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Abstract. We propose the first universal designated verifier signature
(UDVS) scheme whose security can be proven without random oracles,
whereas the security of all previously known UDVS schemes are proven
only when random oracles are assumed. To achieve our goal, we present
a new short signature scheme without random oracles, which is a variant
of BB04 scheme [1]. We also give new security definitions to UDVS. We
note that our weakest security definitions are even stronger than any
of previously known security definitions: We allow adversaries to behave
more adaptively in oracle accessing and we also consider adaptive chosen
public key attacks. The security of our UDVS scheme is then proven
according to the new security definitions.

1 Introduction

SHORT SIGNATURES AND RELATED ASSUMPTIONS. Short signature was recently
proposed by Boneh, Lynn and Shacham (BLS01) [5] with the good property that
its size is only about half of DSA signatures with almost the same level of secu-
rity. Security of BLSO1 scheme was based on Gap Diffie-Hellman assumption in
random oracle model [3, &]. Later, Boneh and Boyen proposed another signature
scheme (BB04) which is almost as short as DSA and the security of this scheme
relies on Strong Diffie-Hellman (SDH) assumption [1, 14] over bilinear group
pairs without random oracles. SDH assumption can be informally stated as fol-
lows: for G=<g> of large prime order p, given g,gz,g(zz), .., 9" € G, there
is no probabilistic polynomial time algorithm able to compute (¢, g*/(*+)), for
arbitrary ¢ € Z,. The SDH assumption is analogous to the Strong RSA assump-
tion, which has already been used to construct signature schemes existential
unforgeable against chosen message attack without random oracles [7, 9].

UNIVERSAL DESIGNATED VERIFIER SIGNATURES. A normal digital signature
has publicly verifiable property just as its real world counterpart. A verifier of a
signature can convince any third party the fact by presenting a digital signature
on a message. However, in the real world, sometimes it is desirable that a verifier
should not present the signatures to other parties, such as certificates for hospital
records, income summary, etc.
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Universal designated verifier signature (UDVS), introduced by Steinfeld et al
[15, 16], is an important tool to protect the privacy of the signature holder from
dissemination of signatures by verifiers. UDVS schemes are signature schemes
with additional functionality where any holder of the signature alone can trans-
form the signature to a non-interactive proof statement for a desired designated
verifier using the knowledge of the signature, such that the designated verifier
can verify the message is signed by the signer but cannot prove the same fact to
a third party, since he can also produce such a proof statement using his secret
key.

UDVS can be viewed as an application of general designated verifier proofs,
introduced by Jakobsson, Sako and Impagliazzo [12], where a prover designates
a non-interactive proof statement to a designated verifier, who can simulate this
proof with his secret key thus cannot transfer it to a third party. We refer to
[15, 16] for more related work and applications of UDVS.

The good properties of UDVS make it an important tool to prevent dis-
semination of digital signatures in user certification systems. It is thus desir-
able to have rigorous model and corresponding formal analysis regarding UDVS
schemes. However, there is still no provably secure UDVS scheme ever reported
yet, except those in the random oracle model [15, 16].

Random oracle model is a formal model in analyzing cryptographic schemes,
where a hash function is considered as a black-box that contains a random
function. However, many impossibility results, e.g. [0], have shown that security
in the random oracle model does not imply the security in the real world in
that a scheme can be secure in the random oracle model and yet be broken
without violating any particular intractability assumption, and without breaking
the underlying hash functions. Consequently, to design a provable secure UDVS
based on standard intractability assumptions is both of theoretical and practical
importance.

1.1 Ouwur Contribution

SECURE SIGNATURE SCHEME WITHOUT RANDOM ORACLES. We present a new
digital signature scheme which is a variant of BB04 scheme, and prove its security
based on the Strong Diffie-Hellman assumption [/, 14]. This signature scheme
does not resort to random oracles. We then construct our UDVS without random
oracles using this new signature scheme.

REFINED SECURITY DEFINITIONS ON UDVS. Much work on modeling UDVS
was previously done in the two papers of Steinfeld et al [15, 16], where two secu-
rity definitions are introduced, namely, “DV-Unforgeability” and “PR-Privacy”.
However, the former requirement is weak in the sense that an adversary is not
allowed to adaptively choose a designated verifier whom the adversary tries to
forge DV-signatures with respect to. The latter requirement is weak in the sense
that an adversary is not allowed to access designation oracle with respect to the
message that the adversary chooses as a target before this target message is cho-
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sen. Hence, adversaries in the previous models are not allowed to fully-adaptively
probe “weak” target verifier and “weak” target messages in their attacks.

