order to explain the SPARSE
method, which is both theoretically and empirically the best of the three:

Definition 1 (Non-polar Equality Graph). Given an Equality Logic for-
mula ¢, the Non-Polar Equality Graph corresponding to ¢ is an undirected
graph (V, E) where each node v € V' corresponds to a variable in ¢®, and each
edge e € E corresponds to an equality or disequality predicate in .

The graph is called non-polar to distinguish it from the graph that we will use
later, in which there is a distinction between edges that represent equalities and
those that represent disequalities. We will simply say Equality Graph from now
on in both cases, where the meaning is clear from the context.

The SPARSE method is based on a theorem, proven in [4], stating that it
is sufficient to add transitivity constraints only to chord-free cycles (a chord
is an edge between two non-adjacent nodes). A chordal graph, also known as
triangulated graph, is a graph in which every cycle of size four or more has a
chord. In such a graph only triangles are chord-free cycles. Every graph can
be made chordal by adding auxiliary edges in linear time. The SPARSE method
begins by making the graph chordal, while referring to each added edge as a
new auxiliary e; ; variable. It then adds three transitivity constraints for each
triangle. We will denote the transitivity constraints generated by the SPARSE
method with 775,

Ezample 1. Figure 1 presents an Equality Graph before and after making it
chordal. The added edge ey ¢ corresponds to a new auxiliary variable eg ¢ that
appears in 7° but not in B. After making the graph chordal, it contains 4
triangles and hence there are 12 constraints in 7°. For example, for the triangle
(v1,v2,v3) the constraints are: e; o Aea 3 — €1,3,€1.3Ae23 — €12 and eg 2Aeq 3 —
€2,3.

O
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Fig. 1. A non-chordal Equality Graph (left) and its chordal version

We will show an algorithm for constructing a Boolean formula 7 # (the super-
script R is for Reduced) which is, similarly to 7, a conjunction of transitivity
constraints, but contains only a subset of the constraints in 7. 7% is not logi-
cally equivalent to 7 it has a larger solution set. Yet it maintains the property
that B A TT is satisfiable if and only if ¢® is satisfiable, as we will later prove.
This means that 7% not only has a subset of the constraints of 7%, but it also
defines a less constrained search space (has more solutions than 7). Together
these two properties are likely to make the SAT instance easier to solve. Since
the complexity of both our algorithm and the SPARSE method are similar, we
can claim dominance over the SPARSE method, although practically, due to the
unpredictability of SAT, such claims are never 100% true.

3 Basic Definitions

We will assume that our Equality formula ¢® is given in Negation Normal Form
(NNF), which means that negations are only applied to atoms, or equality pred-
icates in our case. Every formula can be transformed to this form in linear time
in the size of the formula. Given an NNF formula, we denote by F_ the set of
(unnegated) equality predicates, and by E. the set of disequalities (negated)
equality predicates. Our decision procedure, as the SPARSE method, relies on
graph-theoretic concepts. We will also use Equality Graphs, but redefine them
so they refer to polarity information. Specifically, each of the sets E_, E cor-
responds in this graph to a different set of edges. We overload these notations
so they refer both to the set of predicates and to the edges that represent them
in the Equality Graph.

Definition 2 (Equality Graph). Given an Equality Logic formula ¢, the
Equality Graph corresponding to ¢®, denoted by G*(*), is an undirected graph
(V. E=, Ex) where each node v € V' corresponds to a variable in ¢”, and each
edge in E_ and Ex corresponds to an equality or disequality from the respective
equality predicates sets E— and E.. By convention E— edges are dashed and E
edges are solid.

As before, every edge in the Equality Graph corresponds to a variable e; ; € B.
It follows that when we refer to an assignment of an edge, we actually refer to
an assignment to its corresponding variable. Also, we will simply write G® to
denote an Equality Graph if we do not refer to a specific formula.
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Ezample 2. In Figure 2 we show an Equality Graph G®(¢®) corresponding to
the non-polar version shown in Figure 1, assuming some Equality Formula ¢®
for which E_ : {(vs = vg), (vs = v7), (v7 = vg), (v1 = v2), (V2 = v3), (V3 = v4)}

and E : {(vo # vs), (vo # v1), (v1 # va), (v1 # v3)}. O
b
o o
Vs Vo

Fig. 2. The Equality Graph G® (") corresponding to the non-polar version of the same
graph shown in Figure 1

We now define two types of paths in Equality Graphs.

