

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 95 – 107, 2005.
© IFIP International Federation for Information Processing 2005

Designing Self-adaptive Multimedia Applications
Through Hierarchical Reconfiguration

Oussama Layaida and Daniel Hagimont

SARDES Project, INRIA Rhône-Alpes
First.last@inria.fr

Abstract. Distributed multimedia applications are very sensitive to resource
variations. An attractive way for dealing with dynamic resource variations
consists in making applications adaptive, and even self-adaptive. The objective
is to grant applications the ability to observe themselves and their environment,
to detect significant changes and to adjust their behavior accordingly. This issue
has been the subject of several works; however the proposed solutions lack
flexibility and a high-level support that eases the development of adaptive
applications. This paper presents PLASMA, a component-based framework for
building multimedia applications. PLASMA relies on a hierarchical
composition and reconfiguration model which provides the expected support.
The experimental evaluation shows that adaptation can be achieved with a very
low overhead, while significantly improving QoS of multimedia applications as
well as resource usage on mobile equipments.

1 Introduction

Recent advances in mobile equipments and wireless networking have led to the
emergence of a wide range of peripherals such as, Personal Digital Assistant (PDA),
hand-held computers, Smart Phones, eBooks, etc. The Internet infrastructure became,
like never before, heterogeneous and dynamic. System and network resources such as
network bandwidth, CPU load or battery life time are characterized by unpredictable
variations making difficult to guarantee the correct execution of multimedia
applications.

The most attractive approach to deal with this issue consists in making these
applications self-adaptive, that is, grant them the ability to observe themselves and
their environment, to detect significant changes and adapt their own behavior in QoS-
specific ways. A well recognized approach to achieve it is the use of component-
based technologies [1]. The common idea consists in implementing multimedia-
related functions in separate components. Various multimedia services can then be
built by selecting and assembling the appropriate ones within the same application.
Likewise, adaptation is achieved by means of high-level component reconfigurations
such as: adjusting component properties, stopping/starting a subset of components,
removing/inserting components or modifying their assembly. Complex operations can
be made-up of combination of those basic operations, performed in an appropriate
order.

96 O. Layaida and D. Hagimont

This article describes PLASMA, a component-based framework for the
development of self-adaptive multimedia applications. PLASMA relies on an
advanced component model [2], whose main features are: recursive composition and
hierarchical reconfiguration management. This allows to model reconfiguration in a
generic way thus addressing arbitrary applications and adaptation policies. The
remainder of the article is organized as follows: Next section presents a classification
of related works. Section 3 introduces our design choices and the PLASMA
architecture. Section 4 presents an application use case and a performance evaluation
of PLASMA. Finally, section 5 concludes this paper and presents perspectives.

2 Related Work

As previously mentioned, adaptivity is tightly linked with component-based
technologies. Work around multimedia applications has led to several component-
based frameworks such as DirectShow (Microsoft) [6] JMF (Sun) [13] and PREMO
(ISO) [7], easing the development of multimedia applications. Following this vein,
the advantages of component-based technologies have motivated several research
works in order to bring adaptivity to multimedia applications [3, 15, 14] but very few
of them considering run-time reconfiguration. This feature has been addressed with
different approaches:

• Static Reconfiguration Policies: A first approach to reconfiguration uses static
reconfiguration policies to deal with specific resource variations. VIC [17] is a
well-known example of such applications. Although it is not component-based, it
uses the RTCP [10] feedback mechanism and a loss-based congestion control
algorithm [11] that adapts media streams to the available bandwidth.
Reconfiguration operations consist in tuning key encoding properties (quality
factor, frame rate, etc.) in order to adjust the transmission rate appropriately.
Nevertheless, the use of static reconfigurations is too restrictive as they have to be
anticipated at development-time.

• Component-Based Frameworks with Reconfiguration Capabilities: Some
component-based frameworks grant application developers with enhanced
reconfiguration capabilities. The Toolkit for Open Adaptive Streaming Technology
(TOAST) [8] investigates the use of open implementation and reflection to ease the
development of adaptation strategies. However, it remains to the responsibility of
the application developer to deal with resource and application monitoring,
reconfiguration decisions and their implementation, which is a pretty heavy task.

