
Building Your Own Software Model Checker
Using the Bogor Extensible Model Checking

Framework�

Matthew B. Dwyer1, John Hatcliff2, Matthew Hoosier2, and Robby2

1 University of Nebraska,
Lincoln, NE 68588, USA

dwyer@cse.unl.edu
2 Kansas State University,
Manhattan, KS 66506, USA

{hatcliff, matt, robby}@cis.ksu.edu

Abstract. Model checking has proven to be an effective technology for
verification and debugging in hardware and more recently in software
domains. We believe that recent trends in both the requirements for soft-
ware systems and the processes by which systems are developed suggest
that domain-specific model checking engines may be more effective than
general purpose model checking tools. To overcome limitations of existing
tools which tend to be monolithic and non-extensible, we have developed
an extensible and customizable model checking framework called Bogor.
In this tool paper, we summarize (a) Bogor’s direct support for model-
ing object-oriented designs and implementations, (b) its facilities for ex-
tending and customizing its modeling language and algorithms to create
domain-specific model checking engines, and (c) pedagogical materials
that we have developed to describe the construction of model checking
tools built on top of the Bogor infrastructure.

Motivation

Temporal logic model checking [CGP00] is a powerful framework for reasoning
about the behavior of finite-state system descriptions and it has been applied,
in various forms, to reasoning about a wide-variety of software artifacts. The
effectiveness of these efforts has in most cases relied on detailed knowledge of the
model checking framework being applied. In some cases, a new framework was
developed targeted to the semantics of a family of artifacts [BHPV00], while in
other cases it was necessary to study an existing model checking framework in
detail in order to customize it [CAB+01]. Unfortunately, the level of knowledge
and effort required to do this kind of work currently prevents many domain
experts, who are not necessarily experts in model-checking, from successfully

� This work was supported in part by a 2004 IBM Eclipse Innovation Grant, by the
U.S. Army Research Office (DAAD190110564), by DARPA/IXO’s PCES program
(AFRL Contract F33615-00-C-3044), and by NSF (CCR-0306607, CCF-0429149,
CCF-04444167).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 148–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Building Your Own Software Model Checker 149

applying model checking to systems and software analysis problems. Our broad
goal is to allow these experts to apply model checking without the need to build
their own model-checker or to pour over the details of an existing model-checker
implementation while carrying out substantial modifications.

The Bogor Extensible Software Model Checking Framework

To meet the challenges of using model checking in the context of current trends
in software development, we have constructed an extensible and highly modular
explicit-state model checking framework called Bogor [RDH03, SAnToS03]. Us-
ing Bogor, we seek to enable more effective incorporation of domain knowledge
into verification models and associated model checking algorithms and optimiza-
tions, by focusing on the following principles.

Software-oriented Modeling Language: In contrast to most existing model
checkers, Bogor’s modeling language (BIR) provides constructs commonly found
in modern programming languages including dynamic creation of objects and
threads, garbage collection, virtual dispatch and exceptions. This rich language
has enabled model checking relatively large featureful concurrent Java programs
by translating them to Bogor using the next generation of the Bandera tool set.

Software-oriented State Representations and Reduction Algorithms:
To support effective checking of BIR software models, we have adapted and ex-
tended well-known optimization/reduction strategies such as collapse compres-
sion [Hol97], data and thread symmetry [BDH02], and partial-order reductions
to support models of object-oriented software by providing sophisticated heap
representations [RDHI03], partial-order reduction strategies that leverage static
and dynamic escape and locking analyses [DHRR04], and thread and heap sym-
metry strategies[Ios02, RDHI03].

Extensible Modeling Language: Bogor’s modeling language can be extended
with new primitive types, expressions, and commands associated with a partic-
ular domain (e.g, multi-agent systems, avionics, security protocols, etc.) and a
particular level of abstraction (e.g., design models, source code, byte code, etc.)

Open Modular Architecture: Bogor’s well-organized module facility allows
new algorithms (e.g., for state-space exploration, state storage, etc) and new
optimizations (e.g., heuristic search strategies, domain-specific scheduling, etc.)
to be easily swapped in to replace Bogor’s default model checking algorithms.

