Memetic Algorithms with Partial Lamarckism

for the Shortest Common Supersequence
Problem

Carlos Cotta

Dept. Lenguajes y Ciencias de la Computacion,
ETSI Informatica, University of Malaga,
Campus de Teatinos, 29071 - Malaga, Spain
ccottap@lcc.uma.es

Abstract. The Shortest Common Supersequence problem is a hard
combinatorial optimization problem with numerous practical applica-
tions. We consider the use of memetic algorithms (MAs) for solving this
problem. A specialized local-improvement operator based on character
removal and heuristic repairing plays a central role in the MA. The trade-
off between the improvement achieved by this operator and its compu-
tational cost is analyzed. Empirical results indicate that strategies based
on partial lamarckism (i.e., moderate use of the improvement operator)
are slightly superior to full-lamarckism and no-lamarckism.

1 Introduction

The Shortest Common Supersequence Problem (SCSP) is a classical problem
from the realm of string analysis. In essence, the SCSP consists of finding a
minimal-length sequence S of symbols such that all strings in a certain set L
are embedded in S (a more detailed description of the problem and the notion of
embedding will be provided in next section). The SCSP provides a “clean” com-
binatorial optimization problem of great interest from the point of view of The-
oretical Computer Science. In this sense, the SCSP has been studied in depth,
and we now have accurate characterizations of its computational complexity.
These characterizations range from the classical complexity paradigm (i.e., uni-
dimensional complexity) to the more recent parameterized complexity paradigm
(i.e., multidimensional complexity). We will survey some of these results in next
section as well, but it can be anticipated that the SCSP is intrinsically hard
[L2L38] under many formulations and/or restrictions.

These hardness results would not be critical were the SCSP a mere academic
problem. However, the SCSP turns out to be also a very important problem
from an applied standpoint: it has applications in planning, data compression,
and bioinformatics among other fields [4,[5,[6]. Thus, the practical impossibility
of utilizing exact approaches for tackling this problem in general motivates atten-
tion be re-directed to heuristic approaches. Such heuristic approaches are aimed
to producing probably- (yet not provably-) optimal solutions to the SCSP. Exam-
ples of such heuristics are the MAJORITY MERGE (MM) algorithm, and related

J. Mira and J.R. Alvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 84-011 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Memetic Algorithms with Partial Lamarckism 85

variants [7], or the ALPHABET-LEFTMOST (AL) algorithm [§]. More sophisti-
cated heuristics have been also proposed, for instance, evolutionary algorithms
(EAs) [7,9].

This work will follow the way paved by previous EA approaches to this prob-
lem. To be precise, the use of memetic algorithms (MAs) will be considered.
The main feature of this MA is the utilization of a twofold local-improvement
strategy: on one hand, a repair mechanism is used to restore feasibility of so-
lutions, shortening them if possible; on the other hand, an iterated local-search
strategy is used to further improve solution quality. The computational impact
of this latter component will be here analyzed, and confronted with the quality
improvement attainable.

2 The Shortest Common Supersequence Problem

First of all, let us define the notion of supersequence. Let s and r be two strings
of symbols taken from an alphabet Y. String s can be said to be a supersequence
of r (denoted as s > r) using the following recursive definition:

TRUE if r=¢

FALSE if r # e and s = ¢
s=r'ifr=arand s=as’, ae X
s=rifr=arands=0sanda#0, a,€X

A
S=r=

(1)

Plainly, the definition above implies that r can be embedded in s, meaning
that all symbols in r are present in s in the very same order (although not
necessarily consecutive). We can now formally define the decisional version of
the SCSP:

SHORTEST COMMON SUPERSEQUENCE PROBLEM

Instance: A set L of m strings {si, - ,Sm}, $; € X* (where X is a certain
alphabet), and a positive integer k.

Question: Does there exist a string s € X*, |s| < k, such that s > s; for all
s; € L?

Obviously, associated with this decisional problem, we have its optimization
version in which the smallest k is sought such that the corresponding instance is
a yes-instance. Let us now consider the computational complexity of the SCSP.