Definition 3 (Equality Path). An Equality Path in an Equality Graph G*
is a path made of E— (dashed) edges. We denote by x =* y the fact that x has
an Equality Path to y in G*, where z,y € V.

Definition 4 (Disequality Path). A Disequality Path in an Equality Graph
G” is a path made of E— (dashed) edges and a single E (solid) edge. We denote
by x #£* y the fact that x has a Disequality Path to y in G”, where z,y € V.

Similarly, we will use a Simple Fquality Path and a Simple Disequality Path
when the path is required to be loop-free. In Figure 2 it holds, for example,
that vy =* vg due to the simple path v, v7, ve; vo #* vg due to the simple path
Vg, Vs, Vg; and vy #£* vg due to the simple path vz, v, vs, vg.

Intuitively, Equality Path between two variables implies that it might be
required to assign both variables an equal value in order to satisfy the formula. A
Disequality Path between two variables implies the opposite: it might be required
to assign different values to these variables in order to satisfy the formula. For
this reason the case in which both x =* y and 2 #* y hold in G®(¢"), requires
special attention. We say that the graph, in this case, contains a Contradictory
Cycle.

Definition 5 (Contradictory Cycle). A Contradictory Cycle in an Equality
Graph is a cycle with exactly one disequality (solid) edge.

Several characteristics of Contradictory Cycles are: 1) For every pair of nodes
x,y in a Contradictory Cycle, it holds that x =* y and x #* y. 2) For every
Contradictory Cycle C, either C'is simple or a subset of its edges forms a Simple
Contradictory Cycle. We will therefore refer only to simple Contradictory Cycles
from now on. 3) It is impossible to satisfy simultaneously all the predicates that
correspond to edges of a Contradictory Cycle. Further, this is the only type of
subgraph with this property.



312 O. Meir and O. Strichman

The reason that we need polarity information is that it allows us to use the
following property of NNF formulas.

Theorem 1 (Monotonicity of NNF). Let ¢ be an NNF formula and o be an
assignment such that a |= ¢. Let the positive set S of « be the positive literals in
¢ assigned TRUE and the negative literals in ¢ assigned FALSE. Every assignment
o with a positive set S’ such that S C S’ satisfies ¢ as well.

The same theorem was used, for example, in [14]. As an aside, when this theorem
is applied to CNF formulas, which are a special case of NNF, it is exactly the
same as the pure literal rule.

4 Main Theorem

The key idea that is formulated by Theorem 2 below and later exploited by our
algorithm can first be demonstrated by a simple example.

Ezample 3. For the Equality Graph below (left), the SPARSE method generates
7% with three transitivity constrains (recall that it generates three constraints
for each triangle in the graph, regardless of the edges’ polarity). We claim, how-
ever, that the single transitivity constraint 7% = (eg 2 Ae1 2 — eo,1) is sufficient.

Va
a. OéR OZS
€o,1| TRUE TRUE
€1.2| TRUE TRUE
¢e— @ €p,2|FALSE TRUE
Vg vy

To justify this claim, it is sufficient to show that for every assignment o’ that
satisfies B A T! there exists an assignment o that satisfies B A 7. Since this,
in turn, implies that ¢® is satisfiable as well, we get that " is satisfiable if and
only if B A T! is satisfiable. Note that the ‘only if’ direction is implied by the
fact that we use a subset of the constraints defined by 7.

We are able to construct such an assignment a® because of the monotonicity
of NNF (recall that the polarity of the edges in the Equality Graph are according
to their polarity in the NNF representation of ¢®). There are only two satisfying
assignments to 7% that do not satisfy 7. One of these assignments is shown
in the o column in the table to the right of the drawing. The second column
shows a corresponding assignment o, which clearly satisfies 7°. But we still
need to prove that every formula B that corresponds to the above graph, is still
satisfied by o if it was satisfied by aft. For example, for B = (=eg 1 Vel 2Veo),
both aff | BATE and o® |= B A T? hold. Intuitively, this is guaranteed to
be true because a® is derived from off by flipping an assignment of a positive
(un-negated) predicate (ep2) from FALSE to TRUE. We can equivalently flip an
assignment to a negated predicate (eg 1 in this case) from TRUE to FALSE.
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A formalization of this argument requires a reference to the monotonicity
of NNF (Theorem 1): Let S and S’ denote the positive sets of af and o
respectively. Then in this case S = {e1 2} and S" = {e12,€0,2}. Thus S C S’ and
hence, according to Theorem 1, aff = B — o = B. O

We need several definitions in order to generalize this example into a theorem.