• Component-Embedded Reconfiguration Policies: To fill this gap, some works
propose to integrate reconfiguration features in the functional components
themselves. In Microsoft DirectShow [6] for example, processing components
(called filters) exchange in-stream QoS messages traveling in the opposite
direction of the data flow. Using this mechanism a component may indicate to its
predecessors that data is being produced too rapidly (a flood) or too slowly (a
famine), which decrease (or increase) their data processing rate in response. Such
mechanism can be easily extended to support a larger scope of QoS control, as

 Designing Self-adaptive Multimedia Applications 97

proposed in [5, 19]. However, the limitation of this approach is that
reconfigurations only occur in the scope of each component rather than in that of
the application. Although it is possible to change the behavior of a given
component, it is not possible to perform a component replacement.

• Separate Reconfiguration Manager: By opposition to the previous approach,
some works have proposed that all reconfiguration features be integrated in
separate managers. Instead of sending QoS messages through components, they are
delivered to a reconfiguration manager, which performs reconfiguration operations.
This approach is applied in the DaCapo++ [12] communication framework, in the
2KQ framework [16] for resource management and in CANS (Composable
Adaptive Network Services) [9] and APC (Automatic Path Creation Service) [18]
to design adaptive media transcoding gateways. The main limitation of this
approach is that such a manager is tightly-coupled with the targeted application,
and especially its architecture. Any modification of the application architecture
requires an update of the manager's implementation1.

3 Component Architecture

The previous section has shown the limitation of previous approaches in addressing
requirements mentioned before. This limitation resides in the use of flat component
models. Indeed, the integration of reconfiguration at the component level limits
reconfiguration capabilities. At the other hand, making it separated from the
application requires strong assumptions on its structure. Hence, a new component
model becomes necessary with the goal of addressing a large scope, or better, all
possible adaptation algorithms within arbitrary component assemblies. This section
describes how this requirement is addressed in PLASMA.

Fig. 1. Overall architecture design

1 Or it should be explicitely managed in the manager’s implementation.

98 O. Layaida and D. Hagimont

3.1 Design Choices

As depicted in Figure 1, the architecture of PLASMA is composed of: a description
layer providing tools for the description of applications and their adaptation policies,
and an execution layer for the composition and the execution of applications.

• Using a Dynamic ADL: An application is described using a dynamic ADL
(Architecture Description Language). It offers constructs for the description of the
application architecture as well as its adaptation policy in terms of observations,
detection of relevant changes and processing of reconfiguration operations. All
these operations are modeled within the language in a generic way so that it is
possible to describe every possible application and its adaptation policies.
Descriptions can be written by developers as configuration files or automatically
generated by applications requesting specific multimedia services. The framework
provides tools to translate a given description into the appropriate component
assembly in the execution level. A detailed example of the ADL language is
presented in section 4.

• Recursive Composition: The construction of applications is facilitated by a
recursive component model. An application is divided into several parts, called
composite components, which are in turn defined with sub-components. The model
allows arbitrary number of levels; the lowest includes primitive components
encapsulating functional code. This model is based on the Fractal composition
framework [2].

• Hierarchical Reconfiguration Management: Reconfiguration policies can be
defined at any level of the component hierarchy. Each component has its own
reconfiguration manager responsible for reconfiguring its content. In a primitive
component, this manager acts on its functional code, for instance by modifying
parameters. In a composite component, it applies reconfiguration on its sub-
components, transparently to higher levels. This model allows dividing
reconfiguration responsibilities into several hierarchical managers, each dealing
with a specific part of the application.

• Composable Adaptation Policies: Adaptation operations require mainly: the
observation of application and resource states, the detection of relevant changes
and activation of reconfiguration operations. These functions are implemented in
PLASMA as separate and reusable components that can be used to compose every
possible adaptation policy.

3.2 Component Architecture

The PLASMA component architecture encompasses three kinds of components:
Media, Monitoring and Reconfiguration components. The following subsections
detail the role of each of them.

3.2.1 Media Components
Media components represent the computational units used for the composition of the
multimedia applications. An application is decoupled into three hierarchical levels,
each providing a specific functionality:

 Designing Self-adaptive Multimedia Applications 99

• Media Primitive (MP) components are the lowest-level processing entities. They
implement basic multimedia-related functions such as MPEG decoding, H.261
encoding, UDP transmission, etc.