The SCS problem can be shown to be NP-hard, even if strong constraints
are posed on L, or on Y. For example, it is NP-hard in general when all s;
have length two [], or when the alphabet size |X| is two [2]. At any rate, it
must be noted that NP-hard results are usually over-stressed; in fact, the NP-
characterization is a worst-case scenario, and such worst cases may be unlikely
(for example, 3-SAT is NP-hard, yet most instances are easily solvable; only
those located at the phase transition between satisfiability and non-satisfiability
are hard to solve). A more sensible characterization of hardness is required in
order to deal with these issues, and parameterized complexity is the key.

86 C. Cotta

Parameterized complexity [I0] approaches problems from a multidimensional
perspective, realizing its internal structure, and isolating some parameters. If
hardness (that is, non-polynomial behavior) can be isolated within these pa-
rameters, the problem can be efficiently solved for fixed values of them. Here,
efficiently means in time O(f(k)n®), where k is the parameter value, n is the
problem size, f is an arbitrary function of k only, and c is a constant indepen-
dent of k£ and n. A paradigmatic example of this situation is provided by VERTEX
COVER: it is NP-hard in general, but it can be solved in time O(1.271%+n), where
n is the number of vertices, and k is the maximum size of the vertex cover sought
[I1L12]. Problems such as VERTEX COVER for which this hardness-isolation is
possible are termed fized-parameter tractable (FPT). Non-FPT problem will fall
under some class in the W—hierarchy. Hardness for class W1] is the current
measure of intractability.

Several parameterizations are possible for the SCSP. Firstly, the maximum
length & of the supersequence sought can be taken as a parameter. If the alphabet
size is constant, or another parameter, then the problem turns in this case to be
FPT, since there are at most | ¥|* supersequences, and these can be exhaustively
checked. However, this is not very useful in practice because k > max |s;|. If
the number of strings m is used as a parameter, then SCS is W[l]—-hard, and
remains so even if | X[is taken as another parameter [6], or is constant [3]. Failure
of finding FPT results in this latter scenario is particularly relevant since the
alphabet size in biological problems is fixed (e.g., there are just four nucleotides
in DNA). Furthermore, the absence of FPT algorithms implies the absence of
fully polynomial time approximation schemes (FPTAS) for the corresponding
problem, that is, there does not exist an algorithm returning solutions within
factor 1+ e from the optimum in time which is polynomial in n and 1/e.

3 Heuristics for the SCSP

The hardness results mentioned in the previous subsection motivate the utiliza-
tion of heuristic approaches for tackling the SCSP. One of the most popular
algorithms for this purpose is MAJORITY MERGE (MM). This is a greedy algo-
rithm that constructs a supersequence incrementally by adding the symbol most
frequently found at the front of the strings in L, and removing these symbols
from the corresponding strings. More precisely:

Heuristic MM (L ={s1 -+ ,8m})

let s — ¢

do
fora € X do let v(a) « >, _ .
let 3 — max {v(a) | a € X} 7,
for s; € L,s; = (s} do let s; «— s
let s + s@

until Y7/ |si| =0

return s

1

Memetic Algorithms with Partial Lamarckism 87

The myopic functioning of MM makes it incapable of grasping the global
structure of strings in L. In particular, MM misses the fact that the strings can
have different lengths [7]. This implies that symbols at the front of short strings
will have more chances to be removed, since the algorithm has still to scan the
longer strings. For this reason, it is less urgent to remove those symbols. In other
words, it is better to concentrate in shortening longer strings first. This can be
done by assigning a weight to each symbol, depending of the length of the string
in whose front is located. Branke et al. [7] propose to use precisely this string
length as weight, i.e., step 3 in the previous pseudocode would be modified to
have v(a) <« Y s%].