Robust Feature-rich Graphical Interface: Bogor is written in Java and
comes wrapped as a plug-in for Eclipse – an open source and extensible universal
tool platform from IBM. This user interface provides mechanisms for collecting
and naming different Bogor configurations, specification property collections,
and a variety of visualization and navigation facilities.

Design for Encapulation: Bogor provides an open architecture with well-
defined APIs and intermediate data formats that enable it (and customized
versions of it) to be easily encapsulated within larger development/verification
environments for specific domains.



150 M.B. Dwyer et al.

Courseware and Pedagogical Materials: Even with a tool like Bogor that is
designed for extensibility, creating customizations requires a significant amount
of knowledge about the internal Bogor architecture. To communicate this knowl-
edge, we have developed an extensive collection of tutorial materials and exam-
ples. Moreover, we believe that Bogor is an excellent pedagogical vehicle for
teaching foundations and applications of model checking because it allows stu-
dents to see clean implementations of basic model checking algorithms and to
easily enhance and extend these algorithms in course projects. Accordingly, we
have developed a comprehensive collection of course materials [SAnToS04] that
have already been used in graduate level courses on model checking at several
institutions.

In short, Bogor aims to be not only a robust and feature-rich software model
checking tool that handles the language constructs found in modern large-scale
software system designs and implementations, it also aims to be a model checking
framework that enables researchers and engineers to create families of domain-
specific model checking engines.

Experience Using Bogor

In the past ten months, Bogor has been downloaded more than 800 times by
individuals in 22 countries. We know that many of those individuals are using
Bogor in interesting ways. To date, we are aware of more than 28 substantive
extensions to Bogor that have been built by 18 people, only one of whom was
the primary Bogor developer.

It is difficult to quantify the effort required to build a high-quality extension
in Bogor. As with all software framework there is a learning curve. In the case
of Bogor, which is a non-trivial system consisting more than 22 APIs, we find
that reasonably experienced Java developers get up to speed in a couple of
weeks. At that point extensions are generally require only a few hundred lines
of code and often they can be modeled closely after already existing extensions.
To give a sense of the variety of extensions built with Bogor we list a sampling
of those extensions and indicate, in parentheses, the number of non-comment
source statement lines of Java code used to implement the extension.
Partial-order Reduction (POR) Extensions: Multiple variations on POR
techniques have been implemented in Bogor including: sleep sets (298), condi-
tional stubborn sets (618), and ample sets (306) approaches. Multiple variations
of the notion of dependence have been incorporated into these techniques that
increase the size of the independence relation by exploiting : read-only data
(515), patterns of locking (73), patterns of object ownership (69), and escape
information (216). These latter reductions, while modest in size and complexity
to implement, have resulted in more than four orders of magnitude reduction in
model checking concurrent Java programs [DHRR04].
State-encoding and Search Extensions: Bogor is factored into separate
modules that can be treated independently to help lower the cost of learning
the framework’s APIs. For example, extensions to the state-encoding and man-
agement APIs have yielded implementations of collapse compression (483), heap



Building Your Own Software Model Checker 151

and thread symmetry (317), and symmetric collection data structures (589).
Extensions to Bogor’s searcher APIs have enabled the POR extensions above in
addition to ones supporting stateless search (14) and heuristic selective search
(641).
Property Extensions: Supporting different property languages is just as im-
portant as supporting flexibility in modeling languages. Bogor’s property APIs
have allowed multiple checker extensions to be implemented including : regular
expression/finite-state automata (1083), an automata-theoretic Linear Tempo-
ral Logic (1011) checker, and a Computation-tree Logic (1418) checker based on
alternating tree automata. We have also implemented a checker extension for
the Java Modeling Language [RRDH04] (3721).
Problem Domain Extensions: A main objective of Bogor was to bring so-
phisticated state-space analyses to a range of systems and software engineering
domains. Several extensions have been built that target specific issues in reason-
ing about multi-threaded Java programs, for example, treating dynamic class
loading (425), reasoning about event-handler behavior in program written us-
ing the Swing framework [DRTV04], and reasoning about properties of method
atomicity (359) [HRD04].