• Media Composite (MC) components are composite components which represent
higher-level functions such as: Decoding, Network Transmission, etc. Each media
composite deals with a group of MPs and is responsible for their creation,
configuration and reconfiguration, transparently to its outside. In Figure 2, an
InputStream composite is composed of three Media Primitives in the case of an
RTP input stream: an RTP receiver, a Demultiplexer (Demux) to separate multiple
streams and a Depacketizer to reconstitute media data. On the other hand, an HTTP
input stream requires one primitive component: HTTP-Receiver.

• The Media-Session (MS) component is a composite which encapsulates MCs. The
Media-Session represents an application configuration and exposes all control
features that can be made upon it (i.e. VCR-like operations: start, pause, stop,
forward, etc.).

Fig. 2. Examples of Components and Bindings

The advantage of this hierarchy is that it groups primitive components
implementing a similar multimedia function under the control of the same composite.
This allows the integration of common configuration and reconfiguration operations
in the enclosing component independently from the application structure. The
combination of various composites constitutes all possible configuration and
reconfiguration operations that can be operated on the application. Notice that other
levels can be easily added to the component architecture in order to define new
composition semantics.

The composition of an application is performed by binding the different
components in a flow graph. Both Media composites and Media Primitives participate
in this process. Each media primitive exposes one or more stream interfaces used to
receive/deliver data from/to other components. A stream interface is typed by the
media type of the produced/consumed stream, which is expressed with media-related
properties such as MIME type, encoding format and data-specific properties
(resolution, colors, etc.). Thus, the success of a binding between two primitive
components is governed by the media-type compatibility between the bound
interfaces. That is, a binding will fail if there are mismatches between media types of
two components. PLASMA provides a binding algorithm which avoids such failures
using two kinds of bindings:

100 O. Layaida and D. Hagimont

• Primitive bindings bind two components agreeing the same media type. This
means that media data is streamed directly from input streams to output streams by
using method calls between stream interfaces.

• Composite bindings are special composite components which mediate between
components handling different media types. Their role is mainly to overcome
media type mismatches between MPs. These bindings are made-up of a set of MPs
implementing fine-grain media conversions. Figure 3 shows an example of a
composite binding between a Decoder and an Encoder composite. The Decoder
provides video data in YUV, while the Encoder accepts only RGB. Moreover, as
this later uses H.261 encoding, it only accepts video data in specific resolutions
such as QCIF (176*144). The composite binding creates two primitive sub-
components: a Resizer to transform the video resolution into QCIF and a YUV-2-
RGB to convert data format from YUV to RGB.

Fig. 3. Examples of component bindings

3.2.2 Probes
Probes define observation points in charge of gathering performance information on
both application and system resources. The information is not processed by probes,
but only made available to other components wishing access to it. However, they may
produce data at different scales and units and thus apply conversions. PLASMA
provides two kinds of Probes:

1. QoS Probes: Some components are expected to maintain information reflecting
QoS values. For example, an RTP Sender component continuously measures
packet loss rate, transmission rate, etc. QoS Probes interact with those components
to collect QoS information and make it available for other components.

2. Resource Probes: They act as separate monitors for gathering resource states such
as CPU load, memory consumption, remaining battery life-time, etc.

3.2.3 Sensors
Sensors are used to trigger events likely to activate reconfiguration operations. We
distinguish two kinds of Sensors:

1. QoS and Resource Sensors: They are generic components associated with QoS and
Resource Probes. Their role is to inspect the evolution of observed parameters and
to notify relevant changes. The behavior of such Sensors is quite simple: it consists
in comparing the observed values with agreed-upon thresholds in order to detect
changes in the observed entities. When a change occurs, the Sensor feeds back a
corresponding event to the appropriate components.

 Designing Self-adaptive Multimedia Applications 101

2. External-Event Sensors: They are in charge of monitoring external events requiring
a specific implementation. As an example, a Sensor may implement a conferencing
manager listening for new connections and notifying the arrival of new
participants. A second example would be a Sensor associated with the graphical
user interface that sends relevant events.