In our refined security definitions, we give adversaries more freedom to select
target verifiers and target messages. We also allow them to additionally access
to key registration oracle and designation oracle. These abilities reflect those of
real world adversaries. Moreover, we consider strong unforgeability (sEUF) in the
sense of [1] for DV-signatures, though we also introduce a commonly-adopted
weak version (WEUF), which suffices in many applications. We emphasize that
our weak version of definition on DV-unforgeability is still strictly stronger than
those given in [15, 10].

FIRST SECURE UDVS SCHEME WITHOUT RANDOM ORACLES. All previous
known UDVS schemes are only secure in the random oracle model. We give
the first provable secure construction of UDVS without random oracles. This
also answers an open question raised in [15], where Steinfeld et al wondered how
to construct UDVS schemes without random oracles. Furthermore, our scheme is
analyzed in the new model, which is strictly stronger. The security of our UDVS
is proven under both SDH and a natural extended version of the “KEA1” as-
sumption [2, 11] in bilinear groups.

2 Preliminary

CONVENTIONS. Let x <+ X denote z is uniformly selected from distribution X.
If X is an algorithm, = <+ X denotes x is set to the output of X. z < y denotes
y is assigned to . We say a function f : N — R is negligible, if for any ¢ > 0,
there exits kg € N, such that |f(k)| < k~¢ holds for any k > ko, denoted as

negl(k).

2.1 Signature Schemes

SYNTAX. A signature scheme counsists of three algorithms: SIG = (KG, Sig, Ver).
KG(1*%) is the key generation algorithm, with internal random coin flipping, out-
puts a pair of keys (pk, sk), where pk is the public verification key and sk is the
secret signing key. The signing algorithm S takes sk and a message m from the
associated message space M, with possible internal random coin flipping, out-
puts a signature s, denoted as s < Sig,;,(m). Ver is the deterministic verification
algorithm, takes pk, a message m, and s as input, outputs acc for “accepted”
or rej for “rejected” as the verification result. The subscript of pk or sk may
be omitted in clear contexts. We also require that Ver(m, Sig(m)) = acc for all

m e M.

EXISTENTIAL UNFORGEABILITY. The widely-accepted security definition for dig-
ital signature is existential unforgeability against adaptive chosen message attack
[10]. But we here consider a stronger version of it [1], called strong existential
unforgeability against adaptive chosen message attack (SEUF-CMA).
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Setup. KG is run, generates a public/secret key pair (pk, sk). pk is given to the
adversary A and sk is given to a challenger.

Training. The adversary A requests signatures on at most ¢s messages
mi, Ma,...,Mg, € M chosen adaptively by itself. The challenger responds
with the corresponding signature s; = Sig(m;), i = 1, ..., ¢s.

Forge. Eventually, the adversary A outputs a pair (m, s) and wins the game if
(m,s) & {(m1, s1), ..., (mg,, Sq.)} and Ver(m, s) = acc.

For comparison, we also describe weak existentially unforgeability (wEUF-
CMA), where the adversary is considered to win the game only if it can output
m ¢ {ma,...,mq, } and Ver(m, s) = acc. However, we consider only strong exis-
tential unforgeability (sEUF) in the rest of the paper.

Let Adv be the probability that the adversary wins the above game, which
is taken over the coin toss made by A and the Challenger.

Definition 1. An adversary (gs,t, €)-breaks the signature scheme if A makes at
most qs signature queries, runs in time at most t and Adv is at least €. A signature
scheme is (qs,t, €)-strong existentially unforgeable if under an adaptive chosen
message attack if no probabilistic polynomial time adversary (gs,t, €)-breaks it.

2.2 Bilinear Groups

Let Gy and Go be two cyclic groups of prime order p, where Computational
Diffie-Hellman problem (CDH) is considered hard. Let g; be a generator of Gy
and go be a generator of Go. A bilinear map is a map e : G; x Gy — Gp such
that |G| = | G2| = | Gp| with following properties:

1. Bilinear: for all u € G and v € G and a,b € Z, e(u®,v®) = e(u,v)®.
2. Non-degenerate: e(gi1, g2) # 1.

Two groups G and G; of prime order p are bilinear map group pair if there is
an additional group Gr with | G1| = | G2| = | G|, such that there exist a bilinear
map and an efficiently computable isomorphism ¢ : Gy — Gy. Especially e, v,
and group operations in G, Go and G can be computed efficiently. Joux and
Nguyen [13] showed that an efficiently computable bilinear map e provides an
algorithm for solving the Decisional Diffie-Hellman problem (DDH) in (Gq, G2).
One can set G; = Gg, however, above notations indicates more general cases
where G1 # Go so that certain families of elliptic curves can be used to obtain
shorter representations for the group element of Gy .