Definition 6 (A constrained Contradictory Cycle). Let C =
(es,€1,...,e,) be a Contradictory Cycle where es is the solid edge. Let 1
be a formula over the Boolean variables in B that encodes the edges of C. C' is
said to be constrained in v if the assignment (es,e1,...,en) — (F,T,...,T)
contradicts 1.

Recall that we denote by 7 the formula that imposes transitivity constraints in
the SPARSE method, as defined in [4] and described in Section 2. Further, recall
that the SPARSE method works with chordal graphs, and therefore all constraints
are over triangles. Our method also makes the graph chordal, and the constraints
that we generate are also over triangles, although we will not use this fact in
Theorem 2, in order to make it more general.

Definition 7 (A Reduced Transitivity Constraints function 7). A Re-
duced Transitivity Constraints (RTC) function T is a conjunction of transitiv-
ity constraints that maintains these two requirements:

R1 For every assignment o, o = T% — o = TT (the solution set of T
includes all the solutions to T%).
R2 TT constrains all the simple Contradictory Cycles in the Equality Graph G*.

R1 implies that 77 is less constrained than 7. Consider, for example, a chordal
Equality graph in which all edges are solid (disequalities): in such a graph there
are no Contradictory Cycles and hence no constraints are required. In this case
T%® = TRUE, while 7° includes three transitivity constraints for each triangle.

Theorem 2 (Main). An Equality formula ©* is satisfiable if and only if BATE
is satisfiable.

Due to R1, the proof of the ‘only if” direction (=) is trivial. To prove the other
direction we show in [11] an algorithm for reconstructing an assignment ¥ that
satisfies 7° from a given assignment o that only satisfies 7%,

5 The Reduced Transitivity Constraints Algorithm

We now introduce an algorithm that generates a formula 7, which satisfies the
two requirements R1 and R2 that were introduced in the previous section.

The RTC algorithm processes Biconnected Components (BCC) [7] in the given
Equality Graph.

Definition 8 (Maximal Biconnected Component). A Biconnected Com-
ponent of an undirected graph is a mazimal set of edges such that any two edges
in the set lie on a common simple cycle.
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We can focus on BCCs because we only need to constrain cycles, and in particular
Contradictory Cycles. Each BCC that we consider contains a solid edge e, and
all the Contradictory Cycles that it is part of. In line 5 of RTC we make the BCC
chordal. Since making the graph chordal involves adding edges, prior to this step,
in line 4, we add solid edges from G® that can serve as chords. After the graph
is chordal we call GENERATE-CONSTRAINTS, which generates and adds to some
local cache all the necessary constraints for constraining all the Contradictory
Cycles in this BCC with respect to es. When GENERATE-CONSTRAINTS returns,
all the constraints that are in the local cache are added to some global cache.

The conjunction of the constraints in the global cache is what RTC returns as
TE.

RTC (Equality Graph G*(V, E—, E))

1: global-cache = ()

2: for all e; € £+ do

3: Find B(es) = maximal BCC in G® made of e; and E= edges;

4: Add to B(es) all edges from E_ that connect vertices in B(es);

5 Make the graph B(es) chordal; © (The chords can be either solid or dashed)
6: GENERATE-CONSTRAINTS (B(es), es);

T global-cache = global-cache U local-cache;
8: TR = conjunction of all constraints in the global cache;
9: return 77;

GENERATE-CONSTRAINTS (Equality Graph G®(V, E=, E), edge e € G*®)
1: for all triangles (e1, e2,e) € G® such that

— e1 A es — e is not in the local cache
- source(e) # e1 A source(e) # ez

do

2: source(e1) = source(ez) = e;

3: Add e; A es — e to the local cache;

4: GENERATE-CONSTRAINTS (G*, e1); > expand e
5: GENERATE-CONSTRAINTS (G®, e2); > expand e

GENERATE-CONSTRAINTS iterates over all triangles that include the solid
edge e, € E with which it is called first. It then attempts to implicitly expand
each such triangle to larger cycles that include e;. This expansion is done in the
recursive calls of GENERATE-CONSTRAINTS. Given the edge e, which is part of a
cycle, it tries to make the cycle larger by replacing e with two edges that ‘lean’
on this edge, i.e. two edges e;, eo that together with e form a triangle. This is
why we refer to this operation as expansion. There has to be an indication in
which ‘direction” we can expand the cycle, because otherwise when considering
e.g. e;, we would replace it with e and e, and enter an infinite loop. For this
reason we maintain the source of each edge. The source of an edge is the edge
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that it replaces. In the example above when replacing e with ey, ea, source(e;) =
source(ez) = e. So in the next recursive call, where e; is the considered edge,
due to the second condition in line 1 we do not expand it through the triangle
(e,e1,e2).

