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Abstract. Distributed multimedia applications are very sensitive to resource 
variations. An attractive way for dealing with dynamic resource variations 
consists in making applications adaptive, and even self-adaptive. The objective 
is to grant applications the ability to observe themselves and their environment, 
to detect significant changes and to adjust their behavior accordingly. This issue 
has been the subject of several works; however the proposed solutions lack 
flexibility and a high-level support that eases the development of adaptive 
applications. This paper presents PLASMA, a component-based framework for 
building multimedia applications. PLASMA relies on a hierarchical 
composition and reconfiguration model which provides the expected support. 
The experimental evaluation shows that adaptation can be achieved with a very 
low overhead, while significantly improving QoS of multimedia applications as 
well as resource usage on mobile equipments. 

1   Introduction 

Recent advances in mobile equipments and wireless networking have led to the 
emergence of a wide range of peripherals such as, Personal Digital Assistant (PDA), 
hand-held computers, Smart Phones, eBooks, etc. The Internet infrastructure became, 
like never before, heterogeneous and dynamic. System and network resources such as 
network bandwidth, CPU load or battery life time are characterized by unpredictable 
variations making difficult to guarantee the correct execution of multimedia 
applications.  

The most attractive approach to deal with this issue consists in making these 
applications self-adaptive, that is, grant them the ability to observe themselves and 
their environment, to detect significant changes and adapt their own behavior in QoS-
specific ways. A well recognized approach to achieve it is the use of component-
based technologies [1]. The common idea consists in implementing multimedia-
related functions in separate components. Various multimedia services can then be 
built by selecting and assembling the appropriate ones within the same application. 
Likewise, adaptation is achieved by means of high-level component reconfigurations 
such as: adjusting component properties, stopping/starting a subset of components, 
removing/inserting components or modifying their assembly. Complex operations can 
be made-up of combination of those basic operations, performed in an appropriate 
order.  
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This article describes PLASMA, a component-based framework for the 
development of self-adaptive multimedia applications. PLASMA relies on an 
advanced component model [2], whose main features are: recursive composition and 
hierarchical reconfiguration management. This allows to model reconfiguration in a 
generic way thus addressing arbitrary applications and adaptation policies. The 
remainder of the article is organized as follows: Next section presents a classification 
of related works. Section 3 introduces our design choices and the PLASMA 
architecture. Section 4 presents an application use case and a performance evaluation 
of PLASMA. Finally, section 5 concludes this paper and presents perspectives. 

2   Related Work 

As previously mentioned, adaptivity is tightly linked with component-based 
technologies. Work around multimedia applications has led to several component-
based frameworks such as DirectShow (Microsoft) [6] JMF (Sun) [13] and PREMO 
(ISO) [7], easing the development of multimedia applications. Following this vein, 
the advantages of component-based technologies have motivated several research 
works in order to bring adaptivity to multimedia applications [3, 15, 14] but very few 
of them considering run-time reconfiguration. This feature has been addressed with 
different approaches: 

• Static Reconfiguration Policies: A first approach to reconfiguration uses static 
reconfiguration policies to deal with specific resource variations. VIC [17] is a 
well-known example of such applications. Although it is not component-based, it 
uses the RTCP [10] feedback mechanism and a loss-based congestion control 
algorithm [11] that adapts media streams to the available bandwidth. 
Reconfiguration operations consist in tuning key encoding properties (quality 
factor, frame rate, etc.) in order to adjust the transmission rate appropriately. 
Nevertheless, the use of static reconfigurations is too restrictive as they have to be 
anticipated at development-time. 

• Component-Based Frameworks with Reconfiguration Capabilities: Some 
component-based frameworks grant application developers with enhanced 
reconfiguration capabilities. The Toolkit for Open Adaptive Streaming Technology 
(TOAST) [8] investigates the use of open implementation and reflection to ease the 
development of adaptation strategies. However, it remains to the responsibility of 
the application developer to deal with resource and application monitoring, 
reconfiguration decisions and their implementation, which is a pretty heavy task. 

• Component-Embedded Reconfiguration Policies: To fill this gap, some works 
propose to integrate reconfiguration features in the functional components 
themselves. In Microsoft DirectShow [6] for example, processing components 
(called filters) exchange in-stream QoS messages traveling in the opposite 
direction of the data flow. Using this mechanism a component may indicate to its 
predecessors that data is being produced too rapidly (a flood) or too slowly (a 
famine), which decrease (or increase) their data processing rate in response. Such 
mechanism can be easily extended to support a larger scope of QoS control, as 
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proposed in [5, 19]. However, the limitation of this approach is that 
reconfigurations only occur in the scope of each component rather than in that of 
the application. Although it is possible to change the behavior of a given 
component, it is not possible to perform a component replacement.  