Departing from the software domain somewhat, in our work on the Cadena
development environment [HDD+03] for designing component-based avionics
systems, we have extended Bogor’s modeling language to include APIs associated
with the CORBA component model and an underlying real-time CORBA event
service (2593). [DDH+02, DRDH03]. For checking avionics system designs in Ca-
dena, we have customized Bogor’s scheduling strategy to reflect the scheduling
strategy of the real-time CORBA event channel (439), and created a customized
parallel state-space exploration algorithm that takes advantage of properties of
periodic processing in avionics systems (516). These customizations for Bandera
and Cadena have resulted in space and time improvements of over three orders
of magnitude compared to our earlier approaches.

We are currently building extensions of Bogor for checking highly dynamic
multi-agent systems. Researchers outside of our group are extending Bogor to
support checking of programs constructed using AspectJ, and UML designs.
Bogor is targetted as a framework for explicit state checking, and its current
architecture is not necessarily amenable for incorporating symbolic techniques.
We are working with researchers at Brigham Young University to refactor the
framework (or develop an alternate set of APIs) to facilitate the use of symbolic
techniques.

References

[BDH02] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric SPIN. Interna-
tional Journal on Software Tools for Technology Transfer, 4(1):92–106,
2002.

[BHPV00] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – a second
generation of a Java model-checker. In Proceedings of the Workshop on
Advances in Verification, July 2000.



152 M.B. Dwyer et al.

[CAB+01] W. Chan, R. J. Anderson, P. Beame, D. Notkin, D. H. Jones, and
William E. Warner. Optimizing symbolic model checking for statecharts.
IEEE Transactions on Software Engineering, 27(2):170–190, 2001.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[DDH+02] W. Deng, M. Dwyer, J. Hatcliff, G. Jung, and Robby. Model-checking

middleware-based event-driven real-time embedded software. In Proceed-
ings of the 1st Internatiuonal Symposium on Formal Methods for Compo-
nent and Objects, pages 154–181, 2002.

[DHRR04] M. B. Dwyer, J. Hatcliff, Robby, and V. R.Prasad. Exploiting object
escape and locking information in partial order reduction for concurrent
object-oriented programs. Formal Methods in System Design, 25(2-3):199–
240, 2004.

[DRDH03] M. B. Dwyer, Robby, X. Deng, and J. Hatcliff. Space reductions for model
checking quasi-cyclic systems. In Proceedings of the Third International
Conference on Embedded Software, pages 173–189, 2003.

[DRTV04] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing interaction
orderings with model checking. In Proceedings of the 19th IEEE Confer-
ence on Automated Software Engineering, pages 154–163, 2004.

[HDD+03] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Cadena:
An integrated development, analysis, and verification environment for
component-based systems. In Proceedings of the 25th International Con-
ference on Software Engineering, pages 160–173, 2003.

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–294, May 1997.

[HRD04] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications for
concurrent object-oriented software using model checking. In M. Young,
editor, Proceedings of the Fifth International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2004), volume 2937
of Lecture Notes In Computer Science, pages 175–190, Jan 2004.

[Ios02] R. Iosif. Symmetry reduction criteria for software model checking. In Pro-
ceedings of Ninth International SPIN Workshop, volume 2318 of Lecture
Notes in Computer Science, pages 22–41. Springer-Verlag, April 2002.

[SAnToS03] SAnToS Laboratory. Bogor website. http://bogor.projects.cis.ksu.

edu, 2003.
[SAnToS04] SAnToS Laboratory. Software Model Checking course materials website.

http://model-checking.courses.projects.cis.ksu.edu, 2004.
[RDH03] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-

modular model checking framework. In Proceedings of the 9th European
Software Engineering Conference held jointly with the 11th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, pages 267–
276, 2003.

[RDHI03] Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies
for model checking dynamic software. In Proceedings of the 2nd Work-
shop on Software Model Chekcing, volume 89(3) of Electronic Notes in
Theoritical Computer Science, 2003.

[RRDH04] Robby, E. Rodŕıguez, M. B. Dwyer, and J. Hatcliff. Checking strong
specifications using an extensible software model checking framework. In
Proceedings of the 10th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 2988 of Lecture
Notes in Computer Science, pages 404–420, March 2004.


	Motivation
	Experience Using Bogor
	References