Each time we replace the given edge e by two other edges e1, e2, we also add
a transitivity constraint e; A ea — e to the local cache. Informally, one may
see this constraint as enforcing the transitivity of the expanded cycle, by using
the transitivity enforcement of the smaller cycle. In other words, this constraint
guarantees that if the expanded cycle violates transitivity, then so does the
smaller one. Repeating this argument all the way down to triangles, gives us
an inductive proof that transitivity is enforced for all cycles. A formal proof of
correctness of RTC appears in [11].

Ezample 4. Figure 3 (left) shows the result of the iterative application of line 3
in RTC for each solid edge in the graph shown in Figure 2. By definition, after this
step each BCC contains exactly one solid edge. Figure 3 (right) demonstrates
the application of lines 4 and 5 in RTC: in line 4 we add e; 3, and in line 5 we add
€o,6, the only additional chords necessary in order to make all BCCs chordal.
The progress of GENERATE-CONSTRAINTS for this example is shown in Table 1.

Table 1. The progress of GENERATE-CONSTRAINTS when given the graph of Figure
3 (not including steps where the function returns because the triangle contains the
source of the expanded edge). In line 5 the constraint is already in the local cache, and
hence not added again

Tteration|Component |edge to| source Triangle added
expand |of edge constraint
1 a €05 - |(eo,s,es,6,€0,6)|€0,6 N €56 — €05
2 a €0,6 eo5 |(eo6,€6,7,€0,7)|€6,7 N\ €or — €06
3 b €14 - |(e1,a,e3,4,€13)|€1,3 Nesa — €14
4 b e1,3 era |(e13,€23,€e1,2)|e12 Aeas — ers
5 c €1,3 - |(e1,3,€e2,3,e1,2)|e1,2 Neas — €13

Fig. 3. The BCCs found in line 3 (left) and after lines 4 and 5 in RTC (right)
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5.1 Complexity of RTC and Improvements

Lines 3-5 in RTC can all be done in time linear in the size of the graph (including
the process of finding BCCs [7]). The number of iterations of the main loop in RTC
is bounded by the number of solid edges in the graph. GENERATE-CONSTRAINTS,
in each iteration of its main loop, either adds a new constraint or moves to
the next iteration without further recursive calls. Since the number of possible
constraints is bounded by three times the number of triangles in the graph, the
number of recursive calls in GENERATE-CONSTRAINTS is bounded accordingly.

Improvements: To reduce complexity, we only use a global cache, which re-
duces the number of added constraints and the overall complexity, since we never
generate the same constraint twice and stop the recursion calls earlier if we en-
counter a constraint that was generated in a previous BCC. The correctness
proof for this improvement is rather complicated and appears in the full version
of this paper [11].

We are also currently examining an algorithm that is more strict than RTC in
adding constraints: RTC constrains all contradictory cycles, not only the simple
ones, which we know is sufficient according to Theorem 2. This algorithm checks
whether the cycle that is currently expanded is simple or not. This leads to
certain complications that require to continue exploring the graph even when
encountering a constraint that is already in the cache. This, in turn, can lead to
a worst-case exponential time algorithm, that indeed removes many redundant
constraints but is rarely better than RTC according to our experiments, when
considering the total solving time. Whether there exists an equivalent algorithm
that works in polynomial time is an open question.

6 Experimental Results

ucLID benchmarks. Our decision procedure is now integrated in the UCLID
[5] verification system. UCLID is a tool for analyzing the correctness of models
of hardware and software systems. It can be used to model and verify infinite-
state systems with variables of integer, Boolean, function, and array types. The
applications of UCLID explored to date include microprocessor design verifica-
tion, analyzing software for security exploits, verification of a compiler through
Translation Validation and verifying distributed algorithms.

UCLID reports to RTC the edges of the Equality Graph corresponding to the
verified formula including their polarity, and RTC returns a list of transitivity
constraints. The Boolean encoding (the generation of B), the elimination of Un-
interpreted Functions, various simplifications and the application of the Positive
Equality algorithm [2], are all applied by UCLID as before. The comparison to
the SPARSE method of [4], which is also implemented in this tool and fed exactly
the same formula, is therefore fair.