2.3 Strong Diffie-Hellman Assumption

Definition 2 ((q,t,¢)-Strong Diffie-Hellman Assumption). Let g1 and go
be as above with g1 = ¥(g2). We say a probabilistic polynomial time (PPT)
adversary A (q,t, €)-breaks the Strong Diffie Hellman problem in (G1, Gz) if after

given q-tuples of géwl) with 1 <4 < q and running time t, has the probability € of
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outputting a pair (c, gi/(ﬂc)) where ¢ € Z,. Here the probability is taken over the
random choice of generator gs, the choice of x € Z}, and internal random coins
of A. The (q,t,¢e)-Strong Diffie-Hellman assumption holds if no PPT algorithm

solves the SDH problem. For simplicity, we sometimes write SDH assumption.

3 Short Signature Scheme Without Random Oracles

3.1 The Proposed Scheme

There are many applications for digital signature schemes with small size [7].
Our new short signature scheme is a variant of BB04 scheme [1]. We highlight it
here not only because this is an important building block for our UDVS scheme
but also it may admit many other possible applications.

Let (G1, G2) be bilinear groups where |G| = |G3| = p for some large prime
p. m is the message to be signed and is encoded as an element of Z7.

KG: Pick a random generator g2 € G2 and set g1 = 9(g2). Pick 2,y «— Z, and
compute u < g3 € G2 and v — g§ € Go. For fast verification, also compute
z «— e(g1,92) € Gp. The public key is (g1, g2, u, v, 2) and the secret key is
(@,9).

Sig: Given a secret key (z,y) € (Z;j)2 and a message m € Z, pick r «— Z7.
If x + 7+ ym = 0mod p, try again with a different random r. Compute
o — g/t ¢ Gy The signature is (o, 7).

Ver: Give the public key (g1, g2,u,v,2), a message m € Z,, and a signature
(o,1), verify if

e(o,u-gh-v™) ==z

Output acc if the equality holds; otherwise, rej.

The size of the signature is the same as that of the BB04 scheme and com-
parable to DSA. The key generation algorithm, the signing algorithm and the
verification algorithm take exactly the same amount of time as those of BB04
scheme. One can also use pre-computation to speed up the online computation.

3.2 Security Analysis

The security of the short signature scheme in section 3.1 is guaranteed by fol-
lowing theorem:

Theorem 1. If there exists a forging algorithm F that (qs,t, €)-breaks the strong
existential unforgeability of the above signature scheme, one can build an algo-
rithm that (q,t', €')-breaks the SDH assumption, where qs < q, t' < (t —O(¢*T))
and € > 2(e — qs/p).

The proof is given Appendix A.
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Hash Variants. A standard argument shows that if a collision-free hash func-
tion is applied to m, whose output can be encoded as an element of Z7, one can
still prove the security against (SEUF-CMA) of the resulting signature scheme
without random oracles. On the other hand, if we assume random oracles, we
can have much efficient schemes.

4 Model of UDVS

SYNTAX OF UDVS. A universal designated verifier signature (UDVS) scheme
UDVS = (CPG, SKG, VKG, S, PV, DS, DV, Pkr).

1. Common Parameter Generation CPG — a probabilistic algorithm, given
a security parameter k, outputs a string c¢p consisting of common scheme
parameters (publicly shared by all users).

2. Signer Key Generation SKG — a probabilistic algorithm, on input a
common parameter string cp, outputs a secret/public key-pair (sks, pks) for
Signer.

3. Verifier Key Generation VKG — a probabilistic algorithm, on input a
common parameter string cp, outputs a secret/public key-pair (sky, pk,) for
Verifier.

4. Signing S — possibly a probabilistic algorithm, on input Signer’s secret key
sks and a message m, outputs Signer’s public verifiable (PV) signature s.

5. Public Verification PV — a deterministic algorithm, on input Signer’s pub-
lic key pks and message/PV-signature pair (m, s), outputs verification result
d € (acc,rej).

6. Designation DS — possibly a probabilistic algorithm, on input Signer’s pub-
lic key pks, Verifier’s public key pk,, and a message/PV-signature pair (m, s),
outputs Designated-Verifier (DV) signature .

7. Designated Verification DV — a deterministic algorithm, on input Signer’s
public key pks, Verifier’s secret key sk,, and messge/DV-signature pair
(m,s), outputs verification decision acc or rej.