Fig. 4. Examples of reconfigurations

3.2.4 Actuators
Reconfiguration actuators are primitive components responsible for the execution of
reconfiguration actions. Actuators react to events by performing required operations
on the appropriate components. Each reconfiguration action on a component is
performed through its attribute control interface (i.e. by modifying one of the
component’s attributes). This means that the Actuator has a generic behavior
whatever the targeted components. It belongs to the component implementation to
decide how to interpretate modifications of its attribute values. We distinguish three
kinds of reconfiguration:

• Functional Reconfigurations: The most basic form of reconfiguration consists in
changing the functional attributes of a primitive component belonging to the
application. Reconfigurations may target key attributes in order to tune the
produced media stream. As illustrated in Figure 4, the Decoder composite may
delegate/forward modification of one of its attributes (e.g. 'quality') to its MPEG-
Video Decoder sub-component, which performs the effective operation (and
change the quality of the produced stream). Although such operations only affect
media primitives, their impact on the media type agreed during initial bindings of
this component defines two cases:
1. In a first case, the targeted attribute does not affect the media type and therefore,

this operation does not interrupt the execution of the application.
2. In a second case, the targeted attribute affects the media type (e.g. a

modification of the video resolution attributes or the representation format).
This operation may require unbinding and re-binding the involved components
according to rules explained in section 3.2.1.

• Structural Reconfigurations: This second form of reconfiguration concerns the
modification of a composite's structure, being built-up of a set of sub-components.
For instance, a modification of attribute 'encoding-format' of composite Decoder

102 O. Layaida and D. Hagimont

leads to replace the MPEG-Video decoder with an appropriate one (H.261 Decoder
in Figure 4). In general, this operation involves several steps illustrated in Figure 5:
− The Activation step includes the detection of changes (Probes/Sensors) and the

decision of the execution of reconfiguration operations (Actuators).
− The Pre-reconfiguration step encompasses all tasks that can be performed

without application interruption, among them: creating new components and
setting their initial attributes. Stopping the application may be delayed in order
to reduce the application black-out time.

− The Blackout step represents the period during which the application is stopped.
This is necessary to unbind, remove and/or insert, and bind components.

− The Post-reconfiguration step encompasses all tasks that can be made after
application restart, among them: deletion of old components and resetting of key
attributes.

• Policy Reconfigurations: In the third form, reconfiguration actions target
reconfiguration components themselves. Some of such reconfigurations are quite
similar to functional reconfiguration and involve the modification of key properties
of Probes, Sensors and Actuators. Examples consist in changing probing periods,
tuning observation thresholds, modifying operations and operand values of
reconfiguration actions, etc. Other reconfigurations may target the execution of
these components by invalidating reconfiguration actions or activating/deactivating
sensors.

Fig. 5. Execution sequence of structural reconfiguration

4 Use Case: Mobile Multimedia Applications

PLASMA has been entirely implemented in C++ under Microsoft Windows 2000
using the Microsoft .Net 2003 development platform. Multimedia processing and
networking functions are based on the Microsoft DirectShow toolbox. Several
application scenarios have been successfully released, among them the SPIDER
application, a media transcoding gateway for mobile devices.

 Designing Self-adaptive Multimedia Applications 103

4.1 SPIDER Architecture

The SPIDER architecture assumes several multimedia sources made available in the
network, providing content in various data encoding formats and transmission
protocols. Mobile users equipped with PDAs may access these sources; however they
are limited to HTTP-based streaming and support exclusively MPEG-1 streams. The
role of SPIDER gateways is to mediate between clients and servers by performing
appropriate data conversions. A SPIDER node grants access to any multimedia source
available in the network by means of data transcoding, transformation, protocol
conversion, etc. Media streams are receiver-driven, i.e. client applications precise
their media preferences (resolution, colors, bit-rate, etc.) as well as adaptation policies
to adapt media streams when required.

A typical application scenario is as follows: the client application starts streaming
video from a TV broadcast server (originally encoded in H.261 and transmitted using
RTP). It requests a transcoding process which converts video content to MPEG with a
resolution at 320x240. Knowing that potential increase of the transmission rate may
overload its CPU and cause poor QoS (the gateway uses a Variable Bit-Rate
encoding), it requests an adaptation policy which decreases the video resolution by
5 % whenever the transmission rate exceeds 512 Kbps. This adaptation algorithm is
evaluated periodically (every 10 seconds in our experiment) in order to observe the
behavior of the client application during different stages.