We used all the relevant UCLID benchmarks that we are aware of (all of which
happen to be unsatisfiable). We compared RTC and the SPARSE method using
the two different reduction methods of Uninterpreted Functions: Ackermann’s
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reduction [1] and Bryant’s reduction [2]. This might cause a bias in our results
not in our favor: the reduction of Uninterpreted Functions to Equality Logic
results in Equality Graphs with specific characteristics. In [11], we explain the
difference between the two reductions and why this influences our results. Here
we will only say that when Bryant’s reduction is used, all edges corresponding
to comparisons between arguments of functions are ‘double’, meaning that they
are both solid and dashed. In such a case RTC has no advantage at all, since
every cycle is a contradictory cycle. This does not mean that when using this
reduction method RTC is useless: recall that we claim for theoretical dominance
over the SPARSE method. It only means that the advantage of RTC is going to
be visible if there is a large enough portion of the Equality Graph that is not
related to the reduction of Uninterpreted Functions, rather to the formula itself.

Table 2. RTC vs. the SPARSE method using Bryant’s reduction with positive equalities
(top) and Ackermann’s reduction (bottom). Each benchmark set corresponds to a
number of benchmark files in the same family. The column ‘uclid’ refers to the total
running time of the decision procedure without the SAT solving time

Benchmark|| # SPARSE method RTC
set files|Constraints| uclid [zChaff| total ||Constraints| uclid |zChaff| total
TV 9 16719 148.48 | 1.08 [149.56 16083 151.1 | 0.96 | 152.0
Cache.inv || 4 3669 47.28 | 40.78 | 88.06 3667 54.26 | 38.62 | 92.8
Dlxlc 3 7143 18.34 2.9 |[21.24 7143 20.04 | 2.73 | 22.7
Elf 3 4074 27.18 | 2.08 | 29.26 4074 28.81 | 1.83 | 30.6
000 6 7059 26.85 | 46.42 | 73.27 7059 29.78 | 45.08 | 74.8
Pipeline 1 6 0.06 |37.29 | 37.35 6 0.08 |36.91 | 36.99

Total 26 38670 268.19 [130.55] 398.7 38032 284.07 [126.13] 410.2

TV 9 103158 |1467.76| 5.43 [1473.2 9946 1385.61| 0.69 [1386.3
Cache.inv || 4 5970 48.06 |42.39 | 90.45 5398 54.65 | 44.14 | 98.7
Dixlc 3 46473 368.12 | 11.45 |379.57 11445 350.48 | 8.88 [359.36
Elf 5 43374 473.32 | 28.99 [502.31 24033 467.95 | 28.18 | 496.1
000 6 20205 78.27 |29.08 |107.35 16068 79.5 | 24.35|103.8
Pipeline 1 96 0.17 | 46.57 | 46.74 24 0.18 |46.64 | 46.8
q2 1 3531 30.32 | 46.33 | 76.65 855 32.19 | 35.57 | 67.7

Total 29 | 222807 |2466.02|210.24|2676.2 67769 |2370.56|188.45|2559.0

The SAT-solver we used for both RTC and the SPARSE method was ZCHAFF
(2004 edition) [12]. For each benchmark we show the number of generated tran-
sitivity constraints, the time it took ZCHAFF to solve the SAT formula, the run
time of UCLID, which includes RT C but not ZCHAFF time and the total run time.
Table 2 (top) compares the two algorithms, when UCLID uses Bryant’s reduction
with Positive Equality. Indeed, as expected, in this setting the advantage of RTC
is hardly visible: the number of constraints is a little smaller comparing to what is
generated by the SPARSE method (while the time that takes RTC and the SPARSE
method to generate the transitivity constraints is almost identical, with a small
advantage to the SPARSE method), and correspondingly the runtime of ZCHAFF
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is smaller, although not significantly. We once again emphasize that we consider
this as an artifact of the specific benchmarks we found; almost all equalities in
them are associated with the reduction of the Uninterpreted Functions. As fu-
ture research we plan to integrate in our implementation the method of Rodeh
et al. [16] which, while using Bryant’s reduction, not only produces drastically
smaller Equality Graphs, but also does not necessarily require a double edge for
each comparison of function instances. This is expected to mostly neutralize this
side effect of Bryant’s reduction. Table 2 (bottom) compares the two algorithms
when Ackermann’s reduction is used. Here the advantage of RTC is seen clearly,
both in the number of constraints and the overall solving times. In particular,
note the reduction from a total of 222,807 constraints to 67,769 constraints.