• Separate Reconfiguration Manager: By opposition to the previous approach, 
some works have proposed that all reconfiguration features be integrated in 
separate managers. Instead of sending QoS messages through components, they are 
delivered to a reconfiguration manager, which performs reconfiguration operations. 
This approach is applied in the DaCapo++ [12] communication framework, in the 
2KQ framework [16] for resource management and in CANS (Composable 
Adaptive Network Services) [9] and APC (Automatic Path Creation Service) [18] 
to design adaptive media transcoding gateways. The main limitation of this 
approach is that such a manager is tightly-coupled with the targeted application, 
and especially its architecture. Any modification of the application architecture 
requires an update of the manager's implementation1. 

3   Component Architecture 

The previous section has shown the limitation of previous approaches in addressing 
requirements mentioned before. This limitation resides in the use of flat component 
models. Indeed, the integration of reconfiguration at the component level limits 
reconfiguration capabilities. At the other hand, making it separated from the 
application requires strong assumptions on its structure. Hence, a new component 
model becomes necessary with the goal of addressing a large scope, or better, all 
possible adaptation algorithms within arbitrary component assemblies. This section 
describes how this requirement is addressed in PLASMA.  

 

Fig. 1. Overall architecture design 

                                                           
1 Or it should be explicitely managed in the manager’s implementation. 
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3.1   Design Choices 

As depicted in Figure 1, the architecture of PLASMA is composed of: a description 
layer providing tools for the description of applications and their adaptation policies, 
and an execution layer for the composition and the execution of applications. 

• Using a Dynamic ADL: An application is described using a dynamic ADL 
(Architecture Description Language). It offers constructs for the description of the 
application architecture as well as its adaptation policy in terms of observations, 
detection of relevant changes and processing of reconfiguration operations. All 
these operations are modeled within the language in a generic way so that it is 
possible to describe every possible application and its adaptation policies. 
Descriptions can be written by developers as configuration files or automatically 
generated by applications requesting specific multimedia services. The framework 
provides tools to translate a given description into the appropriate component 
assembly in the execution level. A detailed example of the ADL language is 
presented in section 4. 

• Recursive Composition: The construction of applications is facilitated by a 
recursive component model. An application is divided into several parts, called 
composite components, which are in turn defined with sub-components. The model 
allows arbitrary number of levels; the lowest includes primitive components 
encapsulating functional code. This model is based on the Fractal composition 
framework [2]. 

• Hierarchical Reconfiguration Management: Reconfiguration policies can be 
defined at any level of the component hierarchy. Each component has its own 
reconfiguration manager responsible for reconfiguring its content. In a primitive 
component, this manager acts on its functional code, for instance by modifying 
parameters. In a composite component, it applies reconfiguration on its sub-
components, transparently to higher levels. This model allows dividing 
reconfiguration responsibilities into several hierarchical managers, each dealing 
with a specific part of the application. 

• Composable Adaptation Policies: Adaptation operations require mainly: the 
observation of application and resource states, the detection of relevant changes 
and activation of reconfiguration operations. These functions are implemented in 
PLASMA as separate and reusable components that can be used to compose every 
possible adaptation policy.  

3.2   Component Architecture 

The PLASMA component architecture encompasses three kinds of components: 
Media, Monitoring and Reconfiguration components. The following subsections 
detail the role of each of them. 

3.2.1   Media Components  
Media components represent the computational units used for the composition of the 
multimedia applications. An application is decoupled into three hierarchical levels, 
each providing a specific functionality: 
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• Media Primitive (MP) components are the lowest-level processing entities. They 
implement basic multimedia-related functions such as MPEG decoding, H.261 
encoding, UDP transmission, etc. 

• Media Composite (MC) components are composite components which represent 
higher-level functions such as: Decoding, Network Transmission, etc. Each media 
composite deals with a group of MPs and is responsible for their creation, 
configuration and reconfiguration, transparently to its outside. In Figure 2, an 
InputStream composite is composed of three Media Primitives in the case of an 
RTP input stream: an RTP receiver, a Demultiplexer (Demux) to separate multiple 
streams and a Depacketizer to reconstitute media data. On the other hand, an HTTP 
input stream requires one primitive component: HTTP-Receiver. 

• The Media-Session (MS) component is a composite which encapsulates MCs. The 
Media-Session represents an application configuration and exposes all control 
features that can be made upon it (i.e. VCR-like operations: start, pause, stop, 
forward, etc.). 