8. Verifier Key-Registration Pxr(KR,V) — a protocol between a Key Reg-
istration Authority KR and a Verifier V. The verifier registers a verifier’s
public key. On common input ¢p, KR and V interact with messages sent each
other. At the end of the protocol, KR outputs a pair (pk,, Auth), where pk,
is the public key of V and Auth € {acc,rej} indicates whether or not the
key-registration is successful.

Note that the key registration is necessary in practice because the signature
receiver can easily convince a third party the validity of a signature by claiming
he is the owner of the third party’s public key and presents the UDVS to the
third party.

4.1 Enhanced Security Notions

Strong DV-Unforgeability. Without designation, a UDVS scheme reduces to
a normal signature scheme. There are two types of unforgeability to consider:
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Public Verifiable signature unforgeability (PV-unforgeability), the security for
the signer, which states that anyone should not be able to forge a PV-signature
of the signer. Designated Verifier signature unforgeability (DV-unforgeability),
the security for the designated verifier, which states that for any message, an
adversary without a PV-signature should be unable to convince a designated
verifier of holding such a PV-signature. DV-unforgeability always implies PV-
unforgeability, because anyone able to forge a PV-signature can transform it into
a DV-signature. Thus it is enough to consider only DV-unforgeability.

We consider strong form of existential unforgeability in the sense of [1]. In
our model, a forger F succeeds in breaking the scheme if it can outputs a valid
new pair of message/DV-signature, whereas in [10], a forger F is considered to
succeed only if it is able to forge the DV-signature on a “new message”.

We call this security definition strong existential unforgeability for designated
verifier against adaptive chosen public key and chosen message attack (sEUF-
DV-CPKMA). We define it via the following game:

Definition 3. Let UDVS = (CPG,SKG, VKG,S,PV,DS,DV, Pkr) be a UDVS
scheme. F is a forger attacking the DV-unforgeability of UDVS that plays the
following game with a challenger.

Setup. The key generation algorithms are run, cp «— CPG(1%), (pks, sks) «
SKG(ep), (pky,,sky;,) «— PKG;(cp) for 1 < i < n. All public keys are given
to F and the challenger. All secret keys are given to the challenger. The
challenger maintains two lists: M and S, initially empty. The challenger
additionally maintains a list L which consists of all the public keys {pky,}
for 1 <1 <n, which are assumed to be already registered.

Training. F may adaptively issue qs times signing queries, qq times designation
queries (see below), q, times Designated Verification queries, and up ton—1
times of key registration queries to the challenger. However, once pky, is
queried by F, the challenger neglects further designated verification quires
with respect to verifier V;’s public key pky, .

— On a Signing query by F on m, the challenger returns the corresponding
signature s = S(sks, m) to F and adds m to M.

— On Designation query by F on m and pk,, the challenger first com-
putes the corresponding PV-signature s = S(sks,m), compute the s =
DS(pks, pky,m, s). The challenger then adds (m,s) to §, and returns s
to F.

— On a Designated Verification oracle query by F on (m,3) on pk,,, the
challenger runs the designated verification algorithm DV (pks, sky,, m,3)
and returns the corresponding verification result to F.

— On a Key Registration query by F on pky, the challenger sends corre-
sponding secret key sk, to F, and deletes pk, from L.

Forge. Denote F’s running time as t. F outputs (m*,sA*) and wins the game
if: DV (pks, sky-,m*, §%) = acc with (m*,s*) ¢ §, where pky« € L, m* € M
is a valid message from the message space.
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Suppose qs,qdq, @ and t are all polynomially bounded. A UDVS signature is
secure against SEUF-DV-CPKMA if no any probabilistic polynomial time F, can
win the above game with non-negligible probability. The probability is taken over
coin toss of key generation algorithms, F and the challenger.

An important refinement to [15, 16] is that we allow adversaries to adap-
tively corrupt designated verifiers and adaptively choose the target designated
verifier, which reflects more essence of real world adversaries. Moreover, our
DV-unforgeability is defined in the sense of strong unforgeability.

One can weaken this definition with minor changes on the requirement of the
forgery: for pk,- € L, F wins the game if F outputs DV(pks, sk,-, m*, s*) = acc,
with m* ¢ M and (m*,-) ¢ S. We call the resulting definition weak ezistential
unforgeability against chosen public key and chosen message attack (WEUF-DV-
CPKMA). We note that even this weaker definition guarantees stronger security
than those considered in [15, 10].