Another heuristic has been proposed by Rahmann [8] in the context of the
application of the SCSP to a microarray production setting. This algorithm is
termed ALPHABET-LEFTMOST (AL), and its functioning can be described as
follows:

si=as/,

Heuristic AL (L = {s1--- ,8m}, Il = (m1---7|x|))
let s — ¢
let 7 — 1
do
if ds;eL: s;= ﬂ'is;- then
for s; € L,s; = ms; do let s « s
let s «— sm;
end if
let i — (i MOD |X|) + 1
until >0 ; |si[=0
return s

,_.
e

As it can be seen, AL takes as input the list of strings whose supersequence
is sought, and a permutation of symbols in the alphabet. The algorithm then
proceeds with successive repetitions of this pattern until the all strings in L are
embedded. Obviously, unproductive steps (i.e., when the next symbol in row
does not appear at the front of any string in L) are ignored. Such a simple
algorithm can provide very good results for some SCSP instances.

4 Memetic Algorithms for the SCSP

One of the difficulties faced by an EA (or by a MA) when applied to the SCSP
is the existence of feasibility constraints, i.e., an arbitrary string s € X*, no
matter its length, is not necessarily a supersequence of strings in L. Typically,
these situations can be solved in three ways: (i) allowing the generation of infea-
sible solutions and penalizing accordingly, (ii) using a repairing mechanism for
mapping infeasible solutions to feasible solutions, and (iii) defining appropriate
operators and/or problem representation to avoid the generation of infeasible so-
lutions. We have analyzed these three approaches elsewhere, and we have found
that option (ii) provided better results than option (i) and (iii) (in this latter

88 C. Cotta

case, we considered an EA that used ideas from GRASP [I3] as suggested in
[14]). We will thus elaborate on this option.

Our MA evolves sequences in |X|*, where A\ = > s, cr |sil. Before being
submitted for evaluation, these sequences are repaired using a function p :
X* x (X*)"™ — X* whose behavior can be described as follows:

s ifVi:s;=¢€
) p(s', L) if 3i:s; #eand Pi:s; = as, and s = as’
pls, L) = ap(s'yL|y) if 3i:s; = as) and s = as’ (2

MM(L) ifJi:s;#cands=c¢

where Lo = {S1]a,"** , Smla}, and s|, equals s’ when s = as’, being s otherwise.
As it can be seen, this repairing function not only completes s in order to have
a valid supersequence, but also removes unproductive steps, as it is done in AL.
Thus, it also serves the purpose of local improver to some extent. After this
repairing, raw fitness (to be minimized) is simply computed as:

. 0 ifViis;=¢€
fitness (s, L) = { 1+ fitness(s’, L|q) if Ji:s; # € and s = as’ (3)

As mentioned in Sect.[Il an additional local-improvement level is considered.
To do so, we have considered the neighborhood define by the DELETEy : X* X
(X*)™ — X* operation [§]. The functioning of this operation is as follows:

[p(s, L) if k=1and s =as
DeLETE) (3, L) = {aDELETEk_l(s',L|a) if k>1and s=as

(4)

This operation thus removes the k-th symbol from s, and then submits it to the
repair function so that all all strings in L can be embedded. Notice that the
repairing function can actually find that the sequence is feasible, hence resulting
in a reduction of length by 1 symbol. A full local-search scheme is defined by
iterating this operation until no single deletion results in length reduction:

Heuristic LS (s € X*, L={s1--,Sm})
1 let kK — 0

2: while k < |s| do

3 let r < DELETE(s, L)

4 if fitness(r) < fitness(s) then
5t let s —r

6: let £k — 0

7 else

8 let k —k+1

9 end if

10: end while

11: return s

The application of this LS operator has a computational cost that we mea-
sure as the number of partial evaluations in step 3 above. More precisely, since

Memetic Algorithms with Partial Lamarckism 89

the application of the repairing function starts at position k, we compute each
application of DELETEy to s as (|r| — k)/|r| fitness evaluations. This is accu-
mulated during the run of the MA to have a more sensible estimation of the
search cost.

5 Experimental Results

The experiments have been done with a steady-state MA (popsize = 100,
px = .9, pm = 1/n, mazevals = 100,000), using binary tournament selec-
tion, uniform crossover, and random-substitution mutation. In order to analyze
the impact of local search, the LS operation is not always applied, but randomly
with probability p. The values p € {0,0.01,0.1,0.5,1} have been considered. We
denote by MA®% the use of p = x/100. Notice that MA®” would then be a plain
repair-based EA.