<TaskFlow id="Server" location="oxygene.inria.fr">
 <Task name="Input-Stream" id="C">
 <Attributes signature="InputAttributeController">
 <Attribute name="src" value="rtp://ozone.inria.fr:5000"/>
 </Attributes>
 <Binding id="b1" client="this" server="E" />
 </Task>

 <Task name="Video-Encoder" id="E">
 <Attributes signature="EncoderAttributeController">
 <Attribute name="format" value="32" />
 <Attribute name="resolution" value="320x240" unit="pixels" />
 </Attributes>
 <Binding id="b4" client="this" server="D"/>
 </Task>
 ...
 <Task name="Output-Stream" id="O">
 ...
 </Task>
 <Observation id="ob1" type="Resource" resource="id(O)@datarate">
 <event id="evt1" operator="exceeds" value="512" unit="kbps"/>
 <event id="evt2" .../>
 </Observation>
 <Action-set id="set1" condition="evt1">
 <Action operation="decrease" target="id(E)@resolution" operand="5"/>
 </Action-set>
 ….
</TaskFlow>

Fig. 6. A Dynamic ADL Description

104 O. Layaida and D. Hagimont

Such information is conveyed from a client device to a SPIDER node as an ADL
description sent using traditional session protocols. In our implementation, ADL
descriptions are embedded within HTTP requests. Relying on PLASMA, each
SPIDER node translates the ADL description into the suited multimedia adaptation
service. Figure 6 shows the ADL description corresponding to the previous scenario.

The application architecture consists of a set of Tasks expressing high-level
multimedia functions implemented by media composites. Each of them has a
collection of attributes that precise its functional properties and its relationships with
other Tasks (i.e. media bindings). It results in a task-graph representing the data
processing sequence. In our scenario, the application is composed of four Tasks: an
Input-Stream, a Video-Decoder a Video-Encoder and an Output-Stream. It receives
an original RTP stream (see src attribute), decodes its content, encodes the result in
MPEG-1, and transmits the result using TCP.

Reconfiguration policies are expressed in terms of Observations and Action-sets.
Observations represent Probes and can be related to Task attributes or to resources
(QoS or Resource Probes). Each observation defines one or more events reflecting
violations of thresholds associated with observed parameters (i.e. Sensors). Here, a
observation is associated with the data rate of the Output stream. Action-sets define
one or more actions manipulating attribute values (target attribute).

4.2 Performance Evaluation

In our scenario, we used as SPIDER gateway a PC running Windows 2000, equipped
with a 2 GHz Pentium 4 processor, 256 MB of Memory and 100 MB/s LAN. On the
client side, we used a Compaq IPaq PDA equipped with a XScale Processor at 400
MHz, 64 MB of memory and 11 MB/s 802.11b WLAN. The performance evaluation
concerns the cost of reconfiguration operations and their impact on performance of
client device.

4.2.1 Performance of Structural Reconfiguration
The first reconfiguration occurrence requires a structural reconfiguration which adds a
Video-Resizer component. The whole reconfiguration time is about 36 ms (milli-
seconds). The major part is devoted to the pre-reconfiguration step with 24 ms,
required for the instantiation of the new component. The blackout time is about
11 ms, spent in order to insert the Resizer component. Post-reconfiguration operations
take about 200 µs (micro-seconds). We deduce from these results that performing the
pre-reconfiguration step before stopping the application significantly minimizes the
cost of structural reconfiguration, in our case by 68 % assuming that a naive
implementation would have required application be stopped during the whole time.

Subsequent reconfiguration operations on video resolution are only functional
reconfigurations on the Resizer components. As these reconfigurations affect the
output media type (the resolution), it requires re-binding (unbind, property
modification and rebind) of components that are placed after the Resizer component
in the processing graph. Setting component attributes takes 67 µs. The blackout time
is 331 µs, where 244 µs are necessary to re-bind components. Despite this short
blackout, the whole reconfiguration time is low and does not introduce a significant
overhead (i.e. about 398 µs).

 Designing Self-adaptive Multimedia Applications 105

4.2.2 Impact on QoS and Resource Usage
In order to evaluate the impact of reconfiguration on the QoS and resource usage on
the client device, we measured the rate of video display (in frames/seconds) observed
by the application and the CPU. Figure 7 reports results. Vertical dotted lines mark
the occurrences of reconfigurations, detected as a change in the video resolution. In
the first time segment, video is displayed at less than 10 fps due to a CPU usage at
100 %. This is due to the fact that application receives a large amount of data and in
addition, it must resize video frames in order to fit its display limitations. This
operation requires additional processing causing the application to drop frames in
response to CPU overload. The first reconfiguration reduces the video resolution to
304x228 and therefore, increases the frame rate to 17 fps. However, the CPU load is
kept at 100 % as the transmission rate remains high. Finally, the resolution is reduced
to 273x205, resulting in a frame rate at 25 fps and a CPU load at 70 %. These results
show on one hand that reconfigurations don’t have a negative impact since the
reconfiguration blackout time is almost transparent to the client application. On the
other hand, they significantly improve QoS and resource usage on the client.