Remark 1. We allow the adversary to make designation queries which captures
the attack scenario where a real world adversary may obtain (m,s) without
knowing corresponding PV-signature s. Though in previous models the adver-
sary is not allowed to make designation queries, it turns out that previous model
suffice in some sense when weak existential unforgeability of DV-signatures is
considered, because given the signing oracle access, the adversary can simulate
the designation oracle anyway. But we emphasize that our modeling approach
is more general.

Non-transferability (Privacy Notion)

Definition 4. A is an attacker that tries to brag about its interaction with the
signature holder. S is a simulator that simulates the output of A. S is able to
access A as a black-boz. D is a distinguisher that tries to distinguish whether a
given output is of A or of S. The run time of S does not include the run time
of A that was black-bozx accessed by S.

Setup. cp < CPG(1%). (pks, sks) < SKG(cp). KR is a Key Registration oracle,
who maintains a list of verifier’s public keys, initially empty.
Training. A and S are allowed to have the following resources:
— A and S are allowed to access Signing oracle S(sks, ) up to qs times and
q. times, respectively. However, after the challenge message m* is output,
they may not access to Signing oracle S with respect to this challenge
message.
— S and A can output the challenge message m* at arbitrary time but for
only once.
— A and S are allowed to access KR up to g, and qj, times, respectively.
— A and S are allowed to access D up to q. and ¢, times, respectively.
— A is allowed to access to designation oracles DS(pk,,,-) up to qq times
as long as pky, is correctly registered.
— S is NOT allowed to access DS.
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Guess. Denote the running time of A, S are t,t’, respectively. Finally, A and S
return to D their outputs with respect to m*. D decides whether this output
is of A or of D.

We say a UDVS scheme is unconditionally non-transferable against adap-
tive chosen public key attack and chosen message attack (NT-CPKMA ), if there
exists S such that for every A, every computationally unbounded D distinguishes
outputs of A and S on any challenge message m* with only probability negl(k),
where the probability is taken over the coin toss of key generation algorithms, S,

A, S and D.

Our definition on non-transferability extends [16] in the sense that A is able to
access to Designation oracle with respect to any message (including the challenge
message) before the challenge message is determined. This helps the adversary
adaptively choose the challenge message.

5 UDVS Without Random Oracles

5.1 The Proposed Scheme

We give our scheme below. For simplicity, we omit the verifier key registration
protocol. As in practice this is needed to run only once and may be executed
interactively using zero-knowledge proof of knowledge of his secret key to KR or
let the verifier send his secret key to the KR directly.

1. Common Parameter Generation CPG: Choose a bilinear group pair
which is denoted by a description string Strp: (Gi,Gz) of prime order
|G1| = |G2| = p with a bilinear map e : G; X Go — Gp and an isomor-
phism v : Gy — G;. Choose a random generator go € Go and compute
91 = ¥(g2) € G1. Then the common parameter is cp = (Strp, g1, g2)-

2. Signer Key Generation SKG: Given cp, pick random z1,y; < Z;, com-
pute u; = g3' and vy = g3'. Specially, for speeding up the verification, one
may also compute z < e(g1,92) € Gr. The public key is pks = (¢p, u1, v1, 2),
the secret key is sks = (21,y1)-

3. Verifier Key Generation VKG: Given cp, pick random z3,ys < Z,. Com-
pute uz = g5° and vs = g4°. The public key is pk, = (cp,us,v3) and the
secret key is sk, = (23, y3).

4. Signing S: Given the signer’s secret key (¢p, x1,y1) and a message m, select

7 Zy . If 1 + 7+ my = 0 mod p, restart. Compute o = g}/(mﬁHmyl)

and output s = (0,7) as the PV-signature.

5. Public Verification PV: Given the signer’s public key (¢p, u1,v1, 2), and a
message/PV-signature pair (m, s), output acc only if e(o,uy - g5 - v7*) = z;
otherwise output rej.

6. Designation DS: Given the signer’s public key (cp, u1,v1), a verifier’s public
key (cp, us,v3) and a message/PV-signature pair (m, s), where s = (o, r), let
h = g5 and compute d = e(y(ug),v;) € Gp. Then the DV-signature is
$=(o,h,d).
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7. Designated Verification DV: Given a signer’s public key (cp,u1,v1), a
verifier’s secret key (x3,ys), and message/DV-signature pair (m, s), output
acc only if following two equations hold simultaneously:

z=-e(o,uy - h-vi") and d = e(1(us), h¥?)
Otherwise, output rej.

Remark 2. In fact, the public key usz of the designated verifier can be replaced
by any certified random generator of group G;. However, we consider scenarios
where a designated verifier may become a signer himself, who in turn needs to
have two public keys.