Two different sets of problem instances have been used in the experimenta-
tion. The first one is composed of random strings with different lengths. To be
precise, each instance is composed of eight strings, four of them with 40 symbols,
and the remaining four with 80 symbols. Each of these strings is randomly built,
using an alphabet Y. Four subsets of instances have been defined using different
alphabet sizes, namely | Y| =2, 4, 8, and 16. For each alphabet size, five different
instances have been generated.

Secondly, a more realistic benchmark consisting of strings with a common
source has been considered. A DNA sequence from a SARS coronavirus strain has
been retrieved from a genomic databas7 and has been taken as supersequence;
then, different sequences are obtained from this supersequence by scanning it
from left to right, and skipping nucleotides with a certain fixed probability. In
these experiments, the length of the supersequence is 158, the gap probability is
10%, 15%, or 20% and the number of so-generated sequences is 10.

First of all, the results for the random strings are shown in Table[l All MAs
perform notably better than AL. The results for MM (not shown) are similar
to those of AL (more precisely, they are between 2.5% and 10% better, still
far worse than the MAs). Regarding the different MAs, performance differences
tend to be higher for increasing alphabet sizes. In general, MAs with p > 0
are better than MA%% (the differences are statistically significant according to
a Wilcoxon ranksum test [I5] in above 90% of the problem instances). MA%
provides somewhat better results, although the improvement with respect to the
other MAs (p > 0) is only significant in less than 20% of the problem instances.

The results for the strings from the SARS DNA sequence are shown in Ta-
ble2l Again, AL performs quite poorly here. Unlike the previous set of instances,
MM (not shown) does perform notably better than AL. Actually, it matches the
performance of MA®% for low gap probability (10% and 15%), and yields an
average 227.8 for the larger gap probability. In this latter problem instance, the
MAs with p > 0 seem to perform marginally better. MA'90% and MA'% provide

! http://gel.ym.edu.tw/sars/genomes.html, accession AY271716.

90 C. Cotta

Table 1. Results of the different heuristics on 8 random strings (4 of length 40, and 4
of length 80), for different alphabet sizes |X|. The results of AL are averaged over all
permutations of the alphabet (or a maximum 100,000 permutations for || = 16), and
the results of the EAs are averaged over 30 runs. In all cases, the results are further
averaged over five different problem instances

AL MA"% MA'™
| 2] best mean + std.dev. best mean + std.dev. best mean + std.dev.
2 1214 1234 £ 2.0 111.2 112.6 £ 0.8 1104 112.8 £ 1.0
4 183.0 191.2 £4.7 151.6 1552 £ 1.9 149.4 152.7 £ 1.7
8 252.2 276.8 £ 6.4 205.4 2135 £ 4.0 201.8 207.3 £ 2.2
16 320.6 3529+ 74 267.0 281.8+£5.9 266.2 274.2 + 3.0
MA 0% MASO% MA 100%
| 2] best mean + std.dev. best mean + std.dev. best mean + std.dev.
2 111.6 1131 £0.8 1114 1132 £0.8 111.2 113.1 £ 0.8
4 1494 1535 £ 1.5 150.0 153.3 £1.4 149.2 153.3 £ 1.6
8 202.0 2079 £2.2 204.0 208.2 £ 2.0 203.0 208.2 £ 2.1
16 266.6 274.7 + 3.0 268.4 275.0 £ 2.8 267.2 275.0 + 3.2

Table 2. Results of the different heuristics on the strings from the SARS DNA se-
quence. The results of AL are averaged over all permutations of the alphabet (or a
maximum 100,000 permutations for |X| = 16), and the results of the EAs are averaged
over 30 runs