 

Fig. 2. Examples of Components and Bindings 

The advantage of this hierarchy is that it groups primitive components 
implementing a similar multimedia function under the control of the same composite. 
This allows the integration of common configuration and reconfiguration operations 
in the enclosing component independently from the application structure. The 
combination of various composites constitutes all possible configuration and 
reconfiguration operations that can be operated on the application. Notice that other 
levels can be easily added to the component architecture in order to define new 
composition semantics.  

The composition of an application is performed by binding the different 
components in a flow graph. Both Media composites and Media Primitives participate 
in this process. Each media primitive exposes one or more stream interfaces used to 
receive/deliver data from/to other components. A stream interface is typed by the 
media type of the produced/consumed stream, which is expressed with media-related 
properties such as MIME type, encoding format and data-specific properties 
(resolution, colors, etc.). Thus, the success of a binding between two primitive 
components is governed by the media-type compatibility between the bound 
interfaces. That is, a binding will fail if there are mismatches between media types of 
two components. PLASMA provides a binding algorithm which avoids such failures 
using two kinds of bindings: 



100 O. Layaida and D. Hagimont 

 

• Primitive bindings bind two components agreeing the same media type. This 
means that media data is streamed directly from input streams to output streams by 
using method calls between stream interfaces. 

• Composite bindings are special composite components which mediate between 
components handling different media types. Their role is mainly to overcome 
media type mismatches between MPs. These bindings are made-up of a set of MPs 
implementing fine-grain media conversions. Figure 3 shows an example of a 
composite binding between a Decoder and an Encoder composite. The Decoder 
provides video data in YUV, while the Encoder accepts only RGB. Moreover, as 
this later uses H.261 encoding, it only accepts video data in specific resolutions 
such as QCIF (176*144). The composite binding creates two primitive sub-
components: a Resizer to transform the video resolution into QCIF and a YUV-2-
RGB to convert data format from YUV to RGB. 

 

Fig. 3. Examples of component bindings 

3.2.2   Probes  
Probes define observation points in charge of gathering performance information on 
both application and system resources. The information is not processed by probes, 
but only made available to other components wishing access to it. However, they may 
produce data at different scales and units and thus apply conversions. PLASMA 
provides two kinds of Probes: 

1. QoS Probes: Some components are expected to maintain information reflecting 
QoS values. For example, an RTP Sender component continuously measures 
packet loss rate, transmission rate, etc. QoS Probes interact with those components 
to collect QoS information and make it available for other components. 

2. Resource Probes: They act as separate monitors for gathering resource states such 
as CPU load, memory consumption, remaining battery life-time, etc.  

3.2.3   Sensors  
Sensors are used to trigger events likely to activate reconfiguration operations. We 
distinguish two kinds of Sensors: 

1. QoS and Resource Sensors: They are generic components associated with QoS and 
Resource Probes. Their role is to inspect the evolution of observed parameters and 
to notify relevant changes. The behavior of such Sensors is quite simple: it consists 
in comparing the observed values with agreed-upon thresholds in order to detect 
changes in the observed entities. When a change occurs, the Sensor feeds back a 
corresponding event to the appropriate components. 
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2. External-Event Sensors: They are in charge of monitoring external events requiring 
a specific implementation. As an example, a Sensor may implement a conferencing 
manager listening for new connections and notifying the arrival of new 
participants. A second example would be a Sensor associated with the graphical 
user interface that sends relevant events. 

 

Fig. 4. Examples of reconfigurations 

3.2.4   Actuators 
Reconfiguration actuators are primitive components responsible for the execution of 
reconfiguration actions. Actuators react to events by performing required operations 
on the appropriate components. Each reconfiguration action on a component is 
performed through its attribute control interface (i.e. by modifying one of the 
component’s attributes). This means that the Actuator has a generic behavior 
whatever the targeted components. It belongs to the component implementation to 
decide how to interpretate modifications of its attribute values. We distinguish three 
kinds of reconfiguration: 

• Functional Reconfigurations: The most basic form of reconfiguration consists in 
changing the functional attributes of a primitive component belonging to the 
application. Reconfigurations may target key attributes in order to tune the 
produced media stream. As illustrated in Figure 4, the Decoder composite may 
delegate/forward modification of one of its attributes (e.g. 'quality') to its MPEG-
Video Decoder sub-component, which performs the effective operation (and 
change the quality of the produced stream). Although such operations only affect 
media primitives, their impact on the media type agreed during initial bindings of 
this component defines two cases: 
1. In a first case, the targeted attribute does not affect the media type and therefore, 

this operation does not interrupt the execution of the application. 
2. In a second case, the targeted attribute affects the media type (e.g. a 

modification of the video resolution attributes or the representation format). 
This operation may require unbinding and re-binding the involved components 
according to rules explained in section 3.2.1. 