5.2 Security Analysis

The correctness of the scheme is obvious. The following two theorems guarantee
that the proposed scheme are both strong existentially unforgeable against adap-
tive chosen public key attack and chose message attack for designated verifier
and unconditionally non-transferable.

Theorem 2 (Strong Unforgeability). Above UDVS scheme achieves sEUF-
CPKMA-security, provided that SDH assumption and the following assumption
hold in bilinear groups.

Assumption 1 (Knowledge of Exponent Assumption [2, 11]) Suppose
that an adversary A is given a pair (g,h) which is randomly chosen from
uniform distribution of G* and that A is able to generate a pair (z,y) € G>
where log, h =log, y, then there exists an extractor that extracts log, h for A.

In fact, one can easily prove that an extended version of above assumption
holds in generic bilinear groups, namely, for (g, h) €g G2? and (f1, f2) €r Gy x
Ga, A generates y € Gr, such that log, h = log, (4, 1,) ¥, then there exists an
extractor that extracts log, h for A.

Proof. Suppose that there exists an adversary 4 that breaks sEUF-CPKMA of the
scheme and (o, h, d) is the DV-signature that A forged. Then, from the knowledge
of exponent assumption, there exists an extractor that is able to extract r from
A such that h = g4 holds and the resulting (o, r) is a successful forgery of the
proposed short signature scheme. Therefore, combined with Theorem 1, it is easy
to see the proposed UDVS scheme achieves sEUF-CPKMA.

We have introduced two types of existential unforgeabilities, namely weak
EUF and strong EUF, though usually it is considered wEUF is enough for most
of the applications. We emphasize that even adopting a probabilistic signing
algorithm, one can still achieve strong DV-unforgeability.

Theorem 3 (Non-transferability). Above UDVS scheme achieves uncondi-
tional NT-CPKMA-security.
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Proof. A and S are able to access Key Registration oracle KR and Signing oracle
S. A is able to additionally access Designation oracle and Designated Verification
oracle. S is able to access A as a black-box.

The following is how S simulate an output of A. S invokes A by feeding it a

random tape.

1.

Suppose that A accesses to KR for a public key u%, v5. Then S interacts, as
KR, with A. If A, as KR, accepts Key Registration, S rewinds A and obtains
its corresponding secret key x4, 5.

. Suppose that A accesses to the Signing oracle with respect to uj,v] for

message m’. S access to the Signing oracle with respect to u}, v] for message
m’ and obtains signature o’. Then S sends this ¢’ to A.

. Suppose that A accesses to the Designation oracle with respect to u}, v} for

message m’ as an designated verifier whose public key is (uf, v5). (u5,v4) is
the public key that A4 has once registered to KR. Recall that S is not allowed
to query S on m*, However, S can still generate DV-signature as follows:

S E€R Z, o =g

h= g;/suflvfm d=e(q, h)méyé

. Suppose that A outputs its output to distinguisher D, S outputs it to D.

Since S has perfectly simulated Signing oracle, KR, Designation oracle to A,

S finally obtains the output that is perfectly indistinguishable from the output
of A. The simulation of S is perfect. This completes the proof.
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A Proof of Theorem 1

Actually, we do be able to give another proof in the full version of this paper,
however, we believe the proof adopted here is much easier to understand.

Theorem 1 is proved via following two lemmas. The first lemma, actually
proves a basic scheme is existentially unforgeable against weak chosen message
attack. The second lemma then shows the security of the basic scheme implies
the full scheme.

Weak Chosen Message Attack (wCMA). First, the adversary outputs a
list of queries gs messages my,...,mq, € M. Then KG is run, generating the
public/secret key pair (pk, sk). pk is given to the adversary F and sk is given to
the Challenger. The Challenger sends A signatures s; = Sig(m;) for i = 1, ..., ¢s.
At last, A outputs a pair (m*, s*), and wins the game if m* ¢ {my,...,m,, } and
Ver(m*,0*) = acc. Define Adv_4 to be the probability that A wins above game,
taken over the coin toss of A and the Challenger. Then A (gs, ¢, €)-weakly breaks
a signature scheme if A runs in time at most ¢, makes at most g5 Sig queries, and
Adv 4 is at least e. A signature scheme is (gs, t, €)-weakly existentially unforgeable
under a weak chosen message attack if no PPT A (s, t, €)-weakly breaks it.

Basic SCHEME Let (Gy,Gz2) be bilinear group pair where |G| = |G3| = p for
some prime p. m is encoded as an element of Z;.
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KG: Pick a random generator go € G2 and set g1 = 9(g2). Pick x « Z, and
compute u « g3 € Go. For fast verification, also compute z « e(g1, g2) €
Grp. The public key is (g1, g2, u, 2).