AL MA"% MA'”
gap% best mean + std.dev. best mean + std.dev. best mean + std.dev.
10% 307 3152 + 6.8 158 158.0 £ 0.0 158 158.0 + 0.0
15% 293 304.3 £ 8.8 158 158.0 = 0.0 158 159.0 + 2.8
20% 274 288.3 £ 8.6 165 180.8 £ 15.7 159 177.0 £ 9.3
MAIO% MASO% MAIOO%
gap% best mean + std.dev. best mean + std.dev. best mean + std.dev.
10% 158 158.0 £ 0.0 158 158.0 £ 0.0 158 158.0 + 0.0
15% 158 159.8 + 3.7 158 159.8 £ 3.0 158 159.1 + 2.1
20% 163 179.4 £ 9.2 159 178.1 £ 9.9 161 176.5 £ 9.0

the best and second best mean results (no statistical difference between them).
A Wilcoxon ranksum test indicates that the difference with respect to MA% is
significant (at the standard 5% significance).

6 Conclusions

We have studied the deployment of MAs on the SCSP. The main goal has been
to determine the way that local search affects the global performance of the
algorithm. The experimental results seem to indicate that performance differ-
ences are small but significant with respect to a plain repair-based EA (i.e., no

Memetic Algorithms with Partial Lamarckism 91

local search). Using partial lamarckism (0 < p < 1) provides in some problem
instances better results, and does not seem to be harmful on any of the remain-
ing instances. Hence, it can offer the best tradeoff between quality improvement
and computational cost. Future work will be directed to confirm these results on
other neighborhood structures for local search. In this sense, alternatives based
on symbol insertions or symbol swaps can be considered [§].

Acknowledgements. This work is partially supported by Spanish MCyT and
FEDER under contract TIC2002-04498-C05-02.

References

1.

10.
. Chen, J., Kanj, L., Jia, W.: Vertex cover: further observations and further improve-

12.

13.

14.

15.

Bodlaender, H., Downey, R., Fellows, M., Wareham, H.: The parameterized com-
plexity of sequence alignment and consensus. Theoretical Computer Science 147
(1994) 31-54

Middendorf, M.: More on the complexity of common superstring and supersequence
problems. Theoretical Computer Science 125 (1994) 205-228

Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems. Journal of
Computer and System Sciences 67 (2003) 757771

. Foulser, D., Li, M., Yang, Q.: Theory and algorithms for plan merging. Artificial

Intelligence 57 (1992) 143-181

Timkovsky, V.: Complexity of common subsequence and supersequence problems
and related problems. Cybernetics 25 (1990) 565-580

Hallet, M.: An integrated complexity analysis of problems from computational
biology. PhD thesis, University of Victoria (1996)

Branke, J., Middendorf, M., Schneider, F.: Improved heuristics and a genetic
algorithm for finding short supersequences. OR-Spektrum 20 (1998) 39-45
Rahmann, S.: The shortest common supersequence problem in a microarray pro-
duction setting. Bioinformatics 19 (2003) iil156-iil161

Branke, J., Middendorf, M.: Searching for shortest common supersequences by
means of a heuristic based genetic algorithm. In: Proceedings of the Second Nordic
Workshop on Genetic Algorithms and their Applications, Finnish Artificial Intel-
ligence Society (1996) 105-114

Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag (1998)

ments. In: Proceedings of the 25th International Workshop on Graph-Theoretic
Concepts in Computer Science. Number 1665 in Lecture Notes in Computer Sci-
ence, Berlin Heidelberg, Springer-Verlag (1999) 313-324

Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters 73 (2000) 125-129

Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6 (1995) 109-133

Cotta, C., Fernandez, A.: A hybrid GRASP-evolutionary algorithm approach to
golomb ruler search. In Yao, X., et al., eds.: Parallel Problem Solving From Nature
VIII. Volume 3242 of Lecture Notes in Computer Science., Berlin, Springer-Verlag
(2004) 481-490

Lehmann, E.: Nonparametric Statistical Methods Based on Ranks. McGraw-Hill,
New York NY (1975)

	Introduction
	The Shortest Common Supersequence Problem
	Heuristics for the SCSP
	Memetic Algorithms for the SCSP
	Experimental Results
	Conclusions