• Structural Reconfigurations: This second form of reconfiguration concerns the 
modification of a composite's structure, being built-up of a set of sub-components. 
For instance, a modification of attribute 'encoding-format' of composite Decoder 
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leads to replace the MPEG-Video decoder with an appropriate one (H.261 Decoder 
in Figure 4). In general, this operation involves several steps illustrated in Figure 5: 
− The Activation step includes the detection of changes (Probes/Sensors) and the 

decision of the execution of reconfiguration operations (Actuators). 
− The Pre-reconfiguration step encompasses all tasks that can be performed 

without application interruption, among them: creating new components and 
setting their initial attributes. Stopping the application may be delayed in order 
to reduce the application black-out time. 

− The Blackout step represents the period during which the application is stopped. 
This is necessary to unbind, remove and/or insert, and bind components. 

− The Post-reconfiguration step encompasses all tasks that can be made after 
application restart, among them: deletion of old components and resetting of key 
attributes. 

• Policy Reconfigurations: In the third form, reconfiguration actions target 
reconfiguration components themselves. Some of such reconfigurations are quite 
similar to functional reconfiguration and involve the modification of key properties 
of Probes, Sensors and Actuators. Examples consist in changing probing periods, 
tuning observation thresholds, modifying operations and operand values of 
reconfiguration actions, etc. Other reconfigurations may target the execution of 
these components by invalidating reconfiguration actions or activating/deactivating 
sensors. 

 

Fig. 5. Execution sequence of structural reconfiguration 

4   Use Case: Mobile Multimedia Applications 

PLASMA has been entirely implemented in C++ under Microsoft Windows 2000 
using the Microsoft .Net 2003 development platform. Multimedia processing and 
networking functions are based on the Microsoft DirectShow toolbox. Several 
application scenarios have been successfully released, among them the SPIDER 
application, a media transcoding gateway for mobile devices.  
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4.1   SPIDER Architecture 

The SPIDER architecture assumes several multimedia sources made available in the 
network, providing content in various data encoding formats and transmission 
protocols. Mobile users equipped with PDAs may access these sources; however they 
are limited to HTTP-based streaming and support exclusively MPEG-1 streams. The 
role of SPIDER gateways is to mediate between clients and servers by performing 
appropriate data conversions. A SPIDER node grants access to any multimedia source 
available in the network by means of data transcoding, transformation, protocol 
conversion, etc. Media streams are receiver-driven, i.e. client applications precise 
their media preferences (resolution, colors, bit-rate, etc.) as well as adaptation policies 
to adapt media streams when required. 

A typical application scenario is as follows: the client application starts streaming 
video from a TV broadcast server (originally encoded in H.261 and transmitted using 
RTP). It requests a transcoding process which converts video content to MPEG with a 
resolution at 320x240. Knowing that potential increase of the transmission rate may 
overload its CPU and cause poor QoS (the gateway uses a Variable Bit-Rate 
encoding), it requests an adaptation policy which decreases the video resolution by 
5 % whenever the transmission rate exceeds 512 Kbps. This adaptation algorithm is 
evaluated periodically (every 10 seconds in our experiment) in order to observe the 
behavior of the client application during different stages.  

 
<TaskFlow id="Server" location="oxygene.inria.fr"> 
 <Task name="Input-Stream" id="C"> 
  <Attributes signature="InputAttributeController"> 
   <Attribute name="src" value="rtp://ozone.inria.fr:5000"/> 
  </Attributes> 
  <Binding id="b1" client="this" server="E" /> 
 </Task> 
 .... 
 <Task name="Video-Encoder" id="E"> 
  <Attributes signature="EncoderAttributeController"> 
   <Attribute name="format" value="32" /> 
   <Attribute name="resolution" value="320x240" unit="pixels" /> 
  </Attributes> 
  <Binding id="b4" client="this" server="D"/> 
 </Task> 
     ... 
 <Task name="Output-Stream" id="O"> 
     ... 
 </Task> 
 <Observation id="ob1" type="Resource" resource="id(O)@datarate"> 
  <event id="evt1" operator="exceeds" value="512" unit="kbps"/> 
  <event id="evt2" .../> 
 </Observation> 
 <Action-set id="set1" condition="evt1"> 
  <Action operation="decrease" target="id(E)@resolution" operand="5"/> 
 </Action-set> 
 …. 
</TaskFlow>  

Fig. 6. A Dynamic ADL Description 
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Such information is conveyed from a client device to a SPIDER node as an ADL 
description sent using traditional session protocols. In our implementation, ADL 
descriptions are embedded within HTTP requests. Relying on PLASMA, each 
SPIDER node translates the ADL description into the suited multimedia adaptation 
service. Figure 6 shows the ADL description corresponding to the previous scenario.  