Sig: Given a secret key x € Z, and a message m € Z, compute 0 < g;
G1. Here 1/(x + m) is computed modulo p. If = —|— m =0, we set o « 1. The
signature is o.

Ver: Give the public key (g1, g2,u,2), a message m € Z, and a signature o,
verify if e(o,u - g5*) = z. If the equality holds, output acc. If o=1 and
u - gy* = 1 also output acc. Otherwise, output rej.

1/(w+m)

Lemma 1. Suppose (q,t',¢)-SDH assumption holds in (G1,Gs). The basic sig-
nature scheme above is (gs, t, €)-secure against existential forgery under a weak
chosen message attack, where

gs < q and t <t' —6(¢*T)

Proof. Assume A is a forger that (gs,t,€)-breaks the signature scheme. We
construct an algorithm B that, by interacting with A, solves the SDH prob-
lem in time ¢’ with advantage e. Algorithm B is given a random instance
(91,92, A1, ..., Ag) of the SDH problem, where A; = g € Gy fori =1,...,q
and for some unknown z € Z;. For convenience we set A9 = g2. Algorithm B’s

goal is to produce a pair (c, g}/(ﬁc)) for some ¢ € Z. Algorithm B does so by

interacting with the forger A as follows:

Query. Algorithm A outputs a list of distinct gs messages my,...,my, € Z,
where gs < ¢. Since A must reveal its queries up front, we may assume that
A outputs exactly ¢ — 1 messages to be signed (if the actual number is less,
we can always virtually reduce the value of ¢ so that ¢ = ¢5 + 1).

Response. B must respond with a public key and 51gnatures on the ¢ — 1
messages from A. Let f(y) be the polynomial f(y) =[]/, ! (y+m;). Expand
f(y) and write f(y) = Zg;é iy’ where ag, ..., 1 € Z, are the coefficients
of the polynomial f(y). Compute:

qg—1
gh — H A = gg(x) and h — HAO” T = g2 =gh"

Also, let ¢f = 9(g5). and 2z’ = e(g],g5). The public key given to A is
(g4, g4, h, z"), which has the correct distribution. Next, for eachi =1, ...,¢—1,
Algorithm B must generate a signature al on m;. To do so, let f;(y) be the

polynomial f;(y) = f(y)/(y+mi) =[]}, Hﬁz(y—l-mj) As before, we expand
fi and write f;(y) = Z?;g B;y;. Compute

q—2
§; — [[ A% = of® = /@™ e G,

Observe that o; = 9(S;) € G is a valid signature on m under the public
key (g1, 5, h, 2"). Algorithm B gives A the ¢ — 1 signatures o1, ..., 04—1.
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Output. Algorithm A returns a forgery (o*, m*) such that o* € Gy is a valid
signature on m € Z; and m* ¢ {my,...,my_1} since there is only one valid

signature per message. In other words, e(o*,h - gém*) = e(g1,95)- Since
y+m™

h = g5 we have that e(c*, g5 ) = e(g}, g5) and therefore

* 1/(z+m* z)/(x+m™
o :gi/( ):glf()/(+ ) (1)
Using long division we write (1) the polynomial f as f(y) = v(y)(y + m*) +
~y_; for some polynomial y(y) = S-%"2 vy’ and some v_; € Z%. Then the
rational fraction f(y)/(y+m*) in the exponent on the right side of Equation
(1) can be written as

q—2
S0/ +m’) = o Y

hence

v_1 =2 i

o — 91y+m* +>2725 1y .

Note that y_1 # 0, since f(y) = Hf;ll(y +m;) and m* & {ma,...,mg_1},
thus (y + m*) does not divide f(y). Then algorithm B computes

q—2 1/v-1
w= <0* 11 ¢<A1->%> = g/
=0

and returns (m*, w) as the solution to the SDH instance.
The claimed bounds are obvious by construction of the reduction.