Random formulas. In another set of experiments we generated hundreds of
random formulas and respective Equality Graphs, while keeping the ratio of ver-
tices to edges similar to what we found in the real benchmarks (about 1 vertex to
4 edges). Each benchmark set was built as follows. Given n vertices, we randomly
generated 16 different graphs with 4n random edges, and the polarity of each
edge was chosen randomly according to a predefined ratio p. We then generated
a random CNF formula B with 16n clauses (each clause with up to 4 literals)
in which each literal corresponds to one of the edges. Finally, we generated two
formulas, 7° and T corresponding to the transitivity constraints generated by
the SPARSE and RTC methods respectively, and sent the concatenation of B with
each of these formulas to three different SAT solvers, HaifaSat [8], Siege_v4 [10]
and zChaff 2004.

In the results depicted in Table 3 we chose n = 200 (in the UCLID benchmarks
n was typically a little lower than that). Each set of experiments (corresponding
to one cell in the table) corresponds to the average results over the 16 graphs, and
a different ratio p, starting from 1 solid to 10 dashed, and ending with 10 solids
to 1 dashed. We set the timeout to 600 seconds and added this number in case
the solver timed-out. We occasionally let SIEGE run without a time limit (with
both RTC and SPARSE), just in order to get some information about instances
that none of solvers could solve in the given limit. All instances were satisfiable
(in the low ratio of solid to dashed, namely 1:2 and 1:5 we could not solve any of
the instances with any of the solvers even after several hours). The conclusions
from the table are that (1) in all tested ratios RTC generates less constraints
than SPARSE. As expected, this is more apparent when the ratio is further than
1:1; there are very few contradictory cycles in this kind of graphs. (2) with all
three SAT solvers it took longer to solve B A 79 than to solve B A TFE.

While it is quite intuitive why the instances should be easier to solve when
the formula is satisfiable — the solutions space RTC defines is much larger, it is
less clear when the formula is unsatisfiable. In fact, SAT solvers are frequently
faster when the input formula contains extra information that further prunes the
search space. Nevertheless, the experiments above on UCLID benchmarks (which,
recall, are all unsatisfiable) and additional results on random formulas (see [11])
show that RTC is still better in unsatisfiable instances. We speculate that the
reason for this is the following. Let T represent all transitivity constraints that
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Table 3. RTC vs. the SPARSE method in random satisfiable formulas listed by the ratio
of solid to dashed edges

ratio constraints zChaff HaifaSat siege_v4
solid:dashed| Sparse | RTC |[Sparse| RT'C ||Sparse| RTC ||Sparse| RTC
1:10 373068.8|181707.8|| 581.1 |285.6|| 549.2 |257.4|(1321.6|506.4
1:5 373068.8|255366.6{| 600.0 {600.0{| 600.0 |600.0|| 600.0 [600.0
1:2 373068.8|308346.5|| 600.0 [600.0{| 600.0 [600.0(| 600.0 |600.0

1:1 373068.8|257852.6/| 5.2 | 0.4 59 | 3.0 1.2 | 0.1

2:1 373068.8|123623.4|| 0.1 |0.01 0.6 [0.22 0.01 [0.01

5:1 373068.8| 493.9 0.1 |0.01 0.6 [0.01 0.01 [0.01
10:1 373068.8| 10.3 0.1 |{0.01| 0.6 |0.01|f 0.01 [0.01
average |373068.8/161057.3|| 255.2 {212.3|| 251.0 |208.7|| 360.4 [243.8

are in 7° but not in 7. Assuming B is satisfiable, it can be proven that B AT
is satisfiable as well [11]. This means that any proof of unsatisfiability must rely
on clauses from 7. Apparently in practice it is rare that the SAT solver finds
shortcuts through the T' clauses.

7 Conclusions and Directions for Future Research

We presented a new decision procedure for Equality Logic, which builds upon
and improves previous work by Bryant and Velev in [4, 3]. The new procedure
generates a set of transitivity constraints that is, at least in theory, easier to
solve. The experiments we conducted show that in most cases it is better in
practice as well, and in any case does not make it worse, at least not in more
than a few seconds. RTC does not make full use of Theorem 2, as it constrains
all Contradictory Cycles rather than only the simple ones. We have another
version of the algorithm, not presented in the article due to lack of space, that
handles this problem, but with an exponential price. As stated before, the ques-
tion whether there exists a polynomial algorithm that does the same or it is
inherently a hard problem, is left open.

Acknowledgement. We are exceptionally grateful to Sanjit Seshia for the
many hours he invested in hooking our procedure to UCLID, and for numerous
insightful conversations we had on this and related topics.
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