The application architecture consists of a set of Tasks expressing high-level 
multimedia functions implemented by media composites. Each of them has a 
collection of attributes that precise its functional properties and its relationships with 
other Tasks (i.e. media bindings). It results in a task-graph representing the data 
processing sequence. In our scenario, the application is composed of four Tasks: an 
Input-Stream, a Video-Decoder a Video-Encoder and an Output-Stream. It receives 
an original RTP stream (see src attribute), decodes its content, encodes the result in 
MPEG-1, and transmits the result using TCP.  

Reconfiguration policies are expressed in terms of Observations and Action-sets. 
Observations represent Probes and can be related to Task attributes or to resources 
(QoS or Resource Probes). Each observation defines one or more events reflecting 
violations of thresholds associated with observed parameters (i.e. Sensors). Here, a 
observation is associated with the data rate of the Output stream. Action-sets define 
one or more actions manipulating attribute values (target attribute). 

4.2   Performance Evaluation 

In our scenario, we used as SPIDER gateway a PC running Windows 2000, equipped 
with a 2 GHz Pentium 4 processor, 256 MB of Memory and 100 MB/s LAN. On the 
client side, we used a Compaq IPaq PDA equipped with a XScale Processor at 400 
MHz, 64 MB of memory and 11 MB/s 802.11b WLAN. The performance evaluation 
concerns the cost of reconfiguration operations and their impact on performance of 
client device. 

4.2.1   Performance of Structural Reconfiguration 
The first reconfiguration occurrence requires a structural reconfiguration which adds a 
Video-Resizer component. The whole reconfiguration time is about 36 ms (milli-
seconds). The major part is devoted to the pre-reconfiguration step with 24 ms, 
required for the instantiation of the new component. The blackout time is about 
11 ms, spent in order to insert the Resizer component. Post-reconfiguration operations 
take about 200 µs (micro-seconds). We deduce from these results that performing the 
pre-reconfiguration step before stopping the application significantly minimizes the 
cost of structural reconfiguration, in our case by 68 % assuming that a naive 
implementation would have required application be stopped during the whole time.  

Subsequent reconfiguration operations on video resolution are only functional 
reconfigurations on the Resizer components. As these reconfigurations affect the 
output media type (the resolution), it requires re-binding (unbind, property 
modification and rebind) of components that are placed after the Resizer component 
in the processing graph. Setting component attributes takes 67 µs. The blackout time 
is 331 µs, where 244 µs are necessary to re-bind components. Despite this short 
blackout, the whole reconfiguration time is low and does not introduce a significant 
overhead (i.e. about 398 µs). 
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4.2.2   Impact on QoS and Resource Usage 
In order to evaluate the impact of reconfiguration on the QoS and resource usage on 
the client device, we measured the rate of video display (in frames/seconds) observed 
by the application and the CPU. Figure 7 reports results. Vertical dotted lines mark 
the occurrences of reconfigurations, detected as a change in the video resolution. In 
the first time segment, video is displayed at less than 10 fps due to a CPU usage at 
100 %. This is due to the fact that application receives a large amount of data and in 
addition, it must resize video frames in order to fit its display limitations. This 
operation requires additional processing causing the application to drop frames in 
response to CPU overload. The first reconfiguration reduces the video resolution to 
304x228 and therefore, increases the frame rate to 17 fps. However, the CPU load is 
kept at 100 % as the transmission rate remains high. Finally, the resolution is reduced 
to 273x205, resulting in a frame rate at 25 fps and a CPU load at 70 %. These results 
show on one hand that reconfigurations don’t have a negative impact since the 
reconfiguration blackout time is almost transparent to the client application. On the 
other hand, they significantly improve QoS and resource usage on the client. 

 

 

Fig. 7. Impact of reconfiguration on QoS and resource usage 
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5   Conclusion 

This paper has presented PLASMA, a component-based framework for building self-
adaptive multimedia applications. To reach this goal, PLASMA relies on an advanced 
component model whose main feature is the recursive composition of applications. 
Relying on this feature, a hierarchical reconfiguration management is introduced at 
different levels of hierarchy. This allows releasing a large scope of reconfiguration 
independently from the application structure and thus, it offers a flexible approach to 
adaptation. Our experimental study has shown that component-based adaptation as in 
PLASMA provides a good trade-off between flexibility and performance. Indeed, it 
does not introduce a high overhead and can significantly improve QoS and resource 
usage of multimedia applications.  
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