Lemma 2. Suppose the basic scheme of Lemma 1 is (qs,t',€)-weakly secure.
The full signature scheme is (gs,t,€)-secure against existential forgery under a
chosen message attack, where

€>2(e+qs/p) and t<t' —O(qT)

Proof. We explain informally our strategy. As mentioned above, for a forger A
that breaks the full scheme, a forger B the basic scheme can be built as follows. B
sends a list of randomly chosen message M, ..., M, and queries to its challenger,
which returns the corresponding signatures o1, ..., 04, . Then B is given the public
key u(= g3) for some x € Z;. B chooses random secret key y € Z, computes the
public key v = g§ and completes the public key for the full scheme with u and v.
For g5 chosen message queried m; by A, B could compute an r; € Z; and such
that r; +ym; = M;. Then (o;,1;) is a valid signature on m;. Eventually, when A
outputs a forgery (m*, o*,7*), B “switches” this forgery to (M* = r* +ym*, o*),
which is a valid forgery for the full scheme. Next we give the detailed analysis
and lower bound B’s success probability. Denote two types of forger A as:



Short Signature and Universal Designated Verifier Signature 497

Type-1 Forger which either makes query for m = —z, or outputs a forgery
where m ¢ {M, ..., My, }.
Type-2 Forger which both never makes query for message m = —z, and out-

puts a forgery where r* + ym* € {M, ..., M, }.
We describe B as follows:

Setup. B queries its challenger with a list of messages My,..., My, € Z.
The challenger responds with a valid public key (g1, g2, u, z) and signatures
01,..,04, € Gy on these messages, where e(o;, go"'u) = e(g1,g2) = 2 for
i =1,...,qs. B chooses a random y € Z and chooses a bit b € {1,2} ran-
domly. If byoqe = 1, B gives A the public key PK; = (g1, 92, u,95,2). If
bmode = 2, B gives A the public key PK> = (g1, 92,95, u,2). In A’s view,
both PK; and PK are valid public keys for the full scheme (g1, g2, U, V, 2).

Signature Query. In order to respond, B maintains a H-list of three data
entries: (m;,r;, W;) and a counter ! initiated to 0. If receiving a signature
for m, it increases [ by 1, and checks if | > ¢5. If [ > ¢s, it neglects further
queries by A and terminate A. Otherwise, it checks whether g; ™ = w. If so,
the B just obtains the private key of its challenger. It can forge any number
of signatures for its target. In this case, it terminates successfully.
Otherwise, if bypoqe = 1, set 1) = M; —ym € Z,. If r, = 0, B reports failure
and aborts. Otherwise, BB returns (o, ;) as answer. This is a valid signature
on m for PK; because r; is uniform in Z; and

(o1, U - gyt - V™) =e(o,u-g3" "™ - g4™) = elor,u- g3"") = elgr, g2) = 2

if binode = 2, set rp =mM; —y € Z;. If r; = 0, B reports failure and aborts.

. 1 - 1
Otherwise, B returns (o, /m r;) as answer. This is a valid signature on m for
PK5 because r; is uniform in Z;; and

1 1 —
(o)™ U - g5 - V™) = e(0}™, g4 - g MY w™) = e(oy,u- gi1) = e(g1, go)

B further saves tuple (m,ry, g5' - V™) to H-list.

Output. Eventually, A returns a valid forgery (m*, o*, r*). Note that by adding
dummy queries, we may assume that A makes exactly ¢s queries. Let W* «—
g V'™ Then according to two types of forger A, we denote the following
events as
F1. No tuple of the form (-,-, W) appears on the H-list, or A has queried

on m such that u = ¢g=™.
F2. The H-list contains at least one tuple (mj, r;, W;) such that W; = W*.

Denote E'1 to be the event b,,0q¢ = 1 and denote E2 to be the event b,,o4e =
2. We claim that B can succeed in breaking the basic scheme if (E1AF1)V (E2A
F2) happens.

— (Case E1 A F1). If u = ¢g~™, then B has already recovered the secret key of
its challenger, B can forge signature on any message of his choice. Let M* =
r+ym*, then from the definition of F'1, (M*, 0*) is a valid message/signature
pair and it is not queried to B’s challenger before.



498 Rui Zhang, Jun Furukawa, and Hideki Imai

— (Case E2AF2). Since V = u, then we know that there exists a pair gy’ u™ =
g5 u™ . Since (m*,r*) # (m;,r;), otherwise it is not regarded as a forgery,
m* # m; and r* # r;. Write u = g3, B can compute 7 = (r; —r*)/(m* —m;)
which also enables B to recover the secret key of its challenger.

Since E1 and F'1 are independent with uniform distribution, Pr[E1VE2] = 1
and Pr[F1V F2| =1, the probability that B succeeds is

Pr[E1AF1)V (E2A F2)] =1/2

Then all left to do is lower-bounds B’s abort probability. From above de-
scription of B we know that if E1 A F'1 happens, B aborts only if r; = 0, i.e.,
my = M, this happens with probability at most ¢ /p. It E2A F2 happens, B does
not abort. Then B succeeds with probability at least €/2 — gs/p. This completes
the proof.
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