Fig. 7. Impact of reconfiguration on QoS and resource usage

106 O. Layaida and D. Hagimont

5 Conclusion

This paper has presented PLASMA, a component-based framework for building self-
adaptive multimedia applications. To reach this goal, PLASMA relies on an advanced
component model whose main feature is the recursive composition of applications.
Relying on this feature, a hierarchical reconfiguration management is introduced at
different levels of hierarchy. This allows releasing a large scope of reconfiguration
independently from the application structure and thus, it offers a flexible approach to
adaptation. Our experimental study has shown that component-based adaptation as in
PLASMA provides a good trade-off between flexibility and performance. Indeed, it
does not introduce a high overhead and can significantly improve QoS and resource
usage of multimedia applications.

References

1. G. Blair, L. Blair, V. Issarny, P. Tuma, A. Zarras. The Role of Software Architecture in
Constraining Adaptation in Component-based Middleware Platforms. Middleware
Conference, April 2000.

2. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma and J-B. Stefani. An Open Component
Model and its Support in Java. International Symposium on Component-based Software
Engineering, May 2004.

3. A.P. Black, and al. Infopipes: an Abstraction for Multimedia Streaming. In Multimedia
Systems. Special issue on Multimedia Middleware, 2002.

4. E. Cecchet, H. Elmeleegy, O. Layaïda and V. Quéma. Implementing Probes for J2EE
Cluster Monitoring. In OOPSLA Workshop on Component and Middleware Proformance,
Vancouver, October 2004.

5. L.S. Cline, J. Du, B. Keany, K. Lakshman, C.Maciocco, D.M. Putzolu. DirectShow RTP
Support for Adaptivity in Networked Multimedia Applications. IEEE International
Conference on Multimedia Computing and Systems, 1998.

6. Microsoft: DirectShow Architecture. http://msdn.microsoft.com/directx 2002.
7. D. Duke and I. Herman. A Standard for Mulimtedia Middleware. ACM International

Conference on Multimedia. 1998.
8. T. Fitzpatrick and al. Design and Application of TOAST: An Adaptive Distributed

Multimedia Middleware. International Workshop on Interactive Distributed Multimedia
Systems, 2001.

9. X. Fu and al. CANS: Composable, adaptive network services infrastructure, USITS 2001.
10. H. Schulzrinne and al. RTP: A Transport Protocol for Real-Time Applications, 2003.
11. D. Sisalem and H. Schulzrinne. The loss-delay based adjustment algorithm: A TCP-

friendly adaptation scheme. Proc of NOSSDAV '98, July 1998.
12. B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, A Flexible Middleware for

Multimedia Communication: Design, Implementation, and Experience," IEEE Journal on
Selected Areas in Communications, September 1999.

13. Sun: Java Media Framework API Guide. http://java.sun.com/products/javamedia/jmf/
2002.

14. L.A. Rowe, Streaming Media Middleware is more than Streaming Media. International
Workshop on Multimedia Middleware, October 2001.

 Designing Self-adaptive Multimedia Applications 107

15. M. Lohse, M. Repplinger, P. Slusallek, An Open Middleware Architecture for Network-
Integrated Multimedia, Joint IDMS/PROMS workhop 2002.

16. K. Nahrstedt, D. Wichadakul, and D. Xu. Distributed QoS Compilation and Runtime
Instantiation. IEEE/IFIP International Workshop on QoS 2000.

17. S. McCanne and V. Jacobson. VIC: A flexible framework for packet video. ACM
Multimedia Conference, 1995.

18. Z. Morley and al. Network Support for Mobile Multimedia using a Self-adaptive
Distributed Proxy, NOSSDAV-2001.

19. D.G.Waddington and G.Coulson, A Distributed Multimedia Component Architecture, 1st
International Workshop on Enterprise Distributed Object Computing, October 1997.

20. D. Wichadakul, X. Gu, K. Nahrstedt, A Programming Framework for Quality-Aware
Ubiquitous Multimedia Applications, ACM Multimedia 2002.

	Introduction
	Related Work
	Component Architecture
	Component Architecture

	Use Case: Mobile Multimedia Applications
	SPIDER Architecture
	Performance Evaluation

	Conclusion
